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Featured Application: Predict race-tracking strength in an RTM process using minimal pressure
sensor measurements and position the sensors optimally throughout the preform in order to do so.

Abstract: A Bayesian inference formulation is applied to the Resin Transfer Moulding process to
estimate bulk permeability and race-tracking effects using measured values of pressure at discrete
sensor locations throughout a preform. The algorithm quantifies uncertainty in both the permeability
and race-tracking effects, which decreases when more sensors are used or the preform geometry
is less complex. We show that this approach becomes less reliable with a smaller resin exit vent.
Numerical experiments show that the formulation can accurately predict race-tracking effects with
few measurements. A Bayesian A-optimality formulation is used to develop a method for producing
optimal sensor locations that reduce the uncertainty in the permeability and race-tracking estimates
the most. This method is applied to two numerical examples which show that optimal designs reduce
uncertainty by up to an order of magnitude compared to a random design.

Keywords: permeability; computational modelling; Bayesian inference; resin transfer moulding (RTM)

1. Introduction

Resin Transfer Moulding (RTM) is a common advanced processing method for pro-
ducing near-net-shaped composite parts. It consists of five key stages:

1. Preform Manufacturing: The reinforcing fabric is manufactured, typically by stacking
layers of fabric upon one another.

2. Lay-up and Draping: The fabric preform is layed up or draped in the mould.
3. Mould Closure: The fabric layers are compressed to the final thickness of the part.
4. Resin Injection: Resin is injected into the mould through the injection gate(s) until the

preform is fully saturated and the resin exits through a vent.
5. Cure and Demoulding: A part is removed from the mould after the resin cures.

RTM is often used within the industry because of the relatively short production
times and simple experimental setup to construct near-net-shaped parts. However, these
advantages come with caveats.

An important stage in RTM is resin injection, where the flow of the resin must be
carefully controlled to avoid incomplete fillings, in which air can be trapped inside the
mould, forming macroscopic dry spots. Even very small regions without resin can cause
catastrophic failure of the composite part [1–4]. Accurate predictions of resin flow allow for
strategic design of gates, vents, and injection schemes to optimally fill the composite part,
with minimal chance of dry spot formation [1].

The flow of the resin through the fabric preform depends on the permeability. Devia-
tions in the permeability from what is expected often come from the lay-up and draping
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stage of manufacturing, when the preform is placed into the mould. Occasionally, there
can be areas of very high permeability at the boundaries of the preform where the fabric
density is lower. These are ‘race tracks’ for the resin as it fills the mould. The strength and
existence of race tracking are influenced by a variety of factors, including fabric type, the
preform manufacturing method, and the placement of the preform into the mould. It can
vary from one part to the next in the same production run and is usually not repeatable [5].

The unpredictable nature of race tracks, in terms of their strength, can lead to sig-
nificant variations in resin propagation, significantly changing the flow front movement
pattern [6–8]. This can lead to dry spots in the composite parts, as the flow moves in an
unpredictable way, trapping air. It is of great interest to be able to predict the effects of
race tracking and mitigate the chance of dry spot formation, even in cases of high race
tracking. When race tracking is predicted, one can use it as a method for advantageous
resin distribution, rather than race tracking being an unpredictable problem.

Research around the effects of race tracking is not mainly focused on the prevention
of race tracking, which is inevitable to some extent, but on understanding and predicting
the race-tracking effect. Techniques from areas of statistics and machine learning have been
incorporated into prediction, as well as methods that incorporate existing physical models
of RTM [8–12].

One significant example, [5], addresses the problem of predicting race tracking online,
as the resin is injected. This is an important problem as it allows manufacturers to accurately
predict the flow of the resin, taking into account the specific race-tracking scenario for each
part. Online automation tools could then be used to change the resin flow to ensure that
there are no dry spots by introducing control actions during filling, such as introducing new
injection locations, opening and closing exit vents, and changing injection pressures [13].
The method is based on discretising potential race-tracking effects for each susceptible
region and creating a database of resin flow for each permutation of potential effects for
each region. As a part is filled, sensors collect data that are then compared to the closest
scenario in the database. This method is efficient because all the extensive computation can
be completed offline. However, by considering only discrete scenarios and approximating
flow based on the closest scenario, the reality could differ (possibly significantly) from what
is predicted.

To allow for the systematic incorporation of uncertainties with race-tracking pre-
diction, we consider this inverse problem in the Bayesian framework [14–17]. In this
framework, the solution to the underlying statistical inverse problem is given by the poste-
rior probability density. For nonlinear inverse problems with expensive forward models
and high-dimensional parameters (as is the case for RTM inverse problems), fully char-
acterising the posterior is typically not tractable. Consequently, we compute the Laplace
approximation of the posterior, which requires only the maximum a posteriori (MAP) esti-
mate, i.e., permeability and race-tracking strength, which maximise the posterior density
and the approximate posterior covariance.

The idea of incorporating Bayesian inference into this problem has been explored
previously [18,19]. These investigations focus on the more general problem of predicting
a complete permeability field throughout the mould. The purpose of this would be to
use pressure and flow front data created during filling to predict defects in the final part
after it is produced but before any structural testing. They showed that a permeability and
porosity field can be predicted using Bayesian inference, including predicting potential
defects. However, extracting enough data with multiple pressure sensors and linear flow
front sensors could be considered impractical and tedious in real manufacturing cases.

The current work uses a novel, lower-dimensional parameterisation compared to
that formulation [18,19], where permeability throughout the domain is characterised by
a homogeneous region, along with homogeneous race-tracking regions with a greater
permeability. The purpose of this work is to estimate the race tracking that occurs during
mould filling. The parameterisation presented here allows for the efficient estimation of
race-tracking strength while neglecting other smaller spatially varying permeability effects.
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The simplification to a lower-dimensional parameterisation also allows for much faster
computation, which opens the potential for online calculation in the future. In this paper,
we use offline calculations to compute the optimal locations for pressure sensors, a problem
that has not yet been considered to the best of the knowledge of the authors. These locations
could be used to predict race tracking online in the future. It is the hope that an optimally
designed experimental setup will allow practitioners to extract maximum insight into the
permeability, and therefore flow pattern, as the mould is being filled. From there, control
actions can be taken, as has been investigated before [5,13,20,21], to ensure that the resin
flow is controlled and there are minimal dry spots.

2. Computational Model
2.1. Constitutive Equations

This paper is limited to considering the 2D case, which is sufficient to model the
vast majority of net-shaped parts for which RTM is used. However, the computational
model and all Bayesian formulations in this model can be applied to higher-dimensional
formulations.

For the slow-moving thermoset resins that are typically used in RTM, Darcy’s law
adequately describes the 2D flow through a porous medium [1,5,13,20,22–24]:

q = −K
µ
∇p, (1)

where q ∈ R2 is the flux vector of resin, p is the pressure, µ is the fluid viscosity, and
K ∈ R2×2 is the permeability tensor, which is symmetric and positive definite. Combining
Darcy’s law with conservation of mass gives:

−∇ ·
(

K
µ
∇p
)
= 0. (2)

We base the following notation on the notation used in [19] to describe this problem.
The domain of the mould D can be partitioned at any point in time into F(t) and U(t), which
represent the filled and unfilled regions of the domain, respectively. The boundary of D is
δD = δDI ∪ δDN ∪ DO, where δDI represents the inlet, δDN represents the impermeable
walls of the mould, and δDO is the outlet vent. We consider the case where resin is injected
from a gate at a fixed constant pressure (pin) and exits from a vent. At this vent, resin
pressure is fixed at atmospheric pressure, taken to be 0 without loss of generality. The walls
of the mould have zero normal flow. All unfilled regions are also fixed at zero pressure,
neglecting the scenario in which air is sealed and compressed in the mould, which we are
trying to prevent. In summary, the problem has the following boundary conditions, where
n(x) is the normal vector to the domain boundary at x:

p(x, t) = pin, x ∈ δDI , (3)

p(x, t) = 0, x ∈ δDO, (4)

∇p(x, t) · n(x) = 0, x ∈ δDN , (5)

p(x, t) = 0, x ∈ U, (6)

and the following initial conditions:

U(0) = D− δDI , (F(0) = δDI). (7)

2.2. Numerical RTM Model

The RTM simulation developed here uses a standard multigrid method [25–27]. This
uses control volumes (CVs) that keep track of resin saturation, offset from the triangular
finite elements that are used to calculate the pressure through Equation (2). These are
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illustrated in Figure 1. This paper will refer to these as ‘control volumes’ (CVs) and
‘elements’, respectively, to avoid confusion.

0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

Figure 1. Control volumes (blue) offset from the triangular finite elements (black) for a basic mesh
(a more complex mesh is used in the numerical simulations).

The algorithm can be divided into a series of steps:

1. Solve finite element equations for pressures at the nodes.
2. Calculate the flow between each control volume.
3. Calculate the time to fill the next control volume.
4. Step forward in time and propagate the resin front forward.

These steps are repeated until all control volumes are full. This algorithm is available in
LIMS [28,29], which can address complex geometries and 3D flows. However, for this work,
the goal was to explore the A-optimality formulation in combination with the Bayesian
framework. Once demonstrated, this can be implemented in other RTM simulations.
As such, our numerical simulations in this paper use an implementation of this algorithm
written in Julia code. Each of the steps of the algorithm is discussed in more detail in
the following.

2.2.1. Solve for Pressure

Equation (2) can be written in a weak form using the Galerkin finite element method,
for a given mesh. The derivation of this is given in Appendix A. This gives the stiffness
equation to solve:

E(K)p = f , (8)

where E(K) and f are the finite element stiffness matrix and the forcing vector, respectively,
as defined in Appendix A. All nodes with respective CVs in U(t) are fixed at p = 0,
as discussed in Section 2.1. Applying boundary conditions based on these time-varying
sets alters E(K) to A(K, t), which is defined as follows, using MATLAB notation:

A(i, :) =

{
E(i, :)
eT

i

CVi ∈ F ,
CVi ∈ U(t) or ni ∪ δDI ∪ δDO),

(9)

where CVi represents the ith CV, ni represents the ith node, and eT
i is the standard unit

basis vector. The vector f does not change as U and F change and is defined as follows:

f (i) =

{
pin

0
ni ∈ δDI ,
otherwise.

(10)
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Equation (8) is never actually solved, but, instead, the following is solved every timestep:

A(K, t)p(t) = f . (11)

It is worth noting that A(K, t) is generally very sparse.

2.2.2. Calculate Flow

Given the finite element pressure distribution, the flow between CVs is calculated.
The flow between filled CVs is not important, as the net flux will add to zero. CVi has a
saturation Ψi where

• Ψi = 0 represents an empty CV.
• Ψi = 1 represents a filled CV.
• 0 < Ψi < 1 is a partially filled CV.

CVs that increase in saturation during the current timestep must be considered. To this
end, we define the set X that contains all the values for i such that CVi has an adjacent CV
that is filled and Ψi < 1.

For a given finite element, we can express Darcy’s law for the flow rate q—Equation (2)—in
terms of the nodal pressures:

q = − 1
µ

K

∂p
∂x
∂p
∂y

,

∂p
∂x
∂p
∂y

 = J−1

∑3
i=1 pi

∂φi
∂ξ1

∑3
i=1 pi

∂φi
∂ξ2

. (12)

Here, J is the finite element Jacobian, defined as follows, based on the three coordinates
of the element (x1, y1), (x2, y2), and (x3, y3):

J =

[
x1 − x3 y1 − y3
x2 − x3 y2 − y3

]
. (13)

Note the lack of dependence of q on the element coordinates—the linear elements for
pressure give a constant flow rate throughout an element. Through a boundary C, the vol-
ume flow rate QC can be obtained by integrating q · n across the boundary. Within one
element, there is no spatial dependence, so we have the following for QC:

QC = (q · n)|C|, (14)

where |C| is the length of the boundary C. By summing QC for all boundaries for the ith
CV, the total flow Qi is calculated.

2.2.3. Time to Fill Next CV

Once the total flow Qi is found, the time to fill the CV can be calculated based on the
current saturation. For all i ∈ X:

t(i)fill =
φ(1−Ψi)Ai

Qi
, (15)

where φ is the porosity of the domain and Ai is the area of CVi. We then know the timestep
to propagate to the next iteration:

∆t = min
i∈X

t(i)fill, (16)

i′ = argmin
i∈X

t(i)fill. (17)
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2.2.4. Timestep

The time dependence in this problem comes only from the moving boundary, causing
a change in U(t) and F(t). At the end of the iteration of this method, the following change
takes place:

U(t + δt) = U(t)− CVi, (18)

F(t + δt) = F(t) + CVi. (19)

If there are still unfilled CVs, we return to solving for pressure (Section 2.2.1). This
begins with a change from A(K, t) to A(K, t + δt) (Equation (9)).

2.2.5. Interpolation

For this investigation, it is of interest to be able to output the measurements that
pressure sensors at specific locations would give at specified measurement times. The finite
element solution defines the pressure at every location in the domain. However, a disadvan-
tage of the algorithm described here is that the timesteps are dependent on the filling times.
Therefore, extracting pressure measurements at specific times requires linear interpolation.

3. Bayesian Formulation
3.1. Permeability Vector

The unknown model parameters that represent the permeability are described by
k = [c1, c2, c3, α1, α2, . . . , αn]. We use c1, c2, and c3 to represent the log-Cholesky factorisation
of the bulk permeability tensor, Kbulk—see (20). Kbulk represents the permeability tensor for
the majority of the domain, aside from the region experiencing race tracking. Specifically,
we take:

CTC = Kbulk, C =

[
ec1 c2
0 ec3

]
. (20)

Parameterising the bulk permeability in this way ensures that the bulk permeabil-
ity tensor is symmetric and positive definite, regardless of the values of c1, c2, and
c3 [30]. The remaining parameters α1, α2, . . . , αn represent race tracking in various ar-
eas. For given values of these parameters, the permeability tensor of each area can be
constructed as follows.

Kj = exp(αj)Kbulk, j = [1, 2, . . . , n], (21)

where Kj is the permeability tensor in a specific race-tracking region. The use of the expo-
nential function is convenient, as it allows the parameters αj to be normally distributed,
but gives an exponential distribution in the race-tracking multipliers. This exponential dis-
tribution reflects typical race-tracking multipliers, which are often 1–5 times larger than the
bulk permeability but can be 100 times higher in some instances [1,5,13,20]. The benefit of
using normally distributed random parameters will be discussed in the following sections.

It should be noted that we have limited the stochastic variables in our model to only
those parameterised by k. This includes the bulk permeability and the race-tracking strength
of each region. We fix the porosity and race-tracking width parameters. The reasons
for excluding each are different. Stochastic porosity has been considered in a previous
study [19] but will be neglected here due to its typical low variation and because the
focus of this research is specifically on race tracking. We neglect the race-tracking width,
although stochastic in actuality, because the dual effect of the race-tracking width and
strength can be replicated with just strength. As the interest in race tracking is in its effect
rather than describing the exact source, this is an appropriate assumption.
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3.2. Bayesian Inference

The objective of this investigation is to estimate the permeability vector k, which exists
and produces a vector of measurements d, as the composite part is produced. For the RTM
problem, the length of this vector is the number of measurement times multiplied by the
number of pressure sensors. We assume that these data contain some error or noise e, so
we have:

d = G(k) + e, e ∼ N (0, Γe), (22)

where Γe is a covariance matrix that describes the distribution of this error, and G represents
the ‘forward model’. That is, G(k) produces noise-free measurements that would be taken
when completing an RTM resin injection with permeability vector k. The computational
model described in Section 2 is used every time G(k) is calculated.

This estimation of k can be achieved by Bayesian inference. We treat the unknown k as
a random variable and determine the posterior probability distribution π(k|d). This has the
added benefit of automatically quantifying the uncertainty in the parameters. The posterior
can be found using Bayes’ rule:

π(k|d) =
π(d|k)π(k)

π(d)
∝ π(d|k)π(k).

(23)

Here, π(d|k) is the likelihood function, which is the probability of receiving the data
for a given permeability vector. If we assume that the noise e and the parameters k are
independent, and given Equation (22), this likelihood is [14]:

π(d|k) ∝ exp
(
− 1

2 (G(k)− d)TΓ−1
e (G(k)− d)

)
= exp

(
− 1

2 ||Le(G(k)− d)||2
)

.
(24)

where Γ−1
e = LT

e Le.
On the other hand, π(k) is the prior that encodes the prior beliefs of k. Given the

parameterisation described in Section 3.1, it is now sensible to describe the prior using a
multivariate Gaussian distribution with the mean µk and covariance Γk. This gives the
following equation for the prior probability density:

π(k) ∝ exp
(
− 1

2 (k− µk)
TΓ−1

k (k− µk)
)

,

= exp
(
− 1

2 ||Lk(k− µk)||2
)

,
(25)

where Γ−1
k = LT

k Lk. Combining Equations (23)–(25) gives the following equation for
the posterior:

π(k|d) ∝ exp
(
−1

2
||Le(G(k)− d)||2 − 1

2
||Lk(k− µk)||2

)
(26)

3.3. Exploring the Posterior

Although Equation (26) is the posterior, we need some way of interpreting this dis-
tribution. The posterior could be analysed using Markov Chain Monte Carlo (MCMC)
methods [8], but this would involve evaluating the posterior hundreds of thousands of
times. Calculating the posterior is a computationally expensive operation because it re-
quires calculating G(k) and running the RTM model. The RTM model involves solving the
system of equations for pressure at each timestep, where the number of timesteps scales
with the number of nodes. Other research in this area focuses on the development of less
computationally expensive methods [18,19].
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We use a Laplace approximation to the posterior, which requires several orders of
magnitude less computational time. The Laplace approximation works by approximating
the posterior about the maximum a posteriori (MAP) estimate. We then take a Gaussian
approximation of this estimate. However, the calculation of the MAP estimate is not trivial
and requires maximising the posterior. This can be simplified by noting the following.

kMAP = argmax
k

(π(k|d))

= argmin
k

(−2 ln π(k|d))

= argmin
k

(
||Le(G(k)− d)||2 + ||Lk(k− µk)||2

)
.

(27)

Once the MAP estimate has been found, the Laplace approximation to the posterior
can be found by considering the Taylor expansion of G(k) about kMAP:

G(k) ≈ G(kMAP) +J (k− kMAP), (28)

where J is the Jacobian of the RTM model evaluated at the MAP estimate. This Jacobian
considers the derivative of all outputs of G(k), with respect to each of the components of k:

J =



∂G1

∂k1

∂G1

∂k2
. . .

∂G1

∂kn
∂G2

∂k1

∂G2

∂k2
. . .

∂G2

∂kn
...

. . .
∂Gm

∂k1

∂Gm

∂k2
. . .

∂Gm

∂kn


, (29)

where Gi is the ith component of the output vector from G. Substituting this into
Equation (26) gives an equation for the Laplace approximation of π(k|d), πLaplace(k|d):

πLaplace(k|d) ∝ exp
(
−1

2
||Le(J k− z)||2 − 1

2
||Lk(k− µk)||2

)
, (30)

where z = d +J kMAP − G(kMAP), which does not depend on k. This probability density
function describes a Gaussian distribution (that is, πLaplace ∼ N (kMAP, Γpost)), the covari-
ance of which can be calculated as follows:

Γpost = (J TΓ−1
e J + Γ−1

k )−1. (31)

4. Numerical Examples

We now apply the outlined methodology to two example problems. For these, the
data are generated by running the RTM model with a true permeability, which we denote
by ktrue, which we are trying to estimate. Then, noise is added to these simulated pressures.
It is assumed that the permeability in the bulk of the domain (Kbulk) is homogeneous and
that the permeability in the race-tracking regions is a scalar multiple of the bulk region.

We assume the data come in the form of pressure measurements taken at discrete
sensors at predefined times. The pressure sensors are placed at optimal locations using the
scheme described in the later section on Bayesian Optimal Experimental Design (Section 6).
All pressure measurements are then normalised by dividing by the inlet pressure.

The programming language Julia was used to both execute the RTM simulations and
to complete the Bayesian calculations in general. This allows for faster code execution com-
pared to other interpreted languages, and we use the ForwardDiff package for automatic
derivative calculation [31].

A Gauss–Newton algorithm [32] with random restarts is used to carry out the optimi-
sation required to find the MAP estimate. We can reliably produce solutions with smaller
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residuals (i.e., a lower cost function described by Equation (27) than ktrue, with less than
10 restarts, for the small-scale models considered in this paper.

4.1. Model 1

The first investigated example is illustrated in Figure 2. Resin is injected into the mould
from a 5 cm injection gate in the lower left corner of the domain at a constant pressure of
pin = 400 kPa. The only exit vent is at the top right corner of the domain, which is again
fixed at 5 cm. There are three areas of potential race tracking, with different permeabilities
at the top and bottom of the domain, as well as around a central block. In reality, there will
be potential for race tracking along the vertical walls, but this is ignored here for simplicity.

0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4
1

2

3

Injection Gate

Exit Vent

Figure 2. Domain for Model 1, representing a rectangular part with a square block at the centre.
Race-tracking regions are indicated in blue and are numbered.

As there are three race-tracking regions, the permeability vector is

k = [c1, c2, c3, α1, α2, α3]
T , (32)

where:

Ki = exp(αi)Kbulk, (33)

and Ki represents the permeability tensor for region i = 1, 2, 3, as shown in Figure 2.
Here, ktrue was arbitrarily defined as follows:

ktrue = [0, 0, 0, ln(10.0), ln(1.0), ln(50.0)]T . (34)

This represents a scenario where there is no race tracking along the bottom, 10 times
higher permeability on the top, and 50 times higher permeability around the centre of the
domain. All permeability values here have units of 10−11 m2.

Error was added to the output of this model with the distribution N (0, Γe). For this
experiment, we set

Γe = σ2
e I, σe = 0.01. (35)

As with the error distribution, the prior for this experiment is arbitrary and can be
adjusted to the beliefs of the implementer but should, in general, be created broadly so as
not to introduce bias into the prediction. This experiment used the following prior, which
roughly approximated our prior beliefs in the race-tracking and permeability values.

µk = [0, 0,−0.144, 2, 2, 2]T , (36)

Γk = diag([0.25, 1, 0.25, 2, 2, 2]). (37)
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The prior mean represents a permeability field that it is slightly more permeable in the
x direction than in the y direction. Specifically, it represents the following tensors:

Kbulk =

[
1 0
0 3

4

]
, K1, K2, K3 = e2Kbulk (38)

4.2. Model 2

This example considers a more complicated scenario in which there are ten race-
tracking regions. This time, we let resin exit through the entire right-hand boundary.
The reasons for this are discussed in Section 7.1. There are now two central blocks, each
with a different race-tracking strength along each of its four edges. The domain is illustrated
in Figure 3.

0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4
1

2

3

4

5

6

7

8

9

10

Injection Gate

Exit Vent

Figure 3. Domain for Model 2, representing a rectangular part with two square blocks. Each race-
tracking region is labelled in blue and numbered.

The associated permeability vector is

k = [c1, c2, c3, α1, α2, . . . , α10]
T , (39)

where α1, α2, . . . , α10 are defined in Equation (21) and their respective regions are labelled
in Figure 3; ktrue is taken as a random sample from the prior, which is defined as similar to
Model 1, specifically:

µk = [0, 0,−0.144, 2, 2, . . . , 2]T , (40)

Γk = diag([0.25, 1, 0.25, 2, 2, . . . , 2]). (41)

We use the same error distribution as in Model 1, given in Equation (35).

5. Results
5.1. Model 1

The posterior and prior for Model 1 are compared in Figure 4 when only two pressure
sensors are used. We take measurements every 1000 s, for up to 15,000 s. When ktrue is
used, this gives a fill time of 10,500 s, which means that we measure both during filling
and after the resin has reached the vent—a steady state pressure distribution.

The posterior encompasses the truth for all parameters as expected. The posteriors are
generally broad due to the low amount of data used to develop the posterior, particularly
in parameters such as α1, α2, and α3, which are perhaps less influential on the pressure
measurements themselves. It is important to note that although Figures 4–6 show each
parameter’s marginal posterior individually, there is a multivariate correlation between the
parameters developed by the posterior that is not visualised.
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Figure 4. Marginal prior (red) and posterior (blue) distributions for Model 1 with 2 sensors. Truth
is shown with a black dashed line. Note that these distributions are presented on separate y-axes,
for ease of comparison.
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Figure 5. Marginal prior (red) and posterior (blue) distributions for Model 1 with 10 sensors. Truth
is shown with a black dashed line. Note that these distributions are presented on separate y-axes,
for ease of comparison.

Figure 5 shows how the posterior varies when 10 pressure sensors are used. With the
increase in information provided by the 10 sensors, the marginal posteriors have less
uncertainty. However, the caveats of using the Laplace approximation are evident here,
particularly for the posterior for α2, where the truth is not encompassed by the posterior.
Although we can be sure that the unapproximated posterior would cover these truths,
the Laplace approximation can sometimes be inaccurate. In addition, the posterior with
10 sensors has greater uncertainty than with 2 sensors for this parameter. One key reason
for these inaccuracies in the Laplace approximation is discussed in Section 7.1.
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Figure 6. Marginal prior (red) and posterior (blue) distributions for Model 2 with 10 sensors. Truth is
shown with a black dashed line. Note that these distributions are associated with separate y-axes,
for ease of comparison. For presentation, α10 is also omitted.

These results are quantitatively summarised in Table 1, which shows how the prior,
posterior, and truth compare when a 99% confidence interval is developed from the prior
and posterior.

5.2. Model 2

The marginal priors and posteriors for the more complex Model 2 are compared in
Figure 6. Because there are more parameters to estimate, we now take more data. We consider
only the 10-sensor setup and take measurements every 100 s for a total of 10,000 s. We take
measurements in a shorter time period because the mould takes only 7800 s to fill with ktrue.

The uncertainty in influential parameters such as the bulk permeability and the top
and bottom race-tracking regions is very low because these parameters have a greater
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impact on domain pressure. The uncertainty in the less significant regions around the
central blocks is much larger. The truth is encompassed by the posterior for all parameters,
as expected.

Table 1. Figures 4 and 5 summarised in a table. Confidence intervals are 99% based on
3 standard deviations.

c1 c2 c3

Truth −0.141 0.531 −1.758
Prior 0.000± 1.500 0.000± 2.121 −0.144± 1.500

Posterior (2 Sensor) −0.128± 0.034 0.537± 0.036 −1.731± 0.076
Posterior (10 Sensor) −0.127± 0.020 0.533± 0.015 −1.747± 0.034

α1 α2 α3

Truth 3.737 2.824 2.189
Prior 2.000± 4.243 2.000± 4.243 2.000± 4.243

Posterior (2 Sensor) 3.751± 0.421 2.612± 0.166 2.093± 0.563
Posterior (10 Sensor) 3.653± 0.254 2.605± 0.196 2.067± 0.379

6. Bayesian Optimal Experimental Design

This paper has so far shown that a lot of information about race tracking and per-
meability in the preform could be determined with even two sensors, taking 15 discrete
measurements each. This section investigates where to optimally place sensors in order to
bring posterior uncertainty to a minimum and how this varies when different amounts of
sensors are used. The goal here is to allow practitioners to extract the maximum amount of
information using minimal measuring equipment.

6.1. Method

We have N ∈ N sensors; we wish to place them within the mould so that when
considering all potential permeability scenarios, the variance in parameters is minimised.
One way to achieve this is to determine the covariance matrix for a variety of permeability
scenarios with a sensor setup S. Then, we aim to minimise the sum of these covariance
traces, which is known as A-optimality [33–40]. In essence, this is minimising the following
cost function:

min
S

M

∑
i=1

tr(ΓS
post(ki)), (42)

where M is the number of permeability scenarios considered and ΓS
post(ki) is the posterior

covariance for the permeability scenario ki and sensor design S. A-optimality is appealing
for this problem, where we could be interested in using the MAP permeability estimate
to predict future resin flow and want minimal uncertainty in each individual estimate.
Common alternatives, such as D-optimality or E-optimality [33], would consider the off-
diagonal elements of the posterior covariance, which are not as relevant for this situation.

To simplify this problem, potential sensor locations will be limited to discrete locations
spaced 0.025 m apart throughout the domain, resulting in 697 potential locations. When
considering that the possible number of locations for N sensors is 697N , we will limit the
optimisation to follow a greedy decision process [36,39]. That is, the optimal location for
the first sensor will be found, and then the second sensor will be optimally placed, given
that the first is fixed. The process will be repeated for all N sensors. Sensors are also
prohibited from occupying the same position. An advantage of the greedy algorithm is that
the optimal design for N sensors gives us the optimal design for all n < N sensors.

Despite reducing the computation time significantly with a greedy algorithm, the com-
putation for solving this problem is still extremely intensive. Determining the MAP estimate
by optimisation took 1–2 h on a standard desktop computer (12th Gen Intel Core i7-12700
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CPU, no GPU acceleration). For more complex geometries and finer meshes, this time can
significantly increase. Solving this inverse problem M times for each sensor location will
take 697M times longer for every sensor. Although this could be parallelised, this would
still take too long (potentially years) to receive a solution in a reasonable amount of time.
As a computationally feasible approximation [39], we use:

Γ′post = (J T
trueΓ−1

e J true + Γ−1
k )−1, (43)

where J T
true is the Jacobian of the forward model evaluated at ktrue. This is in contrast to

Equation (31), where now we use the Jacobian evaluated at ktrue for the current sample,
instead of evaluating it at the MAP estimate. Although this is an approximation, the optimal
sensor locations using this approximation should not vary significantly from the true
optima [39] and bring the problem to a solvable time frame (hours). Note that although
this approximation does not make sense to use in a standard Bayesian inference scenario, it
is sufficient for the purposes of judging a given sensor design using Equation (42).

Computation can be further shortened by noting that we can precompute J true for
all potential sensor locations. Then, for a given sensor design S, we can simply extract the
rows of the Jacobian that correspond to the relevant outputs, where the sensors have been
placed. This can be computed for all M permeability scenarios.

6.2. Results

The optimal sensor locations for Model 1 are shown in Figure 7, calibrated using
M = 200 different permeability scenarios. The choice of M was decided by investigating
the robustness of the optimal locations trained with various amounts of data. This is
omitted here for clarity but is contained in Appendix C, along with a brief discussion on
the robustness of the design. The sensors tend to be distributed around the race-tracking
areas. For the top and bottom race-tracking areas, it seems to be beneficial to have sensors
at the start and end of these regions. There are some sensors (most notably sensor 2) that
are positioned to gain pressure measurements at the inlet, where the large pressures make
the influence of noise less confounding.
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Figure 7. The positions within the domain of the optimal sensor locations, as determined by the
greedy algorithm for Model 1. Sensors are indicated in red and numbered in the order they appear
in the greedy algorithm—i.e., the optimal locations of four sensors are locations 1, 2, 3, and 4. All
candidate locations are shown in grey.

Figure 8 illustrates how the objective function in Equation (42) changes with an
increasing number of sensors, for Model 1. The results for (the more complex) Model 2
are given in Appendix B. The figure shows a monotonic decrease in objective function as
more sensors are added, regardless of location, as expected. For the random design, there
are points where adding a sensor gives no change in the objective. This is because the
sensor is placed in a location with no information—for example, inside the central block.
The optimal sensor locations lead to a significant reduction in uncertainty compared to
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using random sensor locations, with roughly five times lower variance in the permeability
estimates. However, this difference would be expected to converge to zero as the number
of sensors increases to the maximum [33–36,39,40]. It is also clear in Figure 8 that the
largest variances come from the race-tracking parameters α1, α2, and α3 rather than the
bulk parameters c1, c2, and c3. This is in agreement with the posterior variances shown
in Section 5. The eighth sensor appears to have greatly reduced the uncertainty in c1, c2,
and c3. However, the logarithmic scale of the graph emphasises this drop, and the sum of
variances for all parameters still decreases, as seen in the upper graph (red line).
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Figure 8. (Top:) Sum of the trace of the posterior covariance over all simulations versus the number
of sensors used. The optimal solution is shown in red, and random solutions are shown in blue.
(Bottom:) Individual variances of each posterior parameter (log scale), for the optimal design.

The MAP estimate for each parameter is shown in Figure 9, along with 99% confidence
intervals. These intervals are based on the Laplace approximation to the posterior about
the MAP estimate (Equation (31)), rather than the approximation defined in Equation (43).
The MAP estimate tends to converge to the truth as more sensors are added, as expected.
The variance tends to decrease as more sensors are added, as in Figure 8, but not mono-
tonically. When calculating the Laplace approximation about the MAP estimate, there is
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no guarantee of strictly decreasing variances because the MAP estimate changes. There
are some instances where the truth is not contained within the 99% confidence interval.
This is due to a discrepancy between our Laplace approximation and the unapproximated
posterior. One key reason for this discrepancy in this scenario is discussed in Section 7.1.
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Figure 9. MAP estimate (solid line) and 99% confidence intervals (shaded region) for each parameter
versus the number of sensors used, in the optimal locations. The true value of each parameter is
indicated with a dashed line.

7. Discussion and Conclusions

We end this paper by discussing the limitations of this methodology and potential
future work.

7.1. Non-Differentiability

The Laplace approximation of the posterior, along with all gradient-based optimisa-
tion techniques that are used to find the MAP estimate, relies on the RTM process being
differentiable. In this section, we discuss how this assumption only holds under specific
experiments.

When pressure measurements are extracted at fixed, equal time intervals within a pre-
defined period, the pressure data from a given sensor can be split into three distinct phases:

1. Before the resin reaches the sensor, the sensor gives 0 pressure (with noise).
2. Once the resin reaches the sensor, the pressure increases from 0 in a decaying, quasi-

logarithmic fashion.
3. When the resin has almost filled the mould, the limited size of the exit vent means that

the boundary condition on the resin changes from a Dirichlet boundary to a zero-flow
Neumann boundary for the large majority of the boundary. This rapid change in the
boundary condition causes a large and sudden increase in pressure throughout the
mould. This change is sometimes so quick that it is ‘almost discontinuous’.

This is illustrated in Figure 10. The three phases are clearly visible here. The ‘almost
discontinuity’ that appears in the posterior comes from the following: if, in the example
shown in Figure 10, there was a measurement taken at t = 23,000 s, then a slight increase in
any of the components in the permeability vector k from either the bulk permeability or
from the race tracking will cause the pressure measured here to rapidly change from roughly
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0.2 to roughly 0.35. This effect is more prominent in models with a small exit vent, where
there is a large change in boundary conditions as the resin reaches the end. The scenario in
Figure 10 is one with a very small but realistic (5 mm wide) exit vent—smaller than what is
used in the numerical examples in this paper. However, the effect still exists, to a lesser
extent, for larger vents.
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Figure 10. An example of pressure measurements over time from a sensor located at (0.45 m, 0.175 m) in
Model 1 (blue). This simulation uses a small 5 mm vent.

Figure 11 shows the true posterior (without using the Laplace approximation) for
a much simpler formulation of the problem, where the only parameter to predict is
K = Kxx = Kyy for a homogeneous domain, with Kxy = 0. Again, a central block is
included, as in Section 4.1. The true value for this parameter is one. The inverse problem
is solved with four different outlet boundary conditions: a single node, the top 0.1 m of
the right boundary, the top 0.25 m of the right boundary, and the entire right boundary.
As the outlet vent becomes smaller, a nondifferentiable point develops around K = 1.02.
K = 1.02 is a point that exhibits the behaviour discussed above, where increasing this
value a small amount causes one measurement to be taken after the resin has reached the
end of the mould, instead of before. This point still exists even when the outlet is as large
as 0.25 m. The roughness of the posterior shape aside from this discontinuity should be
ignored, it is the product of using a coarse mesh in order to develop the true posterior
within an acceptable time frame.

The non-differentiability causes two key limitations to our results:

• It increases the discrepancy between the Laplace approximation and the true posterior,
as seen in Figure 11 and in the results for Model 1, where the true values were outside
of the Laplace approximation.

• Finding the MAP estimate through optimisation techniques becomes much more
difficult, as the function becomes nonsmooth.
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Figure 11. The true posteriors visualised for a one-parameter formulation.

For Model 1, the nondifferentiable points are far away from the MAP estimate, so there
is no noticeable effect on the posterior. However, the optimisation to find the MAP estimate
is long and difficult due to these nondifferentiable regions. For Model 2, we use a large exit
vent to reduce the effects of this problem, speeding up the optimisation, and ensuring that
the posterior is not affected.

For the numerical examples in this paper, we can minimise this issue by measuring
only while the mould is filling. In a potential future case where we wish to estimate race
tracking during the Resin Injection stage, it would not be useful to estimate after the mould
has already been filled. However, when we consider more complicated geometries, there
could be scenarios in which the resin reaches the end of a channel but the mould is not yet
filled. So, the nondifferentiable issues mainly arise at the end of filling for our examples;
this is not the case in general for all geometries.

Even in cases where our exact methodology is not used, the non-differentiability
should be noted in all research where a Jacobian or gradient of the RTM process is consid-
ered, as differentiability is often assumed.

7.2. Conclusions

By representing the permeability throughout a preform as a homogeneous but anisotropic
property, except for regions of race tracking, we are able to predict the race-tracking effect
as well as the bulk permeability to a high level of certainty. A Bayesian inversion algorithm
was used to achieve this and was demonstrated with two example scenarios that showed
that the precision of the estimates increased with fewer race-tracking regions and when
more sensors were used. Although these models are simple and only two-dimensional,
the approach could be extended to three-dimensional, with many race-tracking regions.

In this paper, we only estimated the permeability once the mould had been filled and
measurements had been collected throughout the filling process. However, in the future,
this methodology could be applied through different stages of mould filling. This would
allow researchers to estimate race tracking and then predict the flow front propagation
pattern for the remainder of the filling. It would then be possible to take some control
actions if we predict that the resin will propagate in an unfavourable way.

The uncertainty in the computed posterior distributions developed here considers only
measurement error from sensors, where the measurement from the sensor is made noisy by
the addition of randomly and independently sampled error. However, there are approaches
that deal with another significant type of error—the approximation errors that arise due
to the use of an approximate model, which differs from the true RTM process. There are
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approaches to deal with this so-called Bayesian approximation error [41–43] that could be
investigated and integrated into the current framework in the future. In particular, this pa-
per made several simplifying assumptions to the model, such as a piecewise homogeneous
permeability and fixed porosity, which add to this Bayesian approximation error.

We have also used the Bayesian formulation to develop a methodology for optimising
sensor placement within a mould to extract maximum insight. This investigation also
revealed the decaying value of adding more sensors. The optimal sensor configuration
showed significant decreases in uncertainty compared to random locations. In the future,
this framework could be combined with an online permeability estimation tool for increased
predictive power. The results show that using a large number of sensors with a tedious,
disruptive, and potentially expensive setup is not necessary—very similar accuracy can be
achieved with between five and seven sensors, provided that they are in optimal locations.
The investigation has also shown that even two sensors can provide reasonably accurate
estimates for race tracking for simple scenarios.
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Appendix A. Finite Element Derivation

Applying the Galerkin finite element method to Equation (2), where R are the residuals
from using an approximate p in the equation:∫

Ω
RwdΩ = 0, (A1)∫

Ω
w∇ · (K∇p)dΩ = 0, (A2)

where Ω represents the total domain. Applying the Green–Gauss theorem, we have:∫
Ω
∇w · (K∇p)dΩ =

∫
Γ

K
∂p
∂n

wdΓ, (A3)

where Γ is the complete domain boundary. We use a linear interpolation scheme with
triangular elements, which is defined as follows:

p = ∑
n

pn ϕn, w = ∑
m

ϕm, (A4)

∇p = ∑
n

pn∇ϕn, ∇w = ∑
m
∇ϕm, (A5)

where ϕn is the linear Lagrange basis function for the nth node in the domain. This gives:

Ep = f , (A6)
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where p is the vector of nodal pressures and E and f are defined element-wise as follows:

Emn =
∫

Ω
∇ϕm · K∇ϕn dΩ, (A7)

fm =
∫

Γ
K

∂p
∂n

ϕm dΓ. (A8)

Transforming to the local coordinates (ξ1, ξ2):

Emn =
∫ 1

0

∫ 1

0
J−1∇ξ ϕm · KJ−1∇ξ ϕn|J|dξ1dξ2, (A9)

where ∇ξ is the gradient in terms of the local coordinates ξ1 and ξ2, and:

J =


∂x
∂ξ1

∂y
∂ξ1

∂x
∂ξ2

∂y
∂ξ2

. (A10)

Appendix B. Model 2 Optimal Experimental Design
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Figure A1. Numbered optimal sensor locations, as determined by the greedy algorithm. Sensors are
numbered in the order they appear in the greedy algorithm—i.e., the optimal locations of 4 sensors
are locations 1, 2, 3, and 4. All candidate locations are shown in grey.
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Figure A2. Sum of the covariance trace over all simulations versus the number of sensors used.
The optimal solution is in red, and random solutions are in blue.
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Appendix C. Number of Training Samples
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Figure A3. Average covariance trace in the training set vs. the test set, when an increasing number of
training samples are considered.

In our investigation, we considered 200 different permeability scenarios in which to
calculate the trace of the posterior covariance matrix for a given sensor layout. There is a
trade-off to this number. If this number is increased, it allows the ensemble of scenarios
to better represent all the potential scenarios that could possibly occur, making the sensor
design far more robust. Clearly, this is beneficial for the design of locations that work
well regardless of the exact permeability scenario. However, increasing this number also
increases the computation time significantly.

To determine what this number should be, an experiment was conducted using
Model 1. We considered solving the optimal sensor location problem, using a different
amount of permeability scenarios (values for M). We then consider the average trace of
the posterior covariance matrix for 100 different scenarios. These are testing scenarios,
which are fixed as we increase M, and the optimal sensor locations potentially change. We
compare the setup against scenarios other than what the setup was ‘trained’ on in order
to determine whether the sensor locations are still optimal in conditions outside of what
it was directly optimised on. This is the objective, as it shows that the optimal sensor
design is robust, regardless of permeability. This is calculated as follows (a variation of
Equation (42)):

1
100

100

∑
i=1

tr(ΓS
post(ki)) (A11)

The results of conducting this investigation four times from M = 10 to M = 500
are shown in blue in Figure A3. With small numbers for M, the location of the sensors
changes greatly because the configuration is not yet robust, and adding more training
samples causes the optimal locations to change. This causes rapid changes in the testing
metric. The sensor locations developed using these low numbers of samples perform
worse in the test set compared to those trained on a larger amount of samples. When the
optimal locations are based on only a few samples, they will be over-fitted to those samples
and perform poorly in the test set. The testing metric appears to remain relatively constant
(i.e., the optimal sensor locations are changing minimally) after around 75–100 samples.
In this paper, we use M = 200 to be safe while not creating any excessive run time.



Appl. Sci. 2023, 13, 11606 22 of 23

References
1. Advani, S.G.; Sozer, E.M. Process Modeling in Composites Manufacturing; CRC Press: Boca Raton, FL, USA, 2003. [CrossRef]
2. Zhu, H.; Li, D.; Zhang, D.; Wu, B.; Chen, Y. Influence of voids on interlaminar shear strength of carbon/epoxy fabric laminates.

Trans. Nonferrous Met. Soc. China 2009, 19, s470–s475. [CrossRef]
3. Varna, J.; Joffe, R.; Berglund, L.; Lundström, T. Effect of voids on failure mechanisms in RTM laminates. Compos. Sci. Technol.

1995, 53, 241–249. [CrossRef]
4. Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S.V. Voids in fiber-reinforced polymer composites: A review on their

formation, characteristics, and effects on mechanical performance. J. Compos. Mater. 2019, 53, 1579–1669. [CrossRef]
5. Mathieu Devillard, Kuang-Ting Hsiao, A.G.; Advani, S.G. On-line characterization of bulk permeability and race-tracking during

the filling stage in resin transfer molding process. J. Compos. Mater. 2003, 37, 1525–1541. [CrossRef]
6. Bickerton, S.; Advani, S.; Mohan, R.V.; Shires, D. Experimental analysis and numerical modeling of flow channel effects in resin

transfer molding. Polym. Compos. 2000, 21, 134–153. [CrossRef]
7. Lawrence, J.M.; Barr, J.; Karmakar, R.; Advani, S.G. Characterization of preform permeability in the presence of race tracking.

Compos. Part A Appl. Sci. Manuf. 2004, 35, 1393–1405. [CrossRef]
8. Agogué, R.; Shakoor, M.; Beauchêne, P.; Park, C.H. Analysis and minimization of race tracking in the resin-transfer-molding

process by Monte Carlo simulation. Materials 2023, 16, 4438. [CrossRef]
9. Caglar, B.; Salvatori, D.; Sozer, E.M.; Michaud, V. In-plane permeability distribution mapping of isotropic mats using flow front

detection. Compos. Part A Appl. Sci. Manuf. 2018, 113, 275–286. [CrossRef]
10. Fernández-León, J.; Keramati, K.; Garoz, D.; Baumela, L.; Miguel, C.; González, C. A machine learning strategy for race-tracking

detection during manufacturing of composites by liquid moulding. Integr. Mater. Manuf. Innov. 2022, 11, 296–311. [CrossRef]
11. Koutsonas, S. Race-Track Modelling and Variability in RTM for Advanced Composites Structures. Ph.D. Thesis, The University

of Nottingham, Nottingham, UK, 2015.
12. Siddig, N.; Binetruy, C.; Syerko, E.; Simacek, P.; Advani, S. A new methodology for race-tracking detection and criticality in resin

transfer molding (RTM) process using pressure sensors. J. Compos. Mater. 2018, 52, 4087–4103. [CrossRef]
13. Devillard, M.; Hsiao, K.T.; Advani, S.G. Flow sensing and control strategies to address race-tracking disturbances in resin transfer

molding—Part II: Automation and validation. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1581–1589. [CrossRef]
14. Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics:

Philadelphia, PA, USA, 2005. [CrossRef]
15. Jari, P.; Kaipio, E.S. Statistical and Computational Inverse Problems; Springer: New York, NY, USA, 2005. [CrossRef]
16. Garnett, R. Bayesian Optimization; Cambridge University Press: Cambridge, UK, 2023. [CrossRef]
17. Yuen, K.V.; Kuok, S.C. Bayesian Methods for Updating Dynamic Models. Appl. Mech. Rev. 2011, 64, 010802. [CrossRef]
18. Iglesias, M.; Park, M.; Tretyakov, M.V. Bayesian inversion in resin transfer molding. Inverse Probl. 2018, 34, 105002. [CrossRef]
19. Matveev, M.; Endruweit, A.; Long, A.; Iglesias, M.; Tretyakov, M. Bayesian inversion algorithm for estimating local variations

in permeability and porosity of reinforcements using experimental data. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106323.
[CrossRef]

20. Hsiao, K.T.; Advani, S.G. Flow sensing and control strategies to address race-tracking disturbances in resin transfer molding.
Part I: Design and algorithm development. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1149–1159. [CrossRef]

21. Sozer, E.M.; Bickerton, S.; Advani, S.G. On-line strategic control of liquid composite mould filling process. Compos. Part A Appl.
Sci. Manuf. 2000, 31, 1383–1394. [CrossRef]

22. Shojaei, A.; Ghaffarian, S.R. ; Karimian, S.M.H. Modeling and simulation approaches in the resin transfer molding process: A
review. Polym. Compos. 2003, 24, 525–544. [CrossRef]

23. Gauvin, R.; Chibani, M. The Modelling of Mold Filling in Resin Transfer Molding. Int. Polym. Process. 1986, 1, 42–46. [CrossRef]
24. Song, X. Vacuum Assisted Resin Transfer Molding (VARTM): Model Development and Verification; Virginia Polytechnic Institute and

State University: Blacksburg, VA, USA, 2003. Available online: https://www.proquest.com/docview/305301229 (accessed on
24 September 2023).

25. Bruschke, M.V.; Advani, S.G. A finite element/control volume approach to mold filling in anisotropic porous media. Polym.
Compos. 1990, 11, 398–405. [CrossRef]

26. Kang, M.; Jung, J.; Lee, W.I. Analysis of resin transfer moulding process with controlled multiple gates resin injection. Compos.
Part A Appl. Sci. Manuf. 2000, 31, 407–422. [CrossRef]

27. Lee, L.; Young, W.; Lin, R. Mold filling and cure modeling of RTM and SRIM processes. Compos. Struct. 1994, 27, 109–120.
[CrossRef]

28. Simacek, P.; Advani, S.; Binetruy, C. Liquid injection molding simulation (LIMS) a comprehensive tool to design, optimize and
control the filling process in liquid composite molding. JEC-Compos 2004, 8, 58–61.
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