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Abstract: The ground surface deformation induced by shield tunnels passing through enclosure
structures of existing tunnels is a particular underground construction scenario that has been encoun-
tered in Wuhan Metro Line 12 engineering cases in China. Timely ground deformation prediction is
important to keep shield tunneling safe. However, the classic ground deformation theory is difficult
to accurately predict for this ground deformation. This paper develops a semi-analytical method
to predict ground heave considering the space effect in this engineering condition. Based on the
improved ground deformation theory, a novel deformation prediction method for the ground and
enclosure structure is derived and combined with Kirchhoff plate theory. Comparing with field defor-
mation measurements, the maximum difference between the measured and calculated deformation
is 14.6%, which demonstrates that the proposed method can be used to predict the ground heave
induced by shield tunnels passing through the enclosure structure of existing tunnels. The parameters
of the underground diaphragm wall used in Wuhan Metro Line 12 are further studied in detail. The
results show that the ground heaves have a positive correlation with the embedded ratio of the
diaphragm wall, but a negative correlation with its elastic modulus and thickness. However, the
thickness and embedded ratio have a limited effect on ground heaves. This study provides a technical
reference for optimizing the setting of enclosure structures in order to protect existing buildings.

Keywords: shield tunneling; Kirchhoff plate theory; space effect; ground heave; diaphragm wall
deformation; field monitoring

1. Introduction

The construction of subway tunnel shielding in urban settings disturbs the original
stress state of the surrounding soil [1,2], which may lead to the cracking, tilting, and even
collapse of preexisting buildings [3–8]. Therefore, it is essential to protect buildings from
damage during shielding excavation. Engineers need to possess adequate specialized
knowledge in order to estimate the potential ground movements so that they can assess
whether the damage of neighboring buildings would be serious.

Early studies focus on using elastic mechanics and soil mechanics to solve the ana-
lytical solutions of ground deformation considering simplified tunnel excavation bound-
aries [9]. For example, Mindlin [10] used the Galerkin method to derive the formation
of stress fields and displacement fields under the action of concentrated forces in elas-
tic half spaces. Based on this form, Timoshenko [11] proposed a general solution in the
form of Airy’s function to describe the ground deformation caused by tunnel excavation.
Sagaseta [12] assumed that the soil was an incompressible, isotropic, elastic semi-infinite
body and adopted the mirror image method to eliminate the influence of the top free
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boundary. The soil strain and stress field caused by formation loss at a depth below the
surface was then analyzed. Verruijt [13] adopted a complex function method to derive
the analytical deformation solution of the ground caused by circular tunnel excavations in
elastic half spaces. Empirical solutions can extend application conditions of the proposed
analytical solution. The empirical formula for predicting ground settlement caused by tun-
nel excavations was first proposed by Peck [14], and the Gaussian normal distribution curve
was used to describe the ground settlement profile. Later, many scholars further improved
Peck’s [14] equation according to different geological conditions, such as Zhao et al. [15],
Moh et al. [16], and Atkinson et al. [17]. Finno et al. [18] pointed out that Peck’s [14]
equation and its modified forms have unavoidable calculation errors due to not considering
the soil’s three-dimensional (3D) space effect. A 3D numerical simulation method was
gradually developed to analyze ground deformation [19–22]. Wang et al. [23] presented a
case study of ground settlements induced by twin shield tunneling in Copenhagen using
analytical and numerical methods. Although the numerical method has advantages in
simulating complex boundary conditions and capturing the 3D space effect, it has short-
comings that make it highly time consuming challenging to model ([24,25]). Therefore, it is
desirable to develop a simple and practical method for calculating the ground movements.

In addition, there are imbalances in many large soil-tunnel structures caused by
shield tunnels passing under existing tunnels, which is another common and important
problem that has been studied by many scholars [26–30]. Klar et al. [31] studied the
effect of shield excavation on existing pipelines by using the boundary integral method,
and gave the normalized solution of calculating the maximum bending moment and
angle. Zhang et al. [32] studied the soil disturbance caused by multi-line tunnels and
the complex overlapping interaction mechanisms of adjacent tunnels. Combined with
the field monitoring data of tunnels in Shanghai, the theoretical solution of the existing
tunnel is obtained. He et al. [33] pointed out that shield tunneling affected the stability of
existing tunnels, and it was crucial to make a reasonable supporting scheme. At present, the
protection measures for existing tunnels are building enclosure structures to cut off building
and existing tunnels [34,35] and strengthening the surrounding soil with grout [33,36].
Grout fluid is difficult to control and easy to lose, so enclosure structures can better control
the soil and the existing tunnel’s deformation. Shield tunneling would produce additional
thrust acting on the enclosure structure. If additional thrust is too large, the enclosure
structure may cause a large squeeze deformation, which leads to ground heave. However,
predicting the deformation of the enclosure structure and the ground heave induced by
shield tunnels passing through the enclosure structure is still an unsolved challenge.

This paper aims to derive a simple, explicit solution for predicting the ground heave
induced by shield tunnels passing through enclosure structures of existing tunnels consid-
ering the 3D space effect. To fulfill this objective, the relationships between the deformation
volume of the enclosure structure and ground deformation volume are first established.
Furthermore, the ground heave solutions considering 3D space effect are obtained. The
validity and applicability of the proposed method is checked with field deformation mon-
itoring results of preexisting Yuanlin Road station when Metro Line 12 passing through
Line 4. The proposed method may offer some insights in evaluating the ground heaves
induced by tunnels passing through enclosure structures for the purpose of protecting
existing buildings.

2. Problem Description
2.1. Engineering Background

Wuhan Metro Line 12, China’s only loop line in the Wuhan Metro network, has a
total length of 59.9 km and consists of 37 stations. Single line and double-hole schemes are
adopted in Line 12. The diameter of the tunnel is 6.8 m, and its thickness is 400 mm. The
route map of Wuhan Metro Line 12 is shown in Figure 1. At the position of the planned
Yuanlin Road station, Line 12 needs to underpass Yuanlin Road station of Metro Line 4.
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Figure 1. Location of Metro Line 12 in Wuhan city, China.

The Yuanlin Road station of Line 4 is a single-column and double-span box structure,
and has been in operation for many years. The covering thickness of the station is 2.9 m,
the buried depth of the bottom plate is 15.46 m, and the width of the station foundation pit
is 19.7 m. The base of the station is located in the silty sand layer. The distance between the
Line 12 and bottom plate of Yuanlin Road station is only 2.34 m. Hence, it is very dangerous
for Line 12 to pass through Yuanlin Road station of Metro Line 4.

In order to ensure Line 12 passes through Yuanlin Road station of Line 4 safety, an
underground diaphragm wall with a thickness of 1200 mm and length of 41 m is considered.
The diaphragm wall is a widely used enclosure structure in urban underground engineering
construction with high stiffness, good anti-seepage performance, and few effects on the
surrounding environment. C30 concrete is used to construct diaphragm walls. The bottom
of the wall is set into the weathered silty mudstone at a depth of 2 m. The I-steel joint is
adopted to bond each wall segment. However, even with the protection of the underground
diaphragm wall, large deformations may occur in the Yuanlin Road station because the
additional thrust from tunneling with Line 12 passing through the underground diaphragm
wall. Figure 2 shows the space relationship of Metro Line 12, Line 4, and the underground
diaphragm wall. Hence, it is important to accurately evaluate the deformation of Yuanlin
Road station to determine if more supporting schemes should be adopted.

2.2. Engineering Geological Conditions

The proposed project site is located in a river accumulation plain area and belongs to
the first-class terrace of the Yangtze River. The terrain of the site is low in the west and
high in the east, and the ground elevation varies between 20.8 and 21.6 m. The strata of the
site from top to bottom are mainly 1©1 miscellaneous fill, 3©1 silty clay, 4©1 silty sand, and
4©2 silty sand, as shown in Figure 2. Line 12 is located in the silty sand layer. The physical

parameters of the soils are listed in Table 1, which originates from the survey and design
files of Metro Line 12.
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Figure 2. Space relationship of Metro Line 4 and Line 12.

Table 1. Physical parameters of soil layers (Reprinted/adapted with permission from
Ref. Qian et al. [37]).

Soil
Weight

γ

(kN/m3)

Bearing
Capacity fak

(kPa)

Friction Angle
ϕ (◦)

Modulus of
Compression

Es (MPa)

Poisson
Ratio µ

Permeability
Coefficient k

(cm/s)

miscellaneous
fill 1©1

20.0 - 18 - 0.25 5.0 × 10−3

silty clay 3©1 19.1 123 11 4.5 0.3 3.5 × 10−3

silty sand 4©1 19.0 155 33.4 13.5 0.3 2.8 × 10−3

silty sand 4©2 19.5 206 35.2 18.6 0.3 3.1 × 10−3

3. Prediction Method of Ground Heave Considering the 3D Space Effect
3.1. Basic Assumptions

This section illustrates the prediction method of shield tunneling-induced ground
heave considering the 3D space effect. Some assumptions are introduced to establish the
deformation calculation method, which are as follows:

(1) The diaphragm wall is a linear elastic material, and underground water is not considered.
(2) Under the process of tunneling, the soil volume behind the underground diaphragm

wall remains constant.
(3) Ground heave is induced by lateral deformation of the underground diaphragm wall,

which is shown in Figure 3.
(4) Diaphragm wall deformation volume VW has a proportional relationship with defor-

mation volume VS.

This is example 1 of an equation:

VS = MuVW, (1)

where Mu is coefficient proportionality, which depends on compressibility of soil [38].
Considering silty clay used in Metro Line 12, the value of Mu can be set as 0.8.

(5) In order to simplify the calculation, the weighted average method is used to homoge-
nize multilayer soils.
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(6) The diaphragm wall follows Kirchhoff plate theory [39]. The reason is that the ratio of
width and depth of the wall is 1.2 m/41 m, which far less than 1/5. Hence, this wall
is a typical Kirchhoff plane.

(7) Due to high strength of the diaphragm wall, only elastic deformation is considered in
the wall, which is widely adopted. Additionally, the diaphragm wall is considered as
an isotropic material.

Based on the above assumptions, a calculation model of ground heave induced by the
diaphragm wall deformation is established.
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3.2. Deformation Volume of Diaphragm Wall

In our engineering case, the deformation of the diaphragm wall is induced by addi-
tional thrust during shield tunneling. This can be simplified as a rectangular thin plate
bending with four edges that are simply supported, as shown in Figure 4.

Navier [38] thinks of the deflection of Kirchhoff plate w as a double Fourier Series,

w =
∞

∑
m=1

∞

∑
n=1

Amn sin
mπy

L
sin

nπz
H

(2)

where Amn is Fourier coefficient, and m and n are positive integer. Considering all boundary
conditions, the value of Amn can be obtained. The deflection w for additional thrust P acting
on diaphragm wall is induced. The more detailed derivation process is seen in Appendix A.
The deformation volume VW of wall can be further calculated as

VW =
∫ L

0

∫ H

0
wdydz (3)

Equation (3) is expanded, a primary expression is obtained,

VW =
∞

∑
m=1

∞

∑
n=1

Amn
LH

mnπ2 (cos mπ − 1)(cos nπ − 1) (4)
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Figure 4. The simplified calculation model of the tunnel for Metro Line 12 passing through the
diaphragm wall.

3.3. Ground Deformation Volume

Due to the space effect of the considered ground deformation, a transverse deformation
curve (x-direction) perpendicular to the diaphragm wall and longitudinal deformation
curve (y-direction) parallel to the diaphragm wall should be introduced to calculate the
deformation volume. Many experimental and numerical results show that the transverse
deformation curve has a good agreement with normal distribution [3,38], as shown in
Figure 5a. Hence, the expression of transverse deformation curve is

Sx = Sxmaxe−π(x−xm)2/(x0−xm)2
(5)

where Sxmax is maximum value of transverse deformation, x0 is influence range of transverse
deformation, and xm is distance from the position where it has the maximum deformation
value. Based on field monitoring and theoretical results, Peck’s [14] raised that ground
deformation of sandy clay is in range of 2 times the excavated depth, and soft soil in 2.5 to
5 times the excavated depth. Peck’s [14] suggestion does not give the value of influence for
the range of deformation. Bowles [38] studied ground and wall movements induced by
excavation of foundation pits. They developed an empirical expression to determine the
value x0 of ground movement:

x0 = H tan(45◦ − ϕ/2) (6)

where ϕ is friction angle of soil. It is also used by Fan et al. [3], Kung [40], Clough and
ORourke [41]. Likewise, the xm can be calculated with an empirical expression

xm =
H

tan
(
82◦ − 2.36ϕ

) (7)

Longitudinal deformation curves can be fitted better with the Boltzmann function
based on a large number of measured data of ground deformation in Beijing, China [42].
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Figure 5b shows the longitudinal deformation calculated model. Hence, ground longitudi-
nal deformation can be expressed as

Sy = Symax
1

1 + e(y−y0/2)/12
(8)

where Symax is maximum value of longitudinal deformation, and y0 is influence range of
longitudinal deformation. Taking x0 as reference, the value of y0 can be determined as

y0 = H tan(45◦ − ϕ/2) + L (9)

where L is the width of the diaphragm wall. Considering transverse deformation and
longitudinal deformation, the deformation S at any point in ground is

S = Smaxe−π(x−xm)2/(x0−xm)2 1
1 + e(y−y0/2)/12

(10)

where Smax is the maximum value of deformation. In the influence range of deformation,
integrating Equation (10) to obtain the deformation volume VS

VS =
∫ x0

0

∫ y0

0
Smaxe−π(x−xm)2/(x0−xm)2 1

1 + e(y−y0/2)/12
dxdy (11)

Equation (11) does not have primary form, but can be solved by double numerical
integration function using MATLAB 2015a code.
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Figure 5. (a) Calculation model of transverse deformation curve; (b) calculation model of longitudinal
deformation curve.

3.4. Deformation Calculation

Figure 6 plots the flowchart of the ground heave calculation induced by tunnels
passing through the underground diaphragm wall. First, the geometrical and mechanical
parameters of tunnels and diaphragm wall are substituted into Equation (10), and then
the deformation volume of diaphragm wall VW is obtained. According to properties of
soil, the coefficient of proportionality Mu in Equation (1) is determined. Then, the ground
heave volume VS is calculated using Equation (1). Based on the value of VS, the numerical
solution of Equation (11) using the MATLAB code is obtained to calculate the maximum
value of ground heave Smax. Finally, ground heave S at any point can be calculated using
Equation (10). The main calculation parameters of the ground deformation procedure are x
E and Poisson’s ratio µ of diaphragm wall, depth H and thickness b of the diaphragm wall,
and the coefficient of proportionality Mu. In these parameters, the value of Mu needs to be
empirically determined by considering the properties of the soil.
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4. Field Monitoring Setting

To investigate the influence of shield tunnels of Line 12 passing through the diaphragm
wall on Yuanlin Road station of Line 4, the deformation monitoring, diaphragm wall top
deformation, horizontal displacement monitoring, and axial force monitoring are arranged
to evaluate the deformation of Yuanlin Road station and diaphragm wall. Figure 7 shows
the layout of monitoring points in Yuanlin Road station.
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The arrangement of deformation monitoring points aimed to monitor the overall
deformation of Yuanlin Road station. DINI03 electronic level, Tianbao, China and indium
steel ruler are used in deformation monitoring. A total of 10 ground observation piers
are installed on different positions of Yuanlin Road station, as denoted DB-1 to DB-10 in
Figure 7. DB-1, DB-2, DB-3, DB-4, and DB-5 points are arranged on monitoring section
A-A’, which located upward side of left tunnel. In addition, DB-6, DB-7, DB-8, DB-9, and
DB-10 are arranged on monitoring section B-B’, which located upward side of right tunnel.
These points are installed by sleeve burying method, as shown in Figure 8a.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 19 
 

Figure 7. Layout of field monitoring points. Red circle represents deformation monitoring point, 

and red triangle represents diaphragm wall top deformation and horizontal displacement moni-

toring points. 

The arrangement of deformation monitoring points aimed to monitor the overall 

deformation of Yuanlin Road station. DINI03 electronic level, Tianbao, China and indium 

steel ruler are used in deformation monitoring. A total of 10 ground observation piers are 

installed on different positions of Yuanlin Road station, as denoted DB-1 to DB-10 in 

Figure 7. DB-1, DB-2, DB-3, DB-4, and DB-5 points are arranged on monitoring section 

A-A’, which located upward side of left tunnel. In addition, DB-6, DB-7, DB-8, DB-9, and 

DB-10 are arranged on monitoring section B-B’, which located upward side of right tun-

nel. These points are installed by sleeve burying method, as shown in Figure 8a. 

  
(a) (b) 

Figure 8. (a) Installation instruction of deformation monitoring points; (b) installation instruction 

of diaphragm wall top monitoring points. 

TCA2003 total station and DINI03 electronic level are employed to monitor the ver-

tical deformation (points ZL-1, ZL-2, ZL-3, and ZL-4) and horizontal displacement 

(points CX-1, CX-2, CX-3, CX-4, CX-5, and CX-6) of wall top, respectively. Monitoring 

points are installed by screw-thread steel in the top of diaphragm wall with a length of 

100 mm and diameter of 16 mm, as plotted in Figure 8b. The buried depth of 

screw-thread steel is 100 mm, and master prism is installed on steel top. The layout of 

monitoring points is shown in Figure 7. 

5. Results and Discussion 

5.1. Field Monitoring Results 

All monitoring instruments installation finishes before shield tunneling from start-

ing well. The deformation of the diaphragm wall and the ground heave data are recorded 

from the start of the tunnel through to the diaphragm wall. 

Figure 9 shows the variation of ground heave of some typical deformation moni-

toring points (DB-1, DB-2, DB-3, DB-4, and DB-5) with time. Because the monitoring sec-

tion A-A’ is symmetrical to section B-B’, monitoring points DB-1, DB-2, DB-3, DB-4, and 

DB-5 are selected to analyze the deformation mechanism of Yuanlin Road station when 

Line 12 passes through the underground diaphragm wall. The ground shows a tendency 

of upward deformation in the process of shield tunneling. Additionally, three defor-

mation stages of slope were observed from Figure 9, namely the initial deformation stage, 

rapid deformation stage, and slow deformation stage. In the initial shield excavation 

stage, the ground deformed at a low rate because of the small volume of excavation. After 

7 days, the tunnel for Line 12 was excavated rapidly, and close to Yuanlin Road station of 

1500

50

80

ϕ22×800

Twisted steel

Steel cap

Sand

Concrete

12

50

16

Master prism

100

Diagram wall

Figure 8. (a) Installation instruction of deformation monitoring points; (b) installation instruction of
diaphragm wall top monitoring points.

TCA2003 total station and DINI03 electronic level are employed to monitor the vertical
deformation (points ZL-1, ZL-2, ZL-3, and ZL-4) and horizontal displacement (points CX-1,
CX-2, CX-3, CX-4, CX-5, and CX-6) of wall top, respectively. Monitoring points are installed
by screw-thread steel in the top of diaphragm wall with a length of 100 mm and diameter
of 16 mm, as plotted in Figure 8b. The buried depth of screw-thread steel is 100 mm, and
master prism is installed on steel top. The layout of monitoring points is shown in Figure 7.

5. Results and Discussion
5.1. Field Monitoring Results

All monitoring instruments installation finishes before shield tunneling from starting
well. The deformation of the diaphragm wall and the ground heave data are recorded from
the start of the tunnel through to the diaphragm wall.

Figure 9 shows the variation of ground heave of some typical deformation monitoring
points (DB-1, DB-2, DB-3, DB-4, and DB-5) with time. Because the monitoring section
A-A’ is symmetrical to section B-B’, monitoring points DB-1, DB-2, DB-3, DB-4, and DB-5
are selected to analyze the deformation mechanism of Yuanlin Road station when Line
12 passes through the underground diaphragm wall. The ground shows a tendency of
upward deformation in the process of shield tunneling. Additionally, three deformation
stages of slope were observed from Figure 9, namely the initial deformation stage, rapid
deformation stage, and slow deformation stage. In the initial shield excavation stage,
the ground deformed at a low rate because of the small volume of excavation. After
7 days, the tunnel for Line 12 was excavated rapidly, and close to Yuanlin Road station
of Line 4, which leads to the deformation rate at the surface monitoring points increasing
dramatically. When tunnels pass through diaphragm walls, the ground heave suddenly
increases, and then shows a temporary stability. After the tunnel for Line 12 passed through
the diaphragm wall, the deformation values of monitoring points DB-1, DB-2, DB-3, DB-4,
and DB-5 were 4.1 mm, 6.2 mm, 7.53 mm, 7.92 mm, and 6.72 mm, respectively. Overall, the
ground heave is small, which did not affect the stability of Line 4.
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Figure 9. The monitoring results of ground heave of DB1–DB5. Day 38 is when Line 12 passed
through the underground diaphragm wall.

Likewise, the monitoring results of the top vertical wall deformation of CX-1, CX-2,
CX-3, and CX-4 are plotted in Figure 10. Overall, three deformation stages are observed to
be the same as that of the ground heave. An initial small deformation lasts 25 days, which
is longer than that of the ground heave. The main reason is that the high stiffness of the
diaphragm wall leads to its smaller deformation response, compared to the ground heave
response. Additionally, the diaphragm wall produces a large deformation when Line 12
passed through the wall. As shown in Figure 10, after tunnel Line 12 passed through the
diaphragm wall, the vertical deformation values of monitoring points CX-1, CX-2, CX-3,
and DB-4 are 0.21 mm, 0.1 mm, 0.15 mm, and 0.5 mm, respectively.
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Figure 10. The monitoring results of wall top vertical deformation of CX1–CX4.

Figure 11 shows the horizontal deformation result of typical monitoring points ZL-1
and ZL-2 in section A-A’ during tunneling of Line 12. The main horizontal deformation of
diaphragm wall tendency of monitoring points is consistent with the vertical deformation.
The direction of horizontal deformation of the diaphragm wall is adjacent to Yuanlin Road
station. After tunneling for 43 days, the horizontal deformations of monitoring points ZL-1
and ZL-2 are 6.81 mm and 4.71 mm, respectively.
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Figure 11. The monitoring results of wall top horizontal deformation of ZL1–ZL2.

5.2. Field Monitoring Results

According to the proposed deformation calculation method, the deformation of the
diaphragm wall and Yuanlin Road station of Line 4 is determined. The value of additional
thrust P can be taken as 20 kPa [43–45]. Table 2 lists the calculated mechanical parameters
of ground deformation. C30 concrete was used to construct the diaphragm wall. The value
of m and n in Equation (4) affects the calculation accuracy of the proposed method. To
determine optimum value of m and n, more than 100 trial calculations are conducted. The
values of m and n vary from 3 to 20 in trial calculations. Figure 12 shows the deformation
of the wall acting on additional thrusts under different m and n. The variation of calculated
results is small when the values of m and n are greater than 10. It is shown that the values
of m and n are 11, which is sufficient in terms of computational accuracy.

Table 2. Calculated parameters used in proposed model.

Modulus of Elasticity
E (GPa)

Poisson Ratio
µ

Friction Angle
ϕ (◦)

Diaphragm wall 20 0.1 50
Equivalent soil 12.2 0.3 25

Deformation monitoring points DB-1, DB-2, DB-3, DB-4, and DB-5, and horizontal
deformation monitoring point CX-1 in monitoring section A-A’ are selected to verify the
accuracy of the proposed method. Figure 13 shows the comparisons of the deformation of
the diaphragm wall and the ground measured by the monitoring points and calculated by
the proposed method. The calculated horizontal deformation of the top of the diaphragm
wall is 0.6 mm, which is a small difference from the measured value. The calculated
deformation values for DB-1, DB-2, DB-3, DB-4, and DB-5 are 3.74 mm, 5.95 mm, 7.44 mm,
7.64 mm, and 6.31 mm, respectively. The maximum difference between the measured and
calculated deformation is 14.6%, which is acceptable for engineering analysis. Additionally,
the measured ground heave is greater than the calculated value, as plotted in Figure 13.
The reason is that the vertical deformation of the diaphragm wall is not considered in
the proposed model. Actually, the deformation of the wall would affect the surrounding
ground heave. However, the measured deformation of the diaphragm wall is 0.2 mm,
which is too small to obviously affect the accuracy of the proposed model. Hence, it is
indicated that the proposed method can be used to analyze the ground heave induced by
shield tunnels passing through the building envelope.
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Figure 12. Calculated deformation of underground diaphragm wall acting of additional thrust P.
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Figure 13. Deformation of the diaphragm wall and ground. The solid line is ground heave calculated
by the proposed method; dashed line is horizontal deformation of diaphragm wall, solid square is
measured deformation and open square is measure horizontal deformation of the diaphragm wall.

Based on the ground heave calculation results, the 3D ground heave of Yuanlin Road
station is plotted in Figure 14. The groove shape is observed in the whole ground heave.
The maximum deformation is 7.64 mm, which is located in the center of the two tunnels. In
addition, the value of the deformation lessens the further it is from the two tunnels.



Appl. Sci. 2023, 13, 11588 13 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 19 
 

 

Figure 14. 3D ground heave distribution of the proposed method. 

5.3. Parametric Study of Underground Diaphragm Wall 

The main factors that affect the ground heave induced by tunnels passing through a 

diaphragm wall are thickness b, elasticity modulus E, and depth H of diaphragm wall. 

However, how those factors affect the ground heave is not known, which should be 

studied. 

Based on the proposed method, the thickness of the diaphragm wall of 600 mm, 800 

mm, 900 mm, 1000 mm, 1100 mm, and 1200 mm is used to calculate ground heave, and 

other parameters are the same as those in Section 5.2. Figure 15 plots the ground heave 

under different thicknesses of diaphragm wall at center of the twin tunnels. As the 

thickness of the diaphragm wall increases, the ground heave decreases gradually. The 

maximum deformation values are 8.1 mm, 7.64 mm, 7.26 mm, 7.03 mm, 6.88 mm, and 

6.84 mm for thicknesses of 600 mm, 800 mm, 900 mm, 1000 mm, 1100 mm, and 1200 mm, 

respectively. Compared with the maximum deformation value of thicknesses of 600 mm, 

the decrements of 0.46 mm, 0.84 mm, 1.07 mm, 1.22 mm, and 1.26 mm are for the thick-

ness of 800 mm, 900 mm, 1000 mm, 1100 mm, and 1200 mm, respectively. This indicates 

that the ground heave trends to stability as the thickness increases. Hence, the large 

thickness of the diaphragm wall can control the ground heave, but the effect of larger 

thicknesses is limited. Reasonable selection of thickness of diaphragm wall is significant. 

 

transverse 

deformation longitudinal 

deformation

Tunnels

0

2

4

6

8

0 10 20 30 40

Distance from the wall (m)

 

 

G
ro

u
n

d
 d

ef
o

rm
at

io
n

 S
 (

m
m

)

 b= 600mm

 b= 800mm

 b= 900mm

 b= 1000mm

 b= 1100mm

 b= 1200mm

Figure 14. 3D ground heave distribution of the proposed method.

5.3. Parametric Study of Underground Diaphragm Wall

The main factors that affect the ground heave induced by tunnels passing through
a diaphragm wall are thickness b, elasticity modulus E, and depth H of diaphragm wall.
However, how those factors affect the ground heave is not known, which should be studied.

Based on the proposed method, the thickness of the diaphragm wall of 600 mm,
800 mm, 900 mm, 1000 mm, 1100 mm, and 1200 mm is used to calculate ground heave,
and other parameters are the same as those in Section 5.2. Figure 15 plots the ground
heave under different thicknesses of diaphragm wall at center of the twin tunnels. As the
thickness of the diaphragm wall increases, the ground heave decreases gradually. The
maximum deformation values are 8.1 mm, 7.64 mm, 7.26 mm, 7.03 mm, 6.88 mm, and
6.84 mm for thicknesses of 600 mm, 800 mm, 900 mm, 1000 mm, 1100 mm, and 1200 mm,
respectively. Compared with the maximum deformation value of thicknesses of 600 mm,
the decrements of 0.46 mm, 0.84 mm, 1.07 mm, 1.22 mm, and 1.26 mm are for the thickness
of 800 mm, 900 mm, 1000 mm, 1100 mm, and 1200 mm, respectively. This indicates that
the ground heave trends to stability as the thickness increases. Hence, the large thickness
of the diaphragm wall can control the ground heave, but the effect of larger thicknesses is
limited. Reasonable selection of thickness of diaphragm wall is significant.

The effects of elastic modulus of diaphragm wall on ground heave is shown in
Figure 16. The values of elastic modulus E are selected as 15 GPa, 20 GPa, 25 GPa, 30 GPa,
and 35 GPa, and other parameters are same as those in Section 5.2. As the elastic modulus
increases, the deformation gradually decreases; meanwhile, the ground heave curve is
getting much narrower and shallower. Further analysis shows that compared with maxi-
mum deformation value of elastic modulus of 15 GPa, the decrements of 0.39 mm, 0.77 mm,
1.16 mm, and 1.55 mm are for the elastic modulus of 20 GPa, 25 GPa, 30 GPa, and 35 GPa,
respectively. Hence, the stiff diaphragm wall facilitates the control of ground heave, and
the effect is significant.
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Figure 16. The effects of elasticity modulus E of diaphragm wall on ground heave.

To discuss the effect of the embedded length of the diaphragm wall on ground heave,
an embedded ratio re is defined as

re =
He

H
(12)

where He is the length between the bottom of tunnels and the top of the diaphragm wall.
The effect of the embedded ratio re of the diaphragm wall on ground heave is shown

in Figure 17. The length of the diaphragm wall H is set as 41 m, 49.2 m, 61.5 m, 82.0 m,
and 123 m and He kept a constant value of 24.6 m. It is shown that as the embedded ratio
increases, the ground heave gradually increases. The increase in degrees for the re of 0.3,
0.4, 0.5, and 0.6 are 1.02%, 2.15%, 7.83%, and 13.5%, respectively. This indicates that the
embedded length of the diaphragm wall is beneficial to control ground heave, but when
the embedded length reaches a certain value, it has little effect on the surface deformation.
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Considering the above studies, the length of 49.2 m and thickness of 1000 mm di-
aphragm wall is capable to keep shield tunneling and the ground safe. This design of
diaphragm wall is also economical.

6. Conclusions and Discussion

This paper develops a semi-analytical method to predict ground heave induced by
shield tunnels passing through enclosure structures of existing tunnels considering the
space effect. The proposed method is based on improved ground deformation theory
combined with Kirchhoff plate theory. The proposed method is verified by comparing with
the field measurements. The main conclusions drawn are as follows:

(1) The relationships between the deformation volume of the underground diaphragm
wall and the ground deformation volume are first established. The deformation
volume of the diaphragm wall is calculated using Kirchhoff plate theory, and the
ground deformation volume is evaluated by the transverse deformation curve and
longitudinal deformation curve. Further, the ground heave solutions at arbitrary
position are obtained.

(2) The proposed method is verified by field measurements from Wuhan Metro tun-
nel cases from China. In general, a good agreement has been observed for shield
excavation-induced ground heave profiles and the predictions are good for normal-
ized ground heave profiles. The maximum error is 14.6%, which is acceptable. Hence,
the proposed method can be used as a feasible approach for the estimation of defor-
mations induced by shield excavations.

(3) The parameters of underground diaphragm walls are studied using the proposed
deformation calculation method to determine reasonable design schemes for under-
ground diaphragm walls. The elastic modulus of diaphragm walls has significant
effects on ground heaves, while the thickness and embedded ratio of diaphragm walls
has limited effects on ground heaves. As elastic modulus and the thickness of di-
aphragm wall increase, the ground heaves gradually decrease. In addition, the effects
of the embedded ratio show a positive correlation. However, when the thickness and
embedded ratio reach a certain value, they have little effect on ground heaves.

(4) The presence of underground water has non-ignorable influences on ground defor-
mation. So a new ground heave prediction method should be derived considering
underground water seepage in the future.
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Appendix A

Deflection solution for diaphragm wall with additional thrust P.
For arbitrary loading q, Navier [35] gives the value of Amn in Equation (2),

Amn =
4
∫ L

0

∫ H
0 q sin mπy

L sin nπz
H dydz

π4LHD
(

m2

L2 + n2

H2

)2 (A1)

where D is bending stiffness of thin-plate, which is calculated as

D =
Eb3

12(1− µ2)
(A2)

in which E is the elasticity modulus of the plate and µ is Poisson’s ratio of the plate. In
our condition, two circle zones (tunnels) in thin-plate are sufficient for additional thrust P.
In local conditions, the positions of two circle are (x′1, z′1) and (x′2, z′2), and have same
radius of R. Figure A1 shows the schematic diagram of the diaphragm wall with additional
thrust. Hence, the Amn can be written as

Amn =
4

π4LHD
(

m2

L2 + n2

H2

)2

∫
Ω1+Ω2+Ω3

q sin
mπy

L
sin

nπz
H

(A3)

Due to no any force acting on zone Ω3, the Equation (A3) can be simplified as

Amn =
4

π4LHD
(

m2

L2 + n2

H2

)2

∫
Ω1+Ω2

q sin
mπy

L
sin

nπz
H

(A4)

Adopting polar coordinate transforms (r, θ) to solve double integral, y′ = r cos θ,
z′ = r sin θ, and dA = rdrdθ is substituted into Equation (A4). Equation (A4) becomes

Amn =
4

π4LHD
(

m2

L2 + n2

H2

)2

∫ 2π

0

∫ R

0
Pr
(

sin
mπ(y1 + r cos θ)

L
sin

nπ(z1 + r sin θ)

H
+ sin

mπ(y2 + r cos θ)

L
sin

nπ(z2 + r sin θ)

H

)
drdθ (A5)
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Equation (A4) does not have a primary solution. MATLAB 2015a commercial software
provides a double numerical integration function. The value of Amn can be calculated using
MATLAB code, which are listed as

close all; clear all; clc

f = @(r, theta) P*r*(sin(m*pi*(y1 + r*cos(theta))/L)* sin(n*pi*(z1 + r*sin(theta))/H)+

sin(m*pi*(y2 + r*cos(theta))/L)* sin(n*pi*(z2 + r*sin(theta))/H));

Amn = 4/(piˆ4*L*H*D*(mˆ2/Lˆ2 + nˆ2/Hˆ2))*dblquad(f,0,2*pi,0,R,1.0 × 10−3,’quadl’);
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