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Abstract: The questing behaviors of blacklegged ticks (Ixodes scapularis) are largely regulated by
environmental factors such as temperature, humidity, and vegetation. While this relationship is
relatively clear at the macro- and meso-spatial scales, it is inadequately examined at the micro scale.
Our field work in the New York City suburbs during 2017–2018 revealed significant local variations
in the quantity of questing blacklegged ticks. The purpose of this study is to identify and test the
environmental factors that impact the number of questing blacklegged ticks at the micro-spatial
scale. In addition to the number of ticks, surface temperature, and relative humidity data collected in
the field, geospatial technologies were leveraged to extract micro-scale spatial and environmental
measures, including vegetation index, land cover, elevation, and ecotone, from high-resolution
digital imagery and LiDAR data. Regression models were then built to identify the key factors that
influence the spatiotemporal patterns of questing blacklegged ticks. The results largely align with
the existing research but display characteristics of complexity such as multicollinearity, nonlinearity,
and thresholds in relation to temperature, humidity, and vegetation composition at the micro scale,
whereas mixed hardwood and dwarf shrubs tend to have higher numbers of questing ticks.

Keywords: blacklegged ticks; micro-scale environmental factors; tick questing activity

1. Introduction

The tick-borne Lyme disease has become the most common vector-borne disease in the
USA. During each year of the last decade, an average of more than 200,000 Lyme disease
cases were reported according to the statistics in recent years [1]. The annual cost for
tick-borne disease testing alone is estimated to be approximately 500 million USD [2]. The
Northeastern US has been a hotspot for Lyme disease, especially Connecticut and New York
in the past and Pennsylvania and Maryland in recent years [3]. The agent causing Lyme
disease is Borrelia burgdorferi sensu stricto (hereafter, B. burgdorferi), a spirochete bacterium,
and occasionally, Borrelia mayonii. The primary vector of these bacteria is Ixodes scapularis
(hereafter, I. scapularis), commonly known as the blacklegged tick or deer tick in the USA. B.
burgdorferi can be transferred to a human when an infected blacklegged tick feeds on blood
meals from the person [4,5].

I. scapularis or the blacklegged tick is a member of the Ixodidae family of hard-bodied
ticks, consisting of over 700 species globally [6]. The blacklegged tick is native to eastern,
northeastern, and central–north US [7–11]. During a two-year life cycle, it consumes
three blood meals, and its questing activity—that is, seeking a vertebrate host to feed
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itself—varies with its developmental stages [12]. First, after hatching in the early summer,
larval black-legged ticks seek and feed on small mammals such as white-footed mice and
chipmunks for approximately four days and then molt to nymph. These mammals are
natural reservoirs for B. burgdorferi, and the tick may become infected when it feeds on
them. Second, nymphal ticks overwinter on the ground and quest again in the late spring
and early summer of the next year. Normally, they stay poised on the surface of grass or
shrub before they attach to passing hosts that brush against the surface. These nymphs then
feed on such small hosts for 4–6 days and mature to adults in 4–5 weeks. The infected ticks
could pass B. burgdorferi to those hosts. Afterward, adult ticks target large mammals such as
white-tailed deer and dogs, and the engorged female ticks lay eggs after mating before the
winter [13,14]. Note that in some high latitude areas such as southeastern Canada where
the spring and summer are relatively short, black-legged ticks may have prolonged life
spans if they fail to feed or molt before winter [15,16].

Although vertebrate hosts play a critical role in their lifecycles, ticks such as black-
legged ticks in the US and Ixodes ricinus (the sheep ticks) in Europe spend more than 90% of
their lifetime off the host [17–19]. Being cold-blooded, ticks are highly susceptible to envi-
ronmental stressors, owing to their conservative physiology. The direct linkage between the
environment and ticks, as well as the indirect linkage via hosts, is crucial for understanding
the complexity of the tick ecology and for modeling the abundance, mortality, and host-
seeking activity of the local tick population [20]. The existing studies on tick ecology are
mostly in controlled or semi-controlled lab settings or in the natural environments at macro
scales, with some notable exceptions [21]. Researchers have examined how ticks respond
to temperature and humidity within controlled environments [22–25]. Additionally, the
influence of land cover and vegetation types on ticks was also studied in semi-controlled or
natural settings. In uncontrolled natural environments, most of the published studies focus
on the relationship between environmental factors and tick population at macro geographic
scales [26–28].

More specifically, ambient temperature is found nonlinearly and positively related to
the rates of development and host-seeking activity of blacklegged ticks when it is between
the upper (~30 ◦C) and lower (~0 ◦C) thresholds for tick survival [22,24,25]. Temperatures
higher than 30 ◦C tend to increase the mortality rate of blacklegged ticks and to reduce
their host-seeking activities [6,17,29,30]. In addition, blacklegged ticks depend on a moist
atmosphere to slow the water loss from transpiration [16,20,31]. A low relative humidity
(RH) exerts overwhelming stress on blacklegged ticks [32]. When such stress is present
during a questing period, a blacklegged tick responds by descending from the grass or
shrub to moister surroundings near the ground for water absorption, which consequently
reduces the total duration of host seeking [20].

In addition to suitable temperature and humidity, vegetated habitats are particularly
important for the survival and questing activity of blacklegged ticks [33]. Vegetation con-
ditions the microclimate, mitigates the effects of environmental extremes, and provides
forage for tick hosts [34,35]. Woodlands and forests are especially effective in maintaining
humidity and reducing microclimatic stresses [23,36]. In addition, the numbers of black-
legged ticks may fluctuate because of the varying abundance and diversity of their hosts
across a vegetated landscape [34]. For instance, more adult blacklegged ticks are expected
along forest edges or in the areas with smaller forest patch sizes since white-tailed deer,
their primary hosts, are more prevalent in these areas [37–40]. Furthermore, as ticks feed on
hosts of varying body sizes in different life stages, spatially heterogeneous landscapes are
more likely to sustain these hosts and, therefore, benefit ticks across life stages and support
the transmitting cycles of tick-borne pathogens [41].

The macro-scale tick ecology studies commonly applied regression models with yearly
or monthly climatic data and achieved high fitness in projecting tick abundance [26,42]. Al-
though these studies have found robust correlations between environmental variables and
tick abundance at macro scales, it is unclear if they still hold at local scales with substantial
spatiotemporal variations. Additionally, it is useful to differentiate tick abundance from
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tick questing activities [43]. Tick abundance is the demographic aspect of tick population
and is mainly determined by the macro-scale environment in a longer term, while the
questing activity is the behavioral aspect and is also regulated by the local, short-term
environmental factors that may not influence tick abundance [43,44]. For example, ticks’
questing activities, given the same abundance, are much lower in hot and dry days than
in warm and humid days because they would descend near the ground, under the debris
for shade and moisture; therefore, they are less likely to quest for hosts. In this study, we
focus on the quantity of actively questing blacklegged ticks, which integrates both tick
abundance and questing behaviors.

From the perspective of public health, the quantity and density of questing black-
legged ticks, instead of the tick abundance, indicate the Lyme disease risk. The objective
of this study is to investigate the relationship between environmental factors and the
quantity of questing blacklegged ticks at the micro-scale in four state parks around New
York City. During our field surveys, it was quite common to observe significant variations
in the numbers of questing ticks with similar macro-scale humidity and temperature. For
example, the numbers of questing ticks varied from zero to over seventy while there was
little change in the measured temperature and humidity in two sampling sites. Therefore,
we hypothesize that the spatial patterns of questing tick quantities are driven by specific
local environmental factors at micro-scales. Through analyzing the relationship between the
numbers of questing blacklegged ticks and local environmental conditions, our analysis and
modeling results could help environmental management agencies to effectively develop
eco-friendly vector controlling methods and to reduce potential human–tick encounters in
the suburban areas of New York City.

2. Materials and Methods

To examine the relationship between the quantity of questing ticks and environmental
factors at the micro scale in suburban New York, we combined a field survey and the envi-
ronmental data obtained through geospatial technologies. Statistical analyses, particularly
generalized linear regression models and generalized additive models, were applied to
discover their linear and nonlinear relationships and to test their significances.

First, our study areas focus on the suburban area around New York City, where the
presence of black-legged ticks is well-documented [44–46]. Four state parks in Westchester
and Long Island—Caumsett State Park (CSP), Connetquot River State Park (CRSP), Rocke-
feller Park Preserve (RPP), and Fire Island National Seashore (FINS)—were chosen for their
representativeness of the typical suburban environment (Figure 1). These four parks have
distinctive local landscapes and wildlife, which are related to the diversity and abundance
of black-legged ticks and their host species (Table 1). Of particular importance for this
study is the vegetation coverage and composition, the diversity of land-cover types, and
the structure or fragmentation of the woodlands (Figure 2).

Table 1. Environment of the Study Areas.

Study Area Land Cover Wildlife

Caumsett State Park
(CSP), Suffolk County,
New York
https://parks.ny.gov/ (access on 31 May 2019)

Dominated by oak–tulip forest (2.78 sq km).
Other component land cover consists of costal
oak–hickory forest (0.54 sq km), low salt marsh
(0.36 sq km), successional shrubland (0.09 sq
km), and salt shrubland (0.07 sq km).

The major resident mammal species is the
white-tailed deer. CSP is home to a wide
variety of migratory bird species (e.g., Canada
Geese).

Connetquot River State Park
(CRSP), Suffolk County,
New York
https:
//www.dec.ny.gov/outdoor/61668.html
(access on 31 May 2019)

Land cover consisting of sandy pine barrens,
wetlands, ponds, and oak brush plains
provides refuge for more than 300 plant
species.

CRSP is home to several mammal species (e.g.,
white-tailed deer, red fox, eastern cottontail
rabbit, chipmunks), reptiles, 200 birds.

https://parks.ny.gov/
https://www.dec.ny.gov/outdoor/61668.html
https://www.dec.ny.gov/outdoor/61668.html
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Table 1. Cont.

Study Area Land Cover Wildlife

Rockefeller Park Preserve
(RPP), Westchester County,
New York
https://www.inaturalist.org/ (access on 31
May 2019)

Primarily covered by hardwood forest.
Dominant plant species include huge oak,
tulip poplar, maple, and beech trees.

RPP supports 202 species of resident and
migratory birds, reptiles, amphibians, and
mammals (e.g., white tailed deer, eastern grey
squirrel).

Fire Island National Seashore
(FINS), Suffolk County,
New York
https://www.nps.gov/index.htm (access on
31 May 2019)

Main land cover includes beaches, sand dunes,
interdune scrub, maritime forest, and wetland
habitats. The severe environment only
supports a few plant species (e.g., beach
grasslands, pitch pine woodlands, bearberry
dwarf scrubs).

In addition to a number of terrestrial mammal
species (e.g., white tailed deer, red fox, eastern
cottontail rabbits, white footed mouse)
identified on the seashore, it is home to a wide
variety of species including migratory birds,
marine mammals, and reptiles.
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5 m sampling sites where questing blacklegged ticks were collected. 

Second, we conducted field surveys in these four parks to sample questing black-
legged ticks and to measure local environmental factors. During nine days from 2017 
spring to 2018 spring, we collected blacklegged ticks from 124 sampling sites in those four 
parks. The locations of the sampling sites were randomly selected with minimal overlap-
ping from the off-trail vegetated areas that were physically safe to access. To allow a mi-
cro-scale study, these sites were restricted to 5 m by 5 m. Within each quadrat, the sam-
pling task was carried out by two team members sweeping flags, and the duration was 
restricted to 10 min, which indicated the actual sweeping time. A 10-min timer was initi-
ated once the team members started sweeping, and it was paused when they stopped to 
check and collect attached ticks on the flags. This was because collecting ticks is time-

Figure 1. Study area and sampling sites: (A) Rockefeller Park Preserve, RPP; (B) Caumsett State Park,
CSP; (C) Connetquot River State Park, CRSP; (D) Fire Island National Seashore, FINS. All four parks
are near New York City and in suburban areas. The black dots are the locations of the 5 m by 5 m
sampling sites where questing blacklegged ticks were collected.

Second, we conducted field surveys in these four parks to sample questing blacklegged
ticks and to measure local environmental factors. During nine days from 2017 spring to
2018 spring, we collected blacklegged ticks from 124 sampling sites in those four parks. The
locations of the sampling sites were randomly selected with minimal overlapping from the
off-trail vegetated areas that were physically safe to access. To allow a micro-scale study,
these sites were restricted to 5 m by 5 m. Within each quadrat, the sampling task was carried
out by two team members sweeping flags, and the duration was restricted to 10 min, which
indicated the actual sweeping time. A 10-min timer was initiated once the team members
started sweeping, and it was paused when they stopped to check and collect attached ticks
on the flags. This was because collecting ticks is time-consuming and sometimes can take
even longer than sweeping, especially in a tick hotspot. The geographic coordinates and
boundaries of these sites were recorded using a handheld Garmin GPSMAP 64x. Each
tick sampling session lasted approximately 4 h, from 10:00 to 14:00 on the scheduled dates.
Each sampling day was at least two days after the last rain because precipitation could
hinder black-legged ticks’ questing activities and the wet ground could soak the flags used
to collect ticks [47].

https://www.inaturalist.org/
https://www.nps.gov/index.htm
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Figure 2. Landscapes of the Four New York City Suburban Parks. The parks represent the typical
landscapes in suburban New York with various levels of fragmentation, diverse land-cover types,
and different vegetation compositions.

To collect black-legged ticks, each team member swept a cloth flag (~0.75 m × 1 m)
attached to a pole (1 m) over the ground, foliage, shrubs, and fallen trees within the
boundary of a sampling site. Since black-legged ticks may not be the only tick species
encountered (e.g., Amblyomma americanum, the lone star ticks, were frequently observed
during field works), the ticks attached to the flag were first identified, and only black-
legged ticks were collected and counted. Although widely employed, such a “cloth-lure”
technique is known to have several limitations such as being ineffective on non-questing
ticks, restricted by densely wooded areas, time consuming, and labor intensive [48,49]. The
accuracy of estimating the abundance of black-legged ticks, therefore, may vary with respect
to the thoroughness of tick sampling in a study area [50]. The flagging sampling method,
however, can systematically reflect the quantity of actively questing ticks [43,44,51,52]. As
we applied the same protocol to the flagging sampling method across the four parks, our
data are consistent across these sites over time. The systematic errors caused by the flagging
method would be unlikely to cause significant bias in our analysis and modeling because
the ratios of counted questing black-legged ticks to actual questing ticks were roughly
equal for all samples.

To model the numbers of questing ticks against environmental factors, a group of
variables, including temperature, humidity, vegetation cover, elevation, solar radiation, and
landscape fragmentation, were identified based on the literature, prior to our fieldwork.
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Temperature is a well-known factor in tick ecology. Although precipitation is often used as
a variable to represent moisture, studies indicate that relative humidity performs better in
depicting the microclimate of tick habitats, especially in micro-scale studies [42]. Within
each sampling site, both temperature and relative humidity were measured at three random
spots with an “Extech 45158 Anemometer & Humidity Meter”, held approximately 40 cm
above the ground to match the average questing heights of blacklegged ticks. These values
were averaged for the site.

In addition to the temperature and relative humidity measured during fieldwork, we
obtained LiDAR and NAIP (National Agriculture Imagery Program) images of 1 m resolu-
tion from the Discover GIS Data NY and USGS Earth Explorer websites (Figure 2). Applying
geospatial methods, we derived other environmental variables, including elevation, solar
radiation, normalized difference vegetation index (NDVI), and ecotone length. All these
variables were confined and/or averaged within the bound of each sampling site.

Specifically, we used the LiDAR data to derive elevation and solar radiation. Prior
research suggests that elevation is correlated with tick activity and abundance [42,53].
Solar radiation is the amount of solar energy received at the ground level and is largely
determined by seasonality, vegetation, and terrain factors such as slope and aspect. Solar
radiation directly impacts temperature, humidity, vegetation, and therefore, the questing
activities of black-legged ticks. Using geoprocessing tools in ArcGIS, both the elevation
and solar radiation were calculated from the LiDAR data, the coordinates of the sampling
sites, and the dates when the sampling was conducted.

With the NAIP aerial imagery, we applied supervised maximum likelihood image
classification to derive land cover and vegetation types and calculated NDVI, as well
as ecotone boundary length. NDVI primarily measures the greenness and the density
of vegetation and is a well-known predictor for tick abundance [54,55]. Ecotone is the
transitional area at the boundary between two different plant communities. Therefore,
we extracted the total length of ecotone boundaries in each sampling site to represent the
degree of diversity and fragmentation of vegetation. This essentially measures the length
of the edges between different vegetation land cover types (Figure 3). To carry this out,
we converted the classified vegetation images to vector polygons to avoid overestimation.
Within each 5 m by 5 m sampling site, the total length of the edges between polygons of
different vegetation types was then calculated.
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With data in hand, we applied descriptive analysis and regression to investigate the
variation in the numbers of questing ticks against environmental variables. Since tick
expeditions were scheduled across different state parks and seasons, they could have
significant spatiotemporal variations, for which we illustrated the trends in both linear and
nonlinear fashions.

To formally establish the quantitative relationships between the number of questing
ticks and micro-scale environmental factors, we built multiple generalized linear regression
models based on the negative binomial distribution. Negative binomial regression is
particularly applicable to over-dispersed count data, which is the case for the questing
ticks in our study [56]. Unlike Poisson distribution (var(Y) = µ), the variance of a variable
following a negative binomial distribution is greater than its mean and controlled by an
extra parameter (var(Y) = µ + µ2/k). We also used the corrected Akaike information
criterion (AICc) to calibrate and choose a model with the highest fitness [57–59].

More specifically, we constructed four negative binomial regression models to test the
explanatory power of the environmental variables on the quantity of questing black-legged
ticks. We started from a “full” model containing all variables. Using the corrected Akaike
information criteria (AICc) as guidance, we also developed a “calibrated” model that had
the lowest AICc and, therefore, the best fitness. This was carried out by dropping the
insignificant variables and variables that were highly correlated. For example, NDVI was
correlated with specific land-cover types such as mixed hardwoods and dwarf shrubs.
To allow comparison with the existing studies, we also created an “alternative” model,
which did not fit the data so well as the “calibrated” model but retained theoretically
relevant variables such as season, NDVI, and the length of ecotone boundaries. Finally, we
compared these models, using AICc and pseudo-R2, against a “null” model that contains a
constant term only. The null model provides a baseline scenario where the relationships
between explanatory variables and response variables are random.

Furthermore, we applied generalized additive models (GAM) to examine which factors
have nonlinear interactions with the number of questing ticks [60,61]. While the negative
binomial models are effective at testing the impacts of environmental predictors on the
numbers of questing blacklegged ticks, they assume linearity. However, the general pattern
visualizations showed signs of nonlinearity. Therefore, we applied GAM, with the same
negative binomial distribution and log link function, to explore this nonlinearity. GAM
is a type of non-linear regression technique, which is essentially a penalized GLM with a
smoothing basis and especially useful for “wiggly” data that are common in environmental
and ecological applications. GAM commonly applies high-order polynomial smoothing
functions to predictors to smooth and fit complex patterns.

Together, these methods offer a comprehensive depiction of the complex relationships
between the quantity of questing blacklegged ticks and the micro-scale environmental
factors at those four parks. They are particularly valuable at exploring multicollinearity,
nonlinearity, and thresholds from different perspectives.

3. Results
3.1. General Pattern and Correlation

We collected 897 blacklegged ticks in nine field trips to the four parks around New
York City, of which 88.3% (792) were adults and 11.7% (105) were nymphs. The field data
show little temporal overlap between adult and nymphal ticks (Table 2). In seven out
of the nine days of sampling, we collected adult ticks without finding any nymphs. On
7 June 2018, we collected 101 nymphs and 10 adult ticks. Moreover, one week later, on
14 June 2018, only four nymphal blacklegged ticks were collected. Temporally, the questing
of adult blacklegged ticks was active in May and November, i.e., the late spring and late
fall; nymphs were active in June, the early summer. It must be pointed out that this only
applies to blacklegged ticks. We did observe a fair number of questing nymphs of lone star
ticks during the field trip on 24 May 2018.
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Table 2. Sampling Results.

Date Location # of Sites Total of Adult Ticks
(µ, σ)

Total of Nymph
(µ, σ)

12 May 2017 Caumsett SP 11 109 (9.90, 4.99) 0
27 October 2017 Caumsett SP 16 113 (7.06, 3.86) 0

1 September 2017 Connetquot River SP 30 209 (6.74, 5.13) 0
15 September 2017 Rockefeller Park Preserve 35 88 (2.44, 1.91) 0

26 April 2018 Caumsett SP 3 47 (15.67, 13.43) 0
4 May 2018 Connetquot River SP 10 162 (14.73, 20.80) 0

24 May 2018 Caumsett SP 8 54 (6.75, 5.68) 0
7 June 2018 Caumsett SP 7 10 (1.43, 1.27) 101 (14.42, 3.46)
14 June 2018 Fire Island NS 4 0 4 (1, 1.15)

Total 124 792 105

To visually inspect the data, we plotted the distribution of questing blacklegged ticks
across the four parks over time (Figure 4). Obviously, there were significant spatiotemporal
variations. For example, 113 adult blacklegged ticks were collected across 16 sites (mean per
site is 7.06) on 27 October 2017 in CSP, and 209 were collected across 30 sites (mean is 6.74)
on 1 November 2017 in CRSP. However, only 88 were collected from over 35 sites (mean is
2.44) on 15 November 2017, two weeks later, in RPP. At FINS, which has a very different
landscape, only four nymphal blacklegged ticks were collected without any adult ticks.
With the dates and parks being tangled together, it is difficult to identify clear patterns, even
though preliminary visualization suggested the possible correlation between temperature
and average number of questing ticks per site.
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Figure 4. Statistics of Questing Black-legged Tick. The number of questing black-legged ticks varies
significantly across time and between the four parks. Overall, temperature has a positive correlation
with the questing tick numbers. Parks with more vegetation land cover also have higher numbers.

A simple t-test suggests that the season makes a difference, as the average number of
questing blacklegged ticks is significantly higher in the spring than in the fall (t = −4.253,
p < 0.001). However, this pattern is skewed by the specific data point of 15 November
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2017 in RPP. The average air temperature on that day was approximately −1 ◦C. Although
88 adult ticks were collected across 35 sites (mean = 2.44, standard deviation = 1.91) on
that day, the number is much lower than expected as the temperature was below the
lower threshold (4 ◦C) of tick questing activity. When excluding tick survey data from
15 November the average number of questing ticks during the fall is actually higher than
the spring. However, the difference is not statistically significant (t = 0.684, p = 0.496).

The tick surveys in RPP and FINS revealed significant inconsistencies in the counts of
questing black-legged ticks from those in CSP and CRSP. The distributions of tick counts
from the sampling areas within CSP and CRSP show slight differences in both mean
(triangles) and median (orange lines), and a t-test revealed these differences were not
significant (t = −0.586, p = 0.562). However, the areas classified as hotspots—sites with tick
counts ≥ 20—in CRSP generally had higher tick observations than the hotspots in CSP. For
example, the maximum questing ticks collected from a single site in CRSP was 70, followed
by a site where 46 ticks were collected. The maximum number of ticks collected from a
single site in CSP was 31.

When the data from all parks on all dates are visualized with temperature and relative
humidity, the numbers of questing black-legged ticks show nonlinear patterns that are
consistent with the previous studies. While higher temperature generally leads to more
questing ticks, the relationship is nonlinear (Figure 5). Specifically, the optimal temperature
for tick questing behavior is approximately 20 ◦C in suburban New York. When the tem-
perature is lower than 20 ◦C, a higher temperature promotes questing, while a temperature
higher than 20 discourages questing. At the same time, questing activities seem indifferent
to very high (≥25 ◦C) or very low (≤0 ◦C) temperatures.

The case of relative humidity is even more complex than the temperature. While the
linear trend suggests higher humidity leads to more questing activities, their relationship
also indicates nonlinearity (Figure 6). Opposite to the temperature, the fitted curve shows a
worse humidity level around 42%, and a lower or higher humidity level can increase ticks’
questing activities. However, this pattern is not supported at all individual parks as the
nonlinear relationship only holds at CRSP. At CSP, the trend is clearly an upward linear
one, which is consistent with the existing theories. The other two parks, RPP and FINS,
have no obvious trend because the temperature at RPP is very low and the land cover at
FINS has little vegetation.

Unlike the temperature and relative humidity, other environmental factors display
few generalizable patterns due to the significant variations at local scales. Of course, the
absence of patterns and the nonlinear relationships are not surprising as the black-legged
ticks’ questing activities interact with local factors in intricate ways. On the one hand, the
patterns revealed from our data, particularly the temperature, are in accordance with the
published results from other researchers, which largely verifies our data collection method.
On the other hand, the complexity of the patterns also requires more advanced statistical
methods to examine the relationships among those factors in the presence of nonlinearity.

3.2. Negative Binomial Generalized Linear Regression Analysis

From the regression results, it is clear that the full, alternative, and calibrated models
are significantly better than the null model as they have lower AICc and higher pseudo-R2

values (Table 3). The non-null models produce seemingly contradictory indictors for model
fitness. The Nagelkerke’s pseudo-R2 from the full model is higher than the alternative and
calibrated models; that is, 0.57 vs. 0.47 and 0.55. The AICc, however, strongly favors the
calibrated model, as its value is lower than that of the full model by 14.32. As a general
rule, if the AICc of one model is lower than another model by at least 2, we would rather
pick the model with the lower AICc. Because the Nagelkerke’s pseudo-R2 does not account
for the degree of freedom or the number of explanatory variables, it gives an advantage to
models with more predictors. Using the adjusted McFadden pseudo-R2, which penalizes
models including more independent variables, the calibrated model is better than the full
and the alternative models. Note that those pseudo-R2 from the negative binomial models
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should not be interpreted as the (adjusted) R2 from regular Gaussian models, although
they are useful for comparing competing models, as we see here.
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Blue and red lines are fitted total number of questing ticks using linear and generalized additive
models, respectively. Shaded areas are their standard error bounds. The relationship between the
number of questing ticks and temperature is nonlinear and varies across parks. The number peaks at
approximately 20 ◦C. Black-legged ticks still quest under 0 ◦C.

Because our dataset is relatively small, we chose the simple leave-one-out cross valida-
tion method to further assess the models [62]. Essentially, the method leaves one sample
out, re-runs the regression, and compares the predicted value and actual value from that
sample. With N equals 80, the cross validation generated 80 predicted values. We used the
root mean squared error (RMSE) to evaluate the overall prediction error and normalized
it with the range of total number of ticks [63]. The results show that the calibrated model
has a minimum prediction error of 5.12 among the four models, which is consistent with
AICc in indicating its superiority to the others (Table 3). While the validation supports
our selection of the calibrated model [64], the absolute prediction error is still quite large
around 5, considering the mean value of the dependent variable is only 7.19. As such,
these models, even the best one, have limited prediction power. Overall, the micro-scale
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environmental factors can improve the fitness of the model, yet relying on them to predict
the quantity of questing ticks would be problematic as many critical factors might be still
missing, and those included factors have complex interactions that may not be captured by
the models.
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Figure 6. Total Number of Questing Blacklegged Ticks and Relative Humidity in Each Sampling Site.
Blue and red lines are fitted total number of questing ticks using linear and generalized additive
models, respectively. Shaded areas are their standard error bounds. In the natural environment, the
influence of relative humidity on the questing activity of black-legged ticks is complex. Extreme low
or high relative humidity seems to negatively affect the number of questing ticks.
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Table 3. Negative Binomial Regression Modeling Results.

Model Specification AICc
(∆AICc)

^
θ (se)

CVc
(Normalized)

Pseudo-R2

Nagelkerke Adjusted
McFadden

Null Tick count ~ 1 490.25 (0.00) 0.94 (0.17) 6.04 (0.086) 0.00 0.00

Full

Tick count ~ temperature +
relative humidity + season +
solar + elevation + ndvi +
ecotone length + land cover *

455.22 (35.03) 2.67 (0.62) 5.86 (0.084) 0.57 0.10

Alternative
Tick count ~ elevation + relative
humidity + season + ndvi +
ecotone length

449.15 (41.10) 2.01 (0.43) 5.57 (0.080) 0.47 0.10

Calibrated Tick count ~ temperature +
relative humidity + land cover * 440.90 (49.35) 2.69 (0.70) 5.12 (0.073) 0.55 0.11

N = 80 (after excluding the records with incomplete items). * Land cover includes percentages of four land-cover
types: mixed hardwoods, dwarf shrubs, grasslands, and pine forest. θ̂ (se) is the estimated dispersion parameter
and standard error. When the dispersion is zero, the distribution becomes a Poisson. CVc is the corrected
prediction error (RMSE) from a leave-one-out cross validation. It is normalized by Ymax − Ymin. The mean and
standard deviation of Y are 7.19 and 9.91, respectively.

From the calibrated negative binomial model, the six predictors are all statistically
significant at the 0.05 level (Table 4). Their impacts on the quantity of questing black-legged
ticks are also largely in line with the existing literature. Specifically, the ambient temperature
and relative humidity positively contribute to the number of questing black-legged ticks.
Vegetation also has a positive contribution in general. However, distinct vegetation types
show various degrees of impact. From the estimated incidence rate ratios, which can be
interpreted as the estimated coefficients from the regression model, dwarf shrubs have the
highest contribution while pine forest has the lowest, with mixed hardwood and grassland
in between. The alternative model, which is not as good as the calibrated model according
to the AICc and pseudo-R2, sheds some light on the influences of seasonality and vegetation.
When the season is added as a predictor, it is statistically significant, indicating there are
more questing black-legged ticks in the fall season than in the spring. Unsurprisingly, the
inclusion of season reduces the significance of temperature. In fact, the combination of
season and elevation performs better than temperature in terms of increasing the model
fitness. The coefficient of the humidity is lower with the presence of season, although its p
value is still less than 0.05 and has the same signs as in the calibrated model. One major
contribution of the alternative model is to illustrate the importance of NDVI, which has
a statistically significant positive coefficient, although it is less superior than using the
percentages of the specific land cover of vegetation. Unlike what we expected, the ecotone
boundary length, an indicator of landscape fragmentation, has no significant impacts on
the number of questing ticks, although the predictor does have a positive coefficient.

Overall, the generalized linear regression based on negative binomial distribution
gave results that are consistent with the existing theories. Higher ambient temperature
and relative humidity, when in the normal ranges, lead to more tick questing activities.
Vegetation, characterized by NDVI, also has a positive effect on the number of questing
ticks. More specifically, dwarf shrubs and mixed hardwoods have the highest positive
impacts on ticks’ questing activities, while grassland and pine trees have much lower, yet
still positive, impacts with residential land and paved roads being the baseline, which is
also the consensus from a recent literature review [33].
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Table 4. Results of the Calibrated and Alternative Negative Binomial Regression Models.

Variable
Calibrated Model Alternative Model

log(IRR) 95% CI log(IRR) 95% CI

Temperature 0.07 *** 0.05, 0.09 - -
Relative Humidity 0.03 ** 0.01, 0.04 0.025 * 0.00, 0.05
Land Cover Percentage

Mixed Hardwood 7.0 *** 3.5, 12 - -
Dwarf Shrub 7.3 *** 3.4, 13 - -
Grassland 6.2 * 1.3, 13 - -
Pine Forest 5.1 * 1.4, 11 - -

Season - - 3.51 *** 1.6, 5.4
Elevation 0.023 * 0.00, 0.05
NDVI - - 2.23 * 0.26, 4.2
Ecotone Length - - 0.0046 −0.02, 0.03

IRR = incidence rate ratio (equivalent to estimated coefficient). CI = confidence interval. Significance Level:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.

3.3. Generalized Additive Model for Nonlinearity

The GAM results have a few implications (Table 5). First, it further reduces the AICc
by 2.04 from 440.90 to 438.86, which suggests that adding non-linear smoothing terms
improved the fitness of the model. Note that the pseudo-R2 reported here is not comparable
to those from negative binomial linear models. It is offered to show how much the model
improves over the null model. Second, many predictors still show linear relationships. Of
particular interest is the temperature. Although the general trend fitting in the “General
Pattern and Correlation” section visually shows a non-linear relationship between ambient
temperature and the number of questing ticks, such nonlinearity does not hold well in the
GAM. This is because GAM penalizes adding complex smoothing terms, which is similar
to adding more predictors to a linear regression. When the temperature is modeled as
non-linear, the improvement to the model fitness does not offset the cost of adding more
variables. Therefore, temperature turns out to be a linear predictor (Figure 7). By contrast,
the relative humidity has a strong non-linear relationship. An EDF value of six means
there are six knots or turning points in the fitted relationship (Figure 7). Again, this is
different from the general trend in the “General Pattern and Correlation” section. However,
the complex curve was estimated by the GAM and the smoothed term could significantly
improve model fitness even with higher degree of freedom. Note that the y axis in Figure 7
is transformed by the negative binomial function, therefore, different from the y axis in
Figures 5 and 6.

Table 5. Generalized Additive Model Estimation.

Variable EDF χ2 p-Value

Temperature 1 64.786 <0.001 ***
Relative Humidity 6.05 29.834 <0.001 ***
Vegetation Land Cover Percentage

Mixed Hardwood 1 12.029 <0.001 ***
Dwarf Shrub 4.002 22.226 <0.001 ***
Grassland 1 7.038 0.008 **
Pine Forest 1 5.973 0.015 *

1 EDF = effective degree of freedom. An EDF of 1 means the model fits a linear relationship between the
independent and dependent variables. A higher EDF implies more complex non-linear relationships. χ2 is the
test statistic for the significance of the smoothing terms. AICc = 438.86, Pseudo − R2 = 0.52. Significance Level:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.

The generalized additive model (GAM) allowed us to assess the nonlinearity of the
environmental factors. Overall, the relative humidity has a strong non-linear relationship
with the modeled quantity of questing ticks, as well as the percentage of the dwarf shrubs
land cover. Other statistically significant factors, including temperature and other types of
vegetation, reveal a linear relationship, which is rather unexpected but could be explained
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by the distribution of the sample data. The linearity of ambient temperature, for instance,
mainly results from the bimodal distribution of lower temperature in the spring and higher
temperature in the fall.
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4. Discussion

While our study at the local scale largely aligns with the existing theories, it has
uncovered certain micro-scale patterns that require deeper examination and discussion.
Moreover, we have noted distinct patterns that vary across seasons and parks, which we
endeavor to comprehend and explicate.
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Before discussing the results, it is necessary to examine the issue of multicollinearity
and nonlinearity in ecological multiple regressions. Multicollinearity in ecology refers
to the situation where targeted ecological responses are linked to multiple explanatory
variables that are correlated to each other [65,66]. Multicollinearity could present “spurious
correlations”, instead of “synergistic relationships” [66]. From our dataset, the temperature
is highly correlated with elevation and solar radiation and moderately with vegetation. In
addition, NDVI is also correlated with the percentages of different types of vegetation land
cover. As a result, while many environmental factors are seemingly related to the quantity
of questing blacklegged ticks, only a few would be left in the regression models due to such
multicollinearity. Furthermore, we applied GAM to address the issue of nonlinearity, where
explanatory variables have non-linear relationships with the response variables. GAM,
however, is not quite intuitive in terms of exposing the details of nonlinear relationships.
As such, we will use the original data and our field observations to explain some of the
significant patterns in the following sections.

4.1. Variability of Questing Tick Populations between Seasons and Parks

The most significant variability in the quantity of questing adult blacklegged ticks is
between seasons and parks. Both abundance and host-seeking behavior of blacklegged
ticks are bimodal, meaning that two peaks of questing blacklegged ticks can be observed
in the spring and fall seasons every year. According to a ten-year tick study conducted in
New Jersey, the highest levels of adult blacklegged ticks’ questing activity occur during
two distinct seasons [67]. Specifically, from 14 April to 28 April in the spring, and from
27 October to 23 November in the fall, are the peak seasons for adult blacklegged ticks.
However, the time points and duration of tick peak seasons may vary depending on
geographic locations. For instance, peaks for adult tick activities in southeastern Missouri
occur in February and November [68]. In addition, long-term field observations in these
two studies show that peak adult tick activity in the fall is consistently higher than that in
the spring despite significant annual fluctuations. In our study, the overall tick numbers
are also higher in the fall than in the spring when excluding 15 November 2017, a day with
extremely low temperature.

While temperature is susceptible to seasonal variations, vegetation is also influenced
by the season. Seasonality impacts live green vegetation in terms of its greenness, moisture,
and cooling effects, which can be represented by NDVI and is often correlated with the
locally measured temperature and humidity. Note that the types and composition of
vegetation land cover are rather stable across seasons, although they essentially define the
microclimate in local tick habitats [69].

The specific variability in tick counts between parks can be explained by the vegetation
composition and fragmentation, as well as by climate and weather factors, particularly
the temperature. For example, pine forests in CRSP, even though sparsely distributed,
serve to form a diverse and fragmented forest community. As a result, although CSP and
CRSP appear to have the same median numbers of questing tick population around 5, the
average per sampling site in CRSP (CRSPavg = 8.83) is higher than CSP (CSPavg = 7.23),
suggesting a clustered pattern. The same phenomenon that more fragmented forests have
higher questing tick populations is also noted in [36].

RPP was quite similar to CSP in landscapes including vast oak forest, dense tree
canopy, and abundant tick host species, primarily the white-tailed deer. However, we
collected many fewer blacklegged ticks at RPP than CSP; that is, 88 vs. 208 in total and
2.44 vs. 6.74 per site (5 m by 5 m). The reason for such a significant difference is that
we conducted the tick sampling at RPP on 15 November 2017. A sharp plummet in air
temperature on that day made measures of surface temperature much lower than those
measured two weeks before at CSP. Interestingly, even though the temperature at RPP
during the sampling was below the frozen point (about −1 ◦C), which is lower than the
4 ◦C lower air temperature threshold for tick activity as suggested by [70], blacklegged ticks
were still actively seeking hosts. There are several possible reasons for this abnormality. The



Appl. Sci. 2023, 13, 11587 16 of 21

woodland habitats might have helped mitigate extremely low temperatures to a level that
was not inhibitory for adult blacklegged ticks to quest; the plummet in air temperatures
occurred so rapidly and some ticks were captured before moving back to warmer shelters;
or such temperature thresholds are not universal and only apply to specific types of ticks at
specific locations. Nevertheless, the overall number of questing blacklegged ticks appeared
to be significantly lower in extremely cold weather on 15 November 2017 in RPP.

The desert-like landscape in FINS is clearly different from the oak-dominated mixed
forests in the other three parks (Figure 8). Although most areas in FINS are vegetated,
they are covered by dwarf bushes and shrubs. Large tree canopies are rarely present on
the island. In addition, intense sea winds drain moisture from the air near the ground
surface and make the habitats unsuitable for blacklegged ticks due to dryness [71]. Only
four blacklegged tick nymphs were collected during our four-hour tick collection in FINS.
Surprisingly, a considerable number of lone star ticks were observed in the field. Lone
star ticks are much more tolerant to a dry environment than blacklegged ticks, and their
prevalence is another indicator of the dry climate in FINS [39].
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4.2. Influence of Environmental Factors
4.2.1. Temperature and Relative Humidity

The positive correlation between tick abundance and temperature is widely recognized
by most of the studies projecting climate change [26,55,72–74]. Our micro-scale data
and regression results are consistent with these theories as higher temperature generally
stimulates more questing activities, while extremely low or high temperatures discourage
such activities. Examining our raw field data, the surface temperature alone may not
be a significant driving factor for the quantity of questing black-legged ticks at the micro
scale [70]. However, significant changes in temperature that vary with seasons may function
as a threshold determining the states of the tick host-seeking activity being either “occur”
or “not occur” [75,76]. While a binary variable of season that differentiates the spring from
the fall is statistically significant in one of our regression models, the temperature performs
better in correlating with the quantity of questing blacklegged ticks because season is just a
broad and coarse non-numerical proxy.

Our study also highlights the critical role that relative humidity plays in black-legged
ticks’ questing activity, which is widely recognized in tick ecology [16]. At the local scale,
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relative humidity would outperform most meteorological variables (i.e., precipitation) in
modeling tick questing activities because it is a straightforward indicator for tick water
stress in the microclimate [42]. Although all relative humidity data measured in this study
are below the 82% threshold of black-legged tick survival suggested in [20], they were
the microclimatic relative humidity experienced by questing black-legged ticks in the
natural habitat. In addition, ticks are adaptive vectors, and they actively change questing
behaviors (e.g., questing height) in response to water stress in their surroundings [70].
Interestingly, we also observed the nonlinearity of humidity. Extremely low and high
humidity may present a challenge for tick questing activity, which is also found in [47].
The fitted smooth curve suggested that higher moisture itself does increase the number
of questing ticks but only when the relative humidity is above 40. As suggested by the
generalized additive model, however, the relationship could be rather complex when
considering other environmental factors.

4.2.2. Vegetation and Landscape Fragmentation

While the importance of vegetation in tick ecology studies is widely acknowledged, the
role of NDVI is controversial because it indicates a variety of vegetation-related features [55]
from the abundance or density of vegetation [77], to plant water content [78], and to
relative humidity around the vegetation layer [79]. Despite this, NDVI is typically strongly
correlated with black-legged tick populations and their host-seeking behavior, which is
also supported by our alternative negative binomial regression model. In general, areas
with higher NDVI are covered by thriving vegetation (with higher water content) or denser
tree canopies, which create a microclimate conducive to black-legged ticks. The NDVI
values in a specific area may also show seasonal patterns due to the presence of deciduous
vegetation [77].

Our regression models also indicate that specific vegetation land-cover types, such as
hardwood forests and dwarf shrubs, are more significant for tick ecology studies than the
general NDVI. This has practical implications as a more detailed land cover and vegetation
classification should be considered in addition to NDVI. Hardwood forests, characterized
by large tree canopies, can capture snowmelt, maintain moisture with leaf litter, and
provide a favorable habitat for black-legged ticks [80]. The calibrated regression model
clearly shows the significant and positive effect of hardwood forests on the number of
questing black-legged ticks. In contrast, pine forests, with needle-leaved tree canopies, do
not create a cool and humid microenvironment as effectively as broad-leaved hardwood
forests [81]. Tick sampling conducted by [36] in New Jersey showed that questing tick
populations observed in hardwood forests (4.3 ± 1.1 across 8 sites) were approximately
twice the questing tick populations in pine forests (2.1 ± 0.5 across 14 sites). Our study
also showed a similar pattern, with mixed hardwood having a higher coefficient than pine
forests or grassland in the calibrated regression model. We also found that dwarf shrubs
tended to have more questing ticks than both, as black-legged ticks usually move to shrubs
to attach to passing hosts.

In addition to hardwood forests, questing tick populations are often positively corre-
lated with the total length of ecotone boundaries within each sampling site, as ticks usually
reside and quest along forest boundaries. Goddard et al. [82] found that black-legged ticks
are unlikely to appear in no-shade or totally shaded areas but are frequently observed along
forest edges with 30% to 80% mixed shade. Therefore, totally forested areas, compared with
forest ecotones, may have a lower tick population [83]. Additionally, ecotones in suburban
areas usually create a more fragmented landscape, which supports larger black-legged
tick populations because these areas usually have large and diverse populations of tick
host species, including the white-tailed deer, white-footed mice, and chipmunks [84,85].
Furthermore, the effects of landscape fragmentation on deer populations are found to be
especially striking in suburban areas due to the preferred forage provided by abundant
ecotonal vegetation and the absence of predator species [77]. In our full and alternative
regression models, the ecotone boundary length variable has a positive coefficient, which
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is in line with the existing theories. However, in the presence of other factors, such as the
NDVI and percentages of vegetation land cover, the variable was not statistically signifi-
cant. Therefore, while ecotone boundary length and vegetation fragmentation may have
a significant impact on the number of questing black-legged ticks at a macro scale, their
effect is less pronounced at the local level.

5. Conclusions

The quantity of questing black-legged ticks in suburban parks around New York
City is influenced by a complex interplay of micro-scale environmental factors, including
temperature, humidity, vegetation, and landscape characteristics. Seasonality also plays a
significant role in the temporal pattern of questing tick populations. In general, habitats that
are characterized by a warmer ambient temperature, higher relative humidity, and more
vigorously growing vegetation are likely to have an increased number of questing black-
legged ticks. While hardwood forests and dwarf shrubs are found to be more favorable
than pine forests and short grass for questing black-legged ticks, the relationship between
ecotone boundary edges and questing tick populations is less clear. The complexity of how
micro-scale environmental factors impact the quantity of questing black-legged ticks can
be attributed to two main reasons. First, the relationships are often nonlinear, in which
extreme conditions, particularly the temperature and humidity, tend to have negative
effects. They are also complicated by the multicollinearity of the environmental factors such
as elevation, temperature, and vegetation at the micro-scale. Second, the thresholds such as
the lowest survival temperature and minimum humidity that were established in the lab or
semi-controlled settings at specific geographical areas may not apply in a natural setting at
a different location. Our study illustrates well the spatial heterogeneity of these thresholds.
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