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Abstract: Technological advancement of vehicle platforms exposes opportunities for new attack
paths and vulnerabilities. Static cyber defenses can help mitigate certain attacks, but those attacks
must generally be known ahead of time, and the cyber defenses must be hand-crafted by experts.
This research explores reinforcement learning (RL) as a path to achieve autonomous, intelligent cyber
defense of vehicle control networks—namely, the controller area network (CAN) bus. We train an
RL agent for the CAN bus using Toyota’s Portable Automotive Security Testbed with Adaptability
(PASTA). We then apply the U.S. Army Combat Capabilities Development Command (DEVCOM)
Army Research Laboratory’s methodology for quantitative measurement of cyber resilience to assess
the agent’s effect on the vehicle testbed in a contested cyberspace environment. Despite all defenses
having similar traditional performance measures, our RL agent averaged a 90% cyber resilience
measurement during drive cycles executed on hardware versus 41% for a naïve static timing defense
and 98% for the bespoke timing-based defense. Our results also show that an RL-based agent can
detect and block injection attacks on a vehicle CAN bus in a laboratory environment with greater
cyber resilience than prior learning approaches (1% for convolutional networks and 0% for recurrent
networks). With further research, we believe there is potential for using RL in the autonomous
intelligent cyber defense agent concept.

Keywords: cybersecurity; vehicle; CAN bus; reinforcement learning; autonomous; cyber resilience

1. Introduction

The technological advancement of vehicle platforms—including electronic control
units (ECUs) and their firmware, intra-platform communication on control buses between
ECUs, and other advancements necessary for future platform autonomization—exposes op-
portunities for new attack paths and vulnerabilities. This research aims to explore concepts
and technologies needed to enable autonomous, active cyber defense of vehicle platforms
for survival and recovery from cyberattacks in contested cyberspace environments (CCEs).

Vehicle platforms, being cyber-physical systems, are not currently resilient in a CCE [1].
Cyber resilience is the ability of systems to recover from cyber stress that causes a reduction
in performance [2]. Essentially, how well can the platform continue to perform its mission
in a CCE? As humans alone cannot defend all vehicle platforms in real-time, it is necessary
to develop software able to defend against novel cyberattacks during operation in a CCE.

We propose using reinforcement learning (RL) as an approach for cyber-resilient au-
tonomous intelligent cyber-defense agents (AICAs) [3,4] in vehicle platforms. The software
agent is trained to defend a controller area network (CAN) bus from malicious messages.
We evaluate the agent using traditional classification measurements such as accuracy, as
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well as the U.S. Army Combat Capabilities Development Command (DEVCOM) Army
Research Laboratory’s proposed quantitative measurement of cyber resilience (QMoCR) [5]
(see Section 3.6). QMoCR is calculated using the difference in area under the curve of a
measured key performance parameter (KPP); in our case, this performance measure is
vehicle speed.

Our contributions are as follows. While RL has been suggested and used in automotive
applications, to the best of our knowledge, we are the first to use RL for detecting and
preventing CAN bus injection attacks at the network layer. Our feature engineering
approach for the RL agent reformulates the observation space from an action-independent
multi-armed bandit task into an action-dependent Markov decision process. We argue that
this impact on the CAN bus state justifies the use of RL methods over supervised machine
learning (ML) methods such as classification, and our results show that RL is superior
with and without this feature engineering. Additionally, we use QMoCR to evaluate cyber
resilience in Toyota’s Portable Automotive Security Testbed with Adaptability (PASTA),
which gives a better picture of real-world effects vs. using simple receiver operating
characteristic curves or loss metrics.

2. Related Work

In this section, we review related works to our study. Intrusion detection methods have
ranged from simple lookup tables [6] to time-series ML models [7]. Non-ML approaches,
which focus on static defense methods like lookup tables, are computationally simple
enough to run on the limited resources available on CAN bus hardware. Several papers
have shown that with time series data alone, it is possible to accurately defend fabrication
and suspension attacks [8]. Several others have found vulnerabilities in such simplistic
methods using masquerade [9] or cloaking attacks [8]. These attacks mimic or alter the
timing between the messages to attempt to bypass the defense.

ML models use computationally intensive training algorithms to maximize perfor-
mance and typically increase resiliency to attacks. Many previous works have investigated
intrusion detection systems for the automotive CAN bus using ML [10]. Most existing ML
work frames this problem as a supervised classification task with methods like random
forests [11], extreme gradient boosting (XGBoost) [12,13], support vector machines [14], and
deep learning architectures such as multilayer perceptrons (MLPs) [10,15], convolutional
neural networks (CNNs) [16], long short-term memory (LSTM) networks [17], and genera-
tive adversarial networks (GANs) [18]. Recurrent networks are also common among related
tasks, such as online purchase error classification [19]. In contrast to classification, an RL
approach maximizes long-term success through a reward function, explicitly choosing
actions while allowing more specific tuning for desired behavior.

Other related works in intrusion detection for a vehicle network primarily focus on
the classification task and do not show how the system recovers [20–22]. In this paper,
we develop an agent that detects attacks, responds by taking actions, and evaluates its
performance using the aforementioned QMoCR measurement.

Previously, RL has been applied to cybersecurity [23] and intrusion detection sys-
tems [24]. For anomalous network traffic, Lopez-Martin et al. [25] used deep RL for
intrusion detection using Network Security Laboratory Knowledge Discovery and Data
Mining (NSL-KDD) [26] and Aegean WiFi Intrusion Dataset (AWID) [27] datasets. In
contrast, our work investigates using RL for maintaining cyber resiliency in a vehicle
CAN bus.

Similar to our work, Xiao et al. [28] explore RL for physical layer authentication in
a CAN bus. However, this work focuses on analog physical layer characteristics of the
message sender’s transceiver and does not protect against malicious trusted ECUs.

3. Methods

In this section, we discuss the autonomous intelligent cyber-defense agent concept,
the experimentation environment, and the methods used in our research. Specifically, we
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describe the hardware and software platforms, agent design, feature engineering, training
conditions, defenses for comparison, and the QMoCR measurement used for assessment.

3.1. Overview

Our long-term hypothesis is that by leveraging the AICA concept, we can improve
the cyber resilience of systems over existing cyber-defense strategies. To begin testing
this hypothesis, we use the commercially available Toyota PASTA [29] as our testbed.
We train an autonomous cyber-defense agent using RL and place the agent strategically
within the vehicle network so that the agent can control traffic flow through the network.
The agent is trained to maximize expected future returns under various environmental
conditions. We measure the difference in cyber resilience through the experimentation
and quantitative measurement processes developed under the DEVCOM Army Research
Laboratory’s Quantitative Measurement of Cyber-Resilience effort [5].

3.2. AICA Concept

The North Atlantic Treaty Organization (NATO) task group on “Intelligent, Au-
tonomous and Trusted Agents for Cyber Defense and Resilience” outlined an AICA ar-
chitecture [3,4]. Members of this group envisioned a future where both defensive and
offensive autonomous agents battle for supremacy in cyberspace. Figure 1 illustrates their
proposed architecture for an AICA and which parts of that architecture are represented in
this research. As the AICA setup is nearly identical to the agent-environment interaction
loop of RL, it seems natural to apply this approach to the problem.
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Figure 1. The autonomous intelligent cyber-defense agent reference architecture, as used in our
prototype, is color-coded to show which pieces are represented.

The outer bounding box represents an environment. For our use case, the environment
is the intra-vehicle control network. The inner bounding box is the agent itself, consisting
of software and the required hardware to run it, operating within that environment. Using
sensors, the agent receives observations to build a view of the environment state based
on relevant parameters that the agent has access to. In our case, this is direct access to the
decoded CAN bus messages in the form of a two-dimensional (2D) grayscale image. In
the AICA architecture, these data are stored in databases and used for various services,
e.g., to keep track of current and historical states or world models to help with planning
and learning. Rather than explicit planning via world models, model-free RL algorithms
inherently incorporate much of this functionality within the trained agent.

The goal of a vehicle platform AICA is to maintain the greatest degree of cyber
resilience for a vehicle platform. In this context, cyber resilience refers to the vehicle’s
ability to continue operation and achieve its KPPs while under cyberattack. From a vehicle
control network standpoint, this equates to assuring the control network remains available
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for communication, legitimate nodes communicate their legitimate messages successfully,
and illegitimate messages are blocked.

When the state of the world is different than the desired state, the agent must generate
plans for attaining the desired state, select a plan, and execute it with feedback. An
autonomous intelligent agent can adapt its response over time to attain the desired state
more efficiently and effectively. This intelligent and goal-oriented action also allows it to
respond to novel attacks in novel ways, unlike manually configured automated defenses.
While this is an important long-term goal of this research area, we currently limit our
research to initial training and assessment of an AICA without considering the additional
desired capabilities obtained through online learning.

AICA components for inter-agent communication and negotiation, stealth and security,
and self-assurance are marked in gray in Figure 1. These are important to the overarching
AICA concept in which agents collaborate, potentially with competing goals, to thwart
offensive agents. These components are beyond the scope of this research.

3.3. Agent Environment

We begin our exploration of the AICA concept within the CAN bus. To experiment in
a controlled environment, we use the Toyota PASTA [29] testbed. PASTA consists of three
ECUs and a gateway, all connected via CAN bus using an open-source message format. The
vehicle physics (e.g., engine revolutions per minute, vehicle speed, coolant temperature)
are simulated in a closed-source manner.

Modifications to the testbed layout were necessary for experimentation (see Figure 2).
The first modification replaced the physical driver controls with a software-driven serial
interface over a universal serial bus (USB) so that a programmed drive cycle can be con-
sistently run for evaluation and to allow for random driver command generation during
training. The programmed drive cycle also incorporates proportional-integral-derivative
(PID) controllers for certain functions, such as maintaining a set speed and steering angle.
The use of PID controllers to simulate human driving allows us to measure a more realistic
impact on vehicle KPPs, such as vehicle speed, while the system is under attack. The other
modification is to allow for defense agent interception of Chassis ECU generated messages,
attack traffic injection, and logging along the Chassis CAN bus segment.
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The defense agent is placed between the Chassis ECU and the Gateway, providing
defense for outgoing messages from the Chassis ECU to the rest of the vehicle. Incoming
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Chassis ECU messages from elsewhere bypass the defense. Details on agent design and
training are provided in Section 3.4.

There are three fundamental attack methods on a CAN bus at the open systems
interconnection (OSI) model equivalent to the network layer. These are injecting a message,
blocking a message, or masquerading, which is essentially coordinated blocking and
injecting. For simplicity, we only consider the injection attack method. We do not consider
physical and data link layer attacks in this work.

3.4. Agent Design and Training Using Reinforcement Learning

RL inherently includes many of the AICA components, as discussed in Section 3.2. In
an ideal world, with vast amounts of training data and model refinement, RL should be
able to achieve strong policy optimization that combines the effectiveness of various static
algorithms with an understanding of the typical behavior of the contextual environment
and provides at least some ability to succeed in novel situations. Combined with eventual
online learning capabilities, it should be possible to realize the full AICA vision.

An RL agent is defined as a mapping π : S 7→ A , called a policy, from state s
to action a. The policy is defined on an environment represented by a Markov deci-
sion process (MDP) 〈S, A, P, R〉 with state space S, action space A, transition function
P(s, a, s′) = Pr(st+1 = s′ | st = s, at = a), and reward function R(s, s′). The transition
function P describes the environment’s probability of transitioning from state s to s′ when
the action a is chosen. The reward function R provides an immediate scalar value to the
agent when transitioning from state s to s′. The optimization objective for the RL agent is
then to maximize the expected return, the cumulative discounted reward across the (poten-
tially infinite) time horizon. The expected return is expressed as E

[
∑∞

t=0 γtR(st, st+1; at)
]
,

with action at = π(st) and discount factor γ ∈ (0, 1]. See [30] for more foundational
information on RL.

In our problem setup, the RL agent observes a fixed-length history of messages as a
2D image (see Figure 3). The image transformation is particularly useful, so we may use a
CNN architecture in the agent’s value and policy networks, as in [31]. Specifically, each
row encodes a single Chassis ECU emanated message with a single pixel representing the
one-hot encoded message type, with 15 types in total. The value of the pixel is linearly
scaled from 128 to 255 according to the time delta since the last message, computed by
128 ·

(
1 + 0.001−δ

0.001

)
up to a maximum time δ of 0.001 s = 1 ms represented by a value of

128. If no message is received within 1 ms, a blank row is inserted. The decoded message
values are represented as linearly scaled values between 0 and 255. Since CAN messages
can have multiple data fields, we allowed for representing up to 8 decoded values per
message. Following the decoded messages, we encode the data deltas between the current
and previous messages of this type with a ceiling of 255. Message history is encoded in
the row dimension, and we use a history of 100 messages. The evaluation image—used
solely for human understanding of the learning process—includes an agent action column
indicating whether the model decided to block or allow, with color coding indicating
decision correctness.

The action space A is a set of two actions: allow or block the incoming message. The
transition function P receives the action from the agent, transitions the environment to a
new state and gives the agent a new observation. Specifically, if the message is blocked,
then it is discarded from the message history going forward. This paradigm is called
observation dropping in our results and tends to outperform including these messages in
history. Importantly, observation dropping allows the agent to affect its observation space,
which converts this classification task into a true sequential decision-making problem for
which RL algorithms are suited.

If evaluating with hardware in the loop, an allowed message will be emitted to
the vehicle bus. The next message will then be received by the environment, and the
observation will be updated with the message type, content, and timing information.
During training, there is a probability p of the next message being malicious. These
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malicious messages are injected into the stream of messages with the intent to cause
improper vehicle operation, but they do not modify or replace any legitimate messages.
The environment determines if a message is malicious by a signature detected in the
message data padding. Note that no indication of malice is provided to the agent in the
observation. It is only used in the reward function.
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The reward function R evaluates if the action taken by the agent was correct for each
message and provides a scalar feedback signal to train on. As the training and evaluation
environments have ground truth knowledge of message tampering, the reward function
simply compares the action taken and tampering status to determine the reward. Table 1
shows a summary of the reward function. These rewards were chosen empirically as equal
rewards or larger rewards for correct decisions that did not result in learning an effective
policy at lower attack injection rates.

Table 1. Reward function for allowing and blocking real and malicious messages.

Allow Block

Real 1.0 −1.0

Malicious −1.5 1.5

We trained an Advantage Actor–Critic (A2C) agent [32] using ~17 h of data collected
from the hardware PASTA environment Chassis CAN bus. Driver actions were randomly
generated via software during the capture. The drive cycle generator communicates with
the PASTA Chassis ECU via serial connection and emulates control inputs. At random
intervals between 10 and 60 s, a new speed between 0 and 100 kph, a forward or reverse
direction, and a steering wheel position were randomly selected. Other vehicle controls,
such as turn signals, headlights, and wipers, are operated randomly or in connection with
drive cycle actions. For example, the appropriate turn signal is activated if the steering
wheel is turned more than 33% from straight.

For training, the capture was replayed along with random injection attacks of the
15 relevant Chassis ECU messages. Every 5 ms, there is a probability p of Chassis ECU
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message type m being injected. A new p between 25% and 100% is randomly chosen for
each message type m selected for injection at random intervals between 1 and 10 s. Message
injections occur according to the probabilities in Table 2, and the injected message types
are selected according to the probabilities in Table 3. Attack messages were padded with
specific values so that the accuracy of the agent actions could be measured in terms of true
positive rate and true negative rate.

Table 2. Message injection selection probabilities during training.

Selection Option Option Probability

No injections 5%

Single message type
injection 22%

Add message type to prior message injection list 73%

Table 3. Message type injection probabilities during training.

Message Type Type Probability

Brake,
acceleration,

steering
~15%

Remaining 12 message types ~5%

3.5. Defenses for Comparison

For comparison to existing anomaly detection techniques, we implemented a detector
solely using message timing (defense-static-timing-only), a variant additionally using a
simple frequency analysis step, an LSTM-based detector CANet [33] and a custom CNN
binary classifier with an identical network architecture to our proposed RL approach. The
frequency analysis in the message timing variant allows a limited number of repetitions
(up to 2) of the same message type–value pair occurring in the correct time window since
the last allowed message (defense-static-timing-frequency). To choose appropriate timing
windows, we analyzed the message time deltas for each message frequency (e.g., 20 ms,
50 ms) occurring within the collected training data (see Figure 4). The chosen timing
windows for the static timing-based defenses are as follows: ±5% for 0x01A, 0x02F, and all
100 ms messages; ±10% for 0x058, 0x06D, 0x083, 0x098, and all 50 ms messages. Note that
the static timing defense requires exact knowledge of the expected timing for each message
type; this must be hard-coded for each individual system and cannot detect masquerading
attacks whatsoever.
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CANet [33] is an LSTM- and autoencoder-based anomaly detection algorithm for
CAN bus data. The model is trained on a dataset with no injections, and messages with
reconstruction errors exceeding a threshold are deemed anomalous. Each message is
fed to a separate LSTM encoder corresponding to its message type. The latent output
from each LSTM is then concatenated for a temporal representation vector of the message
history. This vector is then fed to a shared three-layer MLP network with exponential linear
unit activation functions, which outputs the full message space. The mean squared error
reconstruction loss is weighted by the message type frequency in the dataset to counteract
bias. During evaluation with injections, a threshold loss value of 0.0001 was chosen for
anomaly detection.

To ablate our use of RL in place of the usual supervised learning techniques for this
problem, we implemented a binary classification model with identical CNN architecture
and relevant hyperparameters. Specifically, this network consists of three 2D convolution
layers with rectified linear unit activation functions, followed by a single fully connected
layer with one output node and sigmoid activation to map into (0, 1) output logits. The
CNN classifier is trained with binary cross-entropy loss between the predicted and true
message labels. By changing as little as possible from our approach to this classifier, we
hope to highlight the benefits of RL.

3.6. Quantitative Measurement of Cyber Resilience

Measurement is paramount in any scientific endeavor. The DEVCOM Army Research
Laboratory has researched the meaning of cyber resilience and offered a definition suitable
for military systems [2], a quantitative measurement of cyber resilience in this context [5],
and a methodology for obtaining that measurement [34]. To summarize, the QMoCR
measurement is the area-under-curve (AUC) ratio between baseline system performance
and the system’s performance under attack. For this research, we define our KPP as
attaining and maintaining certain vehicle speed thresholds as seen in the baseline case
(i.e., defense off, attack off). Therefore, we calculate AUC using the trapezoidal rule on the
graph of time versus vehicle speed. We compare the baseline performance to the system’s
performance while under cyberattack and protected by the various defenses.

4. Results and Discussion

Evaluation of the trained models on the hardware PASTA testbed (see Figure 2) used a
single drive cycle consisting of three 30 s periods of acceleration to, and holding of certain
speeds (i.e., 50 kph, 100 kph, and 199 kph) separated by 10 s stopped intervals. Since we use
vehicle speed as our performance parameter, attack messages consist of injection attacks
targeting the accelerator and brake pedal inputs from the driver. The attack consists of
simultaneously injecting 0x01A messages (brake_operation_indicator) with a value of 100%
and 0x02F messages (accelerator_pedal_operation_indicator) with a value of 0% at 5 ms
intervals. We perform ~15 runs with each type of defense and average the results to obtain
the final QMoCR measurement. For each learning approach, five independent models were
initialized and trained, and their evaluation results were averaged.

The performance of each defense is visualized in Figures 5 and 6, and average perfor-
mance measurements are provided in Table 4. While we do not have sufficient samples
to quantify the correlation between traditional evaluation measurements and real-world
performance, as measured by QMoCR and depicted in Figure 6, the relationship does not
appear to scale linearly. Although all classifiers achieve accuracy above ~70%, the timing
of allowed attack messages (i.e., false negatives) in relation to legitimate control messages
(i.e., true negatives) is also important to overall system performance.

Without defense, the vehicle is undrivable when under attack (Figure 6a). All defenses
performed in line with their accuracy with regard to vehicle speed when not subjected
to an attack (not illustrated), resulting in no distinguishable degradation in measured
performance over the baseline run for defenses with accuracy above 90%. This is notable
because there is potential for impact on the vehicle caused simply by the addition of the
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defense without any attack present. In fact, there would be noticeable degradation had we
focused on vehicle functionality enabled by brief changes in CAN bus message data, such as
on/off activation messages. In those cases, large impacts to vehicle functionality can occur
even with few but critically timed false positives that block the intended control signal.
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Table 4. Performance measurements of defenses using a drive cycle on the PASTA testbed.

Defense

QMoCR
Measurement Traditional Performance Measures

AUC Defense/Baseline
AUC Ratio Accuracy Precision Recall F-Score Sensitivity Specificity

Baseline 9615 . . . . . . . . . . . . . . . . . . . . .
No Defense 4 0% . . . . . . . . . . . . . . . . . .

Static Timing 3976 41% 0.9325 0.9251 0.9300 0.9275 0.9300 0.9346
RL Model 8606 90% 0.9341 0.943 0.913 0.9277 0.913 0.9523

Static Timing
w/Frequency 9430 98% 0.9433 0.9345 0.9443 0.9393 0.9443 0.9425

CNN Model 109 1% 0.7009 0.7592 0.518 0.6158 0.518 0.8585
LSTM Model 0 0% 0.6995 0.7697 0.4998 0.6061 0.4998 0.8714
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The RL model (Figures 5c and 6d) performed better than the static timing defense alone
(Figures 5b and 6c). This result is expected because the RL model adapts during training to
recognize variations in message timing, order, and data content, whereas the static timing
defense allows all traffic in the allowed time window, whether it is malicious or not. If a
malicious accelerator or brake pedal message occurs after the legitimate message and is still
within the window, which is not uncommon, it will impact the vehicle’s performance. Also,
as expected, the RL model performed worse than the customized static timing defense
with frequency analysis (Figures 5d and 6e). When a defense is custom-crafted for a
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particular scenario, even as simplistic as this one is, it can perform very well under those
circumstances. The issue with this custom-crafted approach is twofold. First, it takes time,
expertise, and awareness to implement custom defenses for every scenario. Second, this
custom defense performs poorly when the attack changes (e.g., injecting random message
values or time syncing the attack messages to arrive right before the legitimate messages).
The RL model is not as sensitive to such changes as it would have experienced similar
situations in training.

The CNN (Figures 5a and 6b) and LSTM (not illustrated) models performed worse
than the RL model during evaluation. This is exemplified in the QMoCR measurement,
where RL averaged 90% while CNN averaged 1%. The LSTM model failed to complete
a drive cycle due to blocking legitimate transmission shifting messages, which kept the
testbed from shifting into the drive.

This analysis also points out how the QMoCR measurement can benefit from the
additional context provided by the AUC graphs. While the overall number may be sufficient
for comparison during true tests of a system’s ability to meet maximum KPPs, it does not
solely provide all relevant information about changes in cyber resilience, which may be
important when viewed in the context of a vehicle performing a mission. For example,
one could imagine two defenses with identical QMoCR measurements; however, one
might have many small performance degradations with gradual recovery, while the other
may have a few larger performance degradations with faster recovery. These and other
intricacies, such as variation between runs, may be important to a system owner and may
not be adequately represented when looking at the final AUC measurement alone.

Additionally, the graphs above focus on vehicle speed and not holistic vehicle per-
formance. The attack performed in this research, even after defenses are in place, could
have significant impacts on the vehicles that are not accounted for in this analysis. For
example, when any accelerator pedal attack message gets past the defense, that message
causes the vehicle’s throttle body actuator to change positions from what the driver is
requesting. This leads to rapid fluctuations in the throttle body actuation signal, which
would cause accelerated wear in the best case and could damage the component in the
worst case. However, our intention is not to solve issues already facing the implementation
of a network layer CAN bus defense.

In Table 5, we show the baseline performance of each ML algorithm trained and tested
with or without observation dropping (described in Section 3.4). Labels “drop/drop” indi-
cate that dropping was used during training and evaluation, and LSTM rows only indicate
the test scenario as it must be trained solely on true messages. For the RL model and CNN
binary classifier, dropping blocked messages yielded higher mean accuracy than preserving
them in future observations, both with and without injected messages. The LSTM model
accuracy benefitted from observation dropping only with no injections. The technique
also reduced the models’ variance, except for the RL model with injections and the LSTM
model across both. Our RL approach with observation dropping produced the highest
mean accuracy with or without injections and the lowest variance without injections.

Table 5. Accuracy of models trained and evaluated with and without injections on data collected
from PASTA hardware environment, ablating for the inclusion of observation dropping.

Defense

Accuracy

No Injections With Injections

Mean Std Dev Mean Std Dev

CNN Classifier drop/drop 0.986131 0.009274 0.745306 0.010356

CNN Classifier no_drop/no_drop 0.985406 0.009316 0.709558 0.012134

LSTM drop 0.938945 0.079128 0.686017 0.027225

LSTM no_drop 0.954807 0.057592 0.685402 0.025105

RL drop/drop 0.997037 0.004194 0.951322 0.014763

RL no_drop/no_drop 0.965619 0.008333 0.889717 0.013051
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5. Future Work

Several advancements of this research are required to realize the AICA vision within
the CAN bus, let alone an entire vehicle platform. Future work in RL experimentation
would include the addition of an inject message action so the agent can handle attacks
that block legitimate messages, refinement of the learning process through tuning of RL
parameters and better reward functions influenced by QMoCR measurements, addition of
online learning for the agent to adapt in real or near-real time, and increased complexity
of the training environment to the level of an actual vehicle platform. Additionally, to
make such a solution viable for implementation within a vehicle platform, we must change
from an on-path (i.e., man-in-the-middle) to an off-path (i.e., man-on-the-side) defense
architecture through techniques such as physical layer fingerprinting [35] for message
authentication and non-protocol-compliant bus interaction (e.g., CAN-stomping [36]) for
blocking, injection, or masquerading defense actions.

A realistic training environment is essential for a successful defense agent. To provide
a suitable training environment without requiring real-time execution, we created a simula-
tion of the PASTA system (see Figure 7). The simulator replicates the CAN bus layout using
Linux Virtual CAN (VCAN) interfaces, message sending, and receipt, including message
timing, and estimates the physics of the vehicle platform. It also allows the automation
of human drivers and associated vehicle drive cycles, as well as software interfaces for
network attack creation and injection. We trained a defense model within our simulation
environment, but it performed poorly when evaluated in the hardware PASTA environ-
ment. We believe this is due to subtle differences between the simulation and hardware
environments, such as a drift in message ordering and timing on hardware arising from the
non-determinism of multiple processes. Training models, despite this discrepancy, a task
known as sim2real transfer [37], is important because any ultimate use of this technology in
a real vehicle will require training in simulation to obtain the state space coverage needed
for policy optimization. Therefore, additional research is needed into sim2real transfer
techniques for PASTA, such as domain randomization, domain adaptation, or algorithmic
techniques, such as perturbing model weights and meta-learning.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 16 
 

message timing, and estimates the physics of the vehicle platform. It also allows the auto-
mation of human drivers and associated vehicle drive cycles, as well as software interfaces 
for network attack creation and injection. We trained a defense model within our simula-
tion environment, but it performed poorly when evaluated in the hardware PASTA envi-
ronment. We believe this is due to subtle differences between the simulation and hardware 
environments, such as a drift in message ordering and timing on hardware arising from 
the non-determinism of multiple processes. Training models, despite this discrepancy, a 
task known as sim2real transfer [37], is important because any ultimate use of this technol-
ogy in a real vehicle will require training in simulation to obtain the state space coverage 
needed for policy optimization. Therefore, additional research is needed into sim2real 
transfer techniques for PASTA, such as domain randomization, domain adaptation, or al-
gorithmic techniques, such as perturbing model weights and meta-learning. 

 
Figure 7. Simulated PASTA training environment. 

While we evaluated some out-of-distribution learning and have discussed the need 
for sim2real transfer techniques, another similar avenue we would like to explore is auto-
matic curriculum learning via multi-agent interactions. It has been shown that auto-cur-
ricula arise when multiple agents are able to learn in a shared, competitive environment 
[38]. For the CAN bus defense task, one agent may learn to defend (as we do here) while 
another agent learns to attack. We should expect this system to generate novel attacks if 
set up appropriately such that the defender agent will generalize better at test time to 
unknown attacks. 

Finally, it would be worth further exploring the utility of additional KPP evaluations 
and even additional cyber-resilience measurements to complement and expand upon the 
information conveyed through an area under the curve measurement. 

6. Conclusions 
Our results show that RL can form a viable base for an AICA, performing on par with 

other techniques for CAN bus anomaly detection while maintaining greater potential for 
adapting to novel attacks. This is demonstrated via direct comparison utilizing both de-
tection performance measurements as well as quantitatively measured cyber resilience. 
During offline evaluation (Table 5), our model has higher accuracy than the CNN and 
LSTM models in classifying purely benign data (99.7% compared to 98.6% and 93.9 

Figure 7. Simulated PASTA training environment.

While we evaluated some out-of-distribution learning and have discussed the need for
sim2real transfer techniques, another similar avenue we would like to explore is automatic
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curriculum learning via multi-agent interactions. It has been shown that auto-curricula
arise when multiple agents are able to learn in a shared, competitive environment [38].
For the CAN bus defense task, one agent may learn to defend (as we do here) while
another agent learns to attack. We should expect this system to generate novel attacks
if set up appropriately such that the defender agent will generalize better at test time to
unknown attacks.

Finally, it would be worth further exploring the utility of additional KPP evaluations
and even additional cyber-resilience measurements to complement and expand upon the
information conveyed through an area under the curve measurement.

6. Conclusions

Our results show that RL can form a viable base for an AICA, performing on par
with other techniques for CAN bus anomaly detection while maintaining greater potential
for adapting to novel attacks. This is demonstrated via direct comparison utilizing both
detection performance measurements as well as quantitatively measured cyber resilience.
During offline evaluation (Table 5), our model has higher accuracy than the CNN and LSTM
models in classifying purely benign data (99.7% compared to 98.6% and 93.9 respectively
for CNN and LSTM) and under injection attacks (95.1% compared to 74.5% and 68.6%).
During the online evaluation of our drive cycle on hardware (Table 4), our agent performed
at a 90% QMoCR measurement, which was significantly better than a naïve static timing
defense (41%) and expectedly lower than a bespoke timing defense (98%). The non-RL CNN
model performed at ~1% QMoCR measurement, and the LSTM model did not perform
well enough to complete a drive cycle. Through our experimentation and leveraging
the QMoCR measurement, we show that traditional performance measures of defense
techniques do not provide an accurate understanding of how well a cyber-physical system
will continue to operate through a cyberattack. There is still much work needed to fully
realize the intelligence piece of an AICA, and this work provides a step further toward
that vision.
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