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Abstract: This paper proposes a distributed coordination scheme for connected vehicles, including
automated vehicles (AVs) and manual vehicles (MVs), at signal-free intersections. The cooperation
issue of vehicles at an intersection is formulated into a multi-objective optimization problem that
aims to eliminate conflicts and improve traffic mobility and fuel economy. For this purpose, the future
trajectories of AVs and MVs are predicted by the respective car-following models, and are shared
with neighboring vehicles in conflict relationships. The proposed scheme optimizes the sum of the
performance of AVs within the cooperative zone in a prediction horizon. A distributed optimization
algorithm in the receding horizon is presented to obtain the local optimal solutions, and is tested in
simulations with different demand levels and penetration rates of AVs. The results show that the
proposed scheme reduces travel time by 29.7–45.5% and 34.5–49.2%, and decreases fuel consumption
by 27.6–35.3% and 21.6–29.9% under 70–100% penetration rates of AVs, compared to the no-control
operation and fixed-time signal control strategy. In addition, a comparison simulation with the
strategy of jointly optimizing the vehicle trajectory and signal timing is conducted to evaluate the
relative merits of the proposed scheme.

Keywords: connected vehicles; automated vehicles; manual vehicles; signal-free intersections;
distributed cooperation; receding horizon optimization

1. Introduction
1.1. Background

Social progress and improvements in people’s quality of life profit from the rapid
development of urban transportation. Unfortunately, a sharp increase in vehicle ownership
poses great challenges in traffic safety, mobility, and environmental sustainability [1].
Over the decades, the development of intelligent transportation systems (ITSs) has become a
significant force in dealing with these challenges. In particular, emerging connected vehicles
(CVs) technologies have aroused widespread attention due to their enormous potential
in improving road capacity, driving safety, and fuel economy. Employing vehicle-to-
everything (V2X) communication, CVs are able to cooperate in various traffic scenarios [2].

As bottlenecks of urban traffic, intersections have always been the focus of researchers
and traffic engineers for improving traffic safety and smoothing traffic flow. Intersections
can be categorized into two types, i.e., signalized and signal-free. Researchers have pro-
posed various approaches to improve traffic efficiency at signalized intersections, e.g., fixed-
time control, actuated control, adaptive control, and connected-vehicle-based methods [3,4].
These methods can improve traffic throughput at intersections to some extent, but un-
necessary stopping and idling are still inevitable. For signal-free intersections, there are
no signal lights or any other display devices to prompt drivers. Traditionally, drivers
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must observe and estimate the adequate vehicle clearance through visual judgment for
safe crossing. Currently, a real-time and reliable CVs environment can be constructed
using the V2X communication technology, which provides faster response and shorter
vehicular gaps for AVs to pass through intersections. Significant efforts have been made to
coordinate AVs at signal-free intersections under centralized or decentralized frameworks.
The centralized frameworks globally decide the movements of all vehicles using a central
controller, while under the decentralized frameworks, each vehicle is treated as a single
agent and collaborates independently [5]. Two kinds of strategies have generally been
presented for signal-free intersection coordination under the centralized or decentralized
frameworks, i.e., heuristic strategies and trajectory planning strategies.

1.2. Literature Review

Heuristic strategies aim at adjusting the movements of vehicles to cross an intersec-
tion without collisions; they generally adopt the rule of first come, first served (FCFS).
Typical heuristic strategies that have been proposed in the literature include resource
reservation [6,7], fuzzy logic [8,9], and virtual platooning [10,11]. For instance, Dresner
et al. [6] proposed a centralized resource reservation method to coordinate vehicles at a
signal-free intersection with a single straight lane in each direction. This work was further
extended in [7], which considered turning and improved the performance of the central
controller. The central controller frequently interacted with vehicles and scheduled the
time slots and space tiles, which suffered heavy communication burdens and the risk of
deadlocks. Note that the existing heuristic strategies only regulate vehicles to pass through
intersections without conflicts, but are incapable of further optimizing the trajectories
of vehicles. In addition to collision avoidance, the trajectory planning strategies drive
vehicles to a better traffic performance. For example, Lee et al. [12] presented a trajec-
tory optimization algorithm to minimize the length of potential conflicting overlapping
trajectories. Considering vehicle jitter, acceleration, and expected velocity, Dai et al. [13]
formulated a multi-objective trajectory optimization problem. By using a Monte Carlo
tree search, Xu et al. [14] planned the trajectories of vehicles through the global-optimal
passing orders. Planning-based strategies have been shown to perform better than heuristic
strategies under high traffic demand [15]. However, the trajectory planning strategies have
a weakness in real-time practical implementation since the computation of the formulated
problems suffers the curse of dimensionality.

Several recent studies on the cooperation of vehicles at signal-free intersections intro-
duced the concept of multi-agent, i.e., consensus, control [16,17]. The coordinated vehicles
are regulated to approach a desired state of motion to avoid collisions at intersections. For
instance, Mirheli et al. [18] proposed a coordinated optimization trajectory algorithm by
formulating a mixed-integer non-linear program (MILP), which aims at forcing vehicles
to reach consensus. This approach pushed the distributed vehicle-level solutions toward
global optimality, but the formulated MILP problems suffered a heavy computational
burden. Xu et al. [11] presented a virtual consensus-based platoon control approach by
transforming the two-dimensional vehicle cluster at the intersection into a one-dimensional
virtual platoon in a virtual lane. However, this approach was not evaluated in the receding
horizon framework. For those problems of vehicle collaboration at signal-free intersections,
receding horizon control (RHC), also known as model predictive control (MPC) [19], has
been utilized to dynamically capture predictions on vehicle states and future trajectories
to optimize the coordination systems in real time. In the vehicle–intersection coordina-
tion framework proposed in [20], a conflict risk indicator was integrated into the MPC
controller. Du et al. [21] formulated the corridor-level vehicle coordination problem in the
RHC framework, where vehicle collision was avoided by using a consensus algorithm to
force vehicles to track the reference speed.

Note that the existing research on the cooperation of vehicles at signal-free intersec-
tions is only confined to the fully connected AV environment. Since the mixed driving
environment containing AVs and MVs will stay with us for an extended period, it is es-
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sential to establish control mechanisms for cooperating with both types of vehicles. In the
current study, traffic signal lights still have to be used to regulate the mixed autonomy
traffic flow at intersections [22,23]. To jointly optimize the signal timing and vehicle trajecto-
ries, a complex MILP is constructed [24]. However, MILP problems are NP-hard, in which
the computational burden grows exponentially with the number of loading vehicles [25].
Moreover, introducing traffic lights still inevitably leads to stops and idling. Furthermore,
some of the existing collision avoidance algorithms at signal-free intersections can only
deal with the problems with just a few vehicles due to computation complexity [21,26].
The presented algorithms cannot be applied in a realistic traffic environment to coordi-
nate vehicles globally under a receding horizon framework. In addition, the centralized
coordination approaches suffer heavy computational burdens and struggle to handle high-
density traffic. Whereas distributed coordination frameworks have the advantages of a
lower communication burden, lower computational complexity, and better information
protection. Nevertheless, the existing approaches on the distributed coordination of AVs
at signal-free intersections are inadequate in some respects, e.g., a lack of restrictions on
control inputs, vehicle states, and safety conditions [11], without fully considering the
global conflict relationships [26,27], and losing sight of the mixed-automated vehicles en-
vironment [11,18,21,26,28]. To address the problem of the cooperation of AVs and MVs at
signal-free intersections, we establish a distributed collaboration framework to address the
above issues.

1.3. Contribution of This Work

In this paper, we develop a distributed cooperation scheme to coordinate AVs and
MVs to pass through signal-free intersections. The core idea is to cooperatively regulate
each AV to cross the intersection while keeping a safe distance with the vehicles in conflict
relationships. Firstly, a conflict graph is constructed to describe the conflict relationships of
the different approaching lanes. Based on the conflict graph, the communication topologies
of vehicles are identified in real time. Then, the future trajectories of AVs and MVs are
predicted by the respective car-following models and are shared with their neighboring
vehicles in conflict relationships. By utilizing the predicted trajectory information of the
conflicting MVs, AVs proactively optimize their trajectories to avoid conflicts while assisting
the MVs to cross the intersection smoothly. In addition, the elimination of conflicts, traffic
mobility, and fuel economy are synchronously considered in the proposed scheme. The
intersection coordination issue is formulated into a multi-objective optimization problem
aiming to minimize the weighted performance indexes of AVs in a prediction period.
Finally, a receding horizon optimization algorithm is presented and tested with a typical
four-phase intersection in simulations. The contributions of this study are listed below:

(1) Different from the existing literature only considering coordinating vehicles under a
fully AV environment, this paper proposes a coordination scheme under which AVs
and MVs can cooperatively pass through a signal-free intersection;

(2) The proposed scheme develops a practical application which concurrently considers
the restrictions of control inputs, vehicle states, safety conditions, global conflict
relationships, and the mixed-automated driving environment;

(3) A distributed multi-objective optimization algorithm is presented to synchronously
eliminate the traffic conflicts and improve mobility and fuel economy in a receding
horizon framework.

The remainder of this paper is structured as follows. Section 2 describes the problem
statement. Section 3 details the methodology to formulate and solve the cooperative control
problem and gives the receding horizon optimization algorithm. Simulations are conducted
in Section 4; and Section 5 concludes this paper.

2. Problem Statement

We consider a typical symmetrical dual-lane intersection with four approaches and
departures, as depicted in Figure 1. Each approach consists of a straight lane and a left-turn
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lane. Right-turn lanes are omitted here for simplicity since they have no impact on the
collaboration results of the intersection. Here, we define a cooperative zone (CZ) with the
scope of the four approaching lanes under the radius R. An intersection coordination unit
(ICU) deployed in the center of the intersection assists the vehicles in sharing information
in the CZ.
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Figure 1. A scenario of connected vehicles passing through a signal-free intersection.

We assume that all vehicles are connected, and equipped with GPS or BDS, vehicle-
to-infrastructure (V2I), and vehicle-to-vehicle (V2V) communication devices to exchange
real-time information with the ICU and other vehicles. Each vehicle in the CZ transmits
four necessary properties to the ICU, i.e., vehicle ID, vehicle type, origin-destination,
and vehicle state (position and speed). (1) A vehicle ID will be automatically assigned
to the vehicle when entering the CZ; (2) There are two vehicle types considered in this
study: AVs and MVs. We consider high penetration rates of AVs (no less than 70%) in this
paper to decrease traffic insecurity factors and alleviate drops in traffic efficiency caused
by MVs; (3) The origin–destination of a vehicle means which edges the vehicle enters
and departs from in the road network; (4) The vehicle state is the crucial information
used to predict the future trajectory of the vehicle, which is transmitted to the correlative
neighboring vehicles. At each time step, the ICU receives the information of the four
properties of all vehicles in the CZ and produces a communication topology according
to the conflict relationships of the vehicles. Through V2V communication, AVs exchange
the information of the predicted trajectories with their neighboring vehicles based on the
communication topology delivered from the ICU, and then optimize their movements. In
addition, the behaviors of lane changing and overtaking are required to only operate before
entering the CZ. To simplify the problem, we neglect communication delays, package losses,
communication constraints, and computation delays, such that the states of all vehicles are
updated simultaneously within a common global clock.

This paper aims to design a scheme for connected and mixed-automated vehicles to
cooperatively pass through a signal-free intersection, as shown in Figure 1. The priority
order for all vehicles passing through the intersection follows the “FCFS” rule. It is worth
noting that only AVs in the CZ can be controlled. MVs and AVs beyond the CZ follow
their own driving behaviors. Thus, we focus on regulating the longitudinal movements of
AVs on the approaching lanes by utilizing the predicted trajectories of their neighboring
vehicles. The coordination issue of connected and mixed-automated vehicles at a signal-free
intersection will be addressed in the following section by optimizing the trajectories of AVs
under a distributed framework.
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3. Methodology

This section proposes a methodology for coordinating mixed-automated vehicles at
a signal-free intersection and presents a detailed algorithm to address the cooperative
driving problem.

3.1. Car-Following Models for AVs and MVs

This paper only considers longitudinal car-following models for two kinds of vehicles
(AVs and MVs) on the approaching lanes. The movements of AVs follow the optimal
control inputs designed by this study, and the Krauss model in [29] is adopted to describe
the driving behavior of MVs.

The longitudinal movement dynamics of AVs can be modeled by the following discrete-
time model in [30]: pi(t + 1) = pi(t) + δvi(t) +

δ2

2
ui(t)

vi(t + 1) = vi(t) + δui(t)
, i ∈ ΩA(t) (1)

where δ is the discrete time interval, and pi(t) and vi(t) denote the position and speed
of AV i at time step t, respectively. ui(t) is the control input to be designed at the control
sample point t, and ΩA(t) represents the time-varying set of AVs in the CZ at time step t.

The movements of MVs are not under control, and the Krauss model is introduced
to estimate the longitudinal behavior of MVs. The Krauss model is a conflict-free model
based on the safe distance with immediately preceding vehicles. Algorithm 1 is given to
describe the updating strategy of the speed and position of MVs according to [29].

Algorithm 1 Trajectory-Updating Algorithm for MVs

Input: The speed of the immediately preceding vehicle vp, the position and speed of ego
vehicle pm and vm (m ∈ ΩM(t)), the vehicle gap with its immediately preceding vehicle
g;

Output: Updated position and speed of the ego vehicle at the next step.
1: Repeat
2: Acquire vp(t), pm(t), vm(t), and g.

3: vsa f e ← vp(t) +
g−vm(t)τ

(vp(t)+vm(t))/2bmax+τ

4: γ0 ← min [vm(t) + amax, Vmax, vsa f e]
5: γ1 ← γ0 − ε{γ0 − [vm(t)− amax]}
6: vm(t + 1)← vran(γ0,γ1)

7: pm(t + 1)← pm(t) + δvm(t + 1)
8: Return pm(t + 1) and vm(t + 1);
9: t← t + 1

10: Until The ego vehicle departs from the CZ.

In Algorithm 1, the position and speed of the ego vehicle at the next time step are
estimated according to the speed of its immediately preceding vehicle, the position and
speed of the ego vehicle, and the vehicle gap between the two vehicles at the current time
step. ΩM(t) represents the dynamic set of MVs in the CZ at time step tδ. vsa f e denotes the
maximum safe speed of the ego vehicle without collision with its immediately preceding
vehicle at the next time step, which is computed by step 3 in Algorithm 1. τ is the reaction
time of drivers, and ε is a constant. amax and bmax are the maximum acceleration and
braking deceleration, respectively. Steps 4–7 in Algorithm 1 show the updating rules of the
Kruass model, where γ0 denotes the desired speed, and γ1 represents the speed with the
maximum difference from the desired speed due to imperfect driving behaviors of drivers.
vran(γ0,γ1)

denotes a random value for the speed picked from γ0 and γ1. Note that although
this randomly selected updating strategy leads to different driving behaviors, the strong
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interactions between successive vehicles will decrease the freedom of individual drivers to
choose their velocity.

3.2. Traffic Conflict Graph and Communication Topology

The complexity of the conflict types at intersections determines the difficulty level of
traffic control. Typical intersections have 16 conflict points, as shown in Figure 1, which
implies that vehicles from different approaching lanes may crash at these points. In addition,
each vehicle is under a conflict relationship with its immediately preceding or following
vehicle on the same lane, i.e., rear-end collision. We construct a conflict graph to describe
the conflict relationships of the approaching lanes, as shown in Figure 2. Define the set
of approaching lanes as L , where L = {L1, L2, L3, L4, L5, L6, L7, L8}, and the conflict set
Ch, h ∈ L denotes the set of lanes that has conflict relationships with lane h. Take the
westbound straight lane L1 as an example, CL1 = {L1, L3, L6, L7, L8}, which means that the
trajectories of vehicles on lane L1 may conflict with those on lanes L1, L3, L6, L7, and L8
at the intersection. Conversely, vehicles on lane L1 have no risk of collision with other
vehicles on the lanes outside the set CL1 .

L

L

L

L

L

L

L

L

Figure 2. Traffic conflict graph for the intersection in Figure 1.

For eliminating collisions at intersections, a reasonable idea is to allow vehicles on
the conflicting lanes to cross the intersection asynchronously while keeping a safe distance
between each other. From the point of view of a single vehicle, no collision will occur if it
retains a virtual safe car-following spacing with all potentially conflicting vehicles. We call
these vehicles on the lanes in the conflict set the neighboring vehicles of the ego vehicle. The
ego vehicle must exchange information with its neighbor vehicles in real time through V2V
communication to maintain a virtual safe car-following spacing. Considering all vehicles in
the CZ, the communication topology of vehicles can be modeled by a time-varying graph
Gt = {St, Et}, where St = {1, 2, . . . , nt} is the set of nodes (vehicles), and Et ⊆ St × St is
the set of edges (information flowing directions). The characteristic of graph Gt can be
modeled by an adjacent matrix, which is defined as At = [aij(t)] ∈ Rnt×nt with{

aij(t) = 1, if {j, i} ∈ Et

aij(t) = 0, if {j, i} /∈ Et
i, j ∈ St (2)

where Rnt×nt represents the set of nt × nt real matrices, {j, i} ∈ Et denotes that vehi-
cle i can receive the information of vehicle j. Define the neighboring set of node i as
Ni(t), where Ni(t) = {j|aij(t) = 1, j ∈ St}. In other words, node j is called a neigh-
bor of node i if and only if aij(t) = 1, j ∈ St. Correspondingly, we define a dual
set Di(t) = {j|aji(t) = 1, j ∈ St}, which represents that any node j ∈ St can receive the
information of node i. Obviously, we have Ni(t) = Di(t) under an undirected graph.



Appl. Sci. 2023, 13, 11576 7 of 20

3.3. Distributed Cooperative Control Model for AVs

Considering the benefits of distributed frameworks, we will construct a distributed
multiple-objective optimization model to address the cooperation issue of AVs and MVs
at an intersection. In what follows, we will detail the objectives, necessary constraints,
and problem formulation of this paper.

(1) Objectives: We aim at regulating vehicles to cross the intersection without collisions
by controlling all AVs in the CZ, while also improving traffic mobility and fuel economy.
Thus, the objectives of this paper cover three parts, i.e., conflict elimination, traffic mobility,
and fuel economy, which are detailed as follows.

First, the primary goal is to eliminate conflicts within the intersection area. For this
purpose, we define the indexes of the virtual car-following tracking errors as

Ji1 =
Np−1

∑
k=0

∑
j∈Ni(t), f∈Ch

|| p̄ih(k + 1|t)− p̄j f (k + 1|t) +Dij||2 (3)

Ji2 =
Np−1

∑
k=0

∑
j∈Ni(t), f∈Ch

||v̄ih(k + 1|t)− v̄j f (k + 1|t)||2 (4)

where Np is the prediction horizon, p̄ih and p̄j f denote the distance to the stop line of
vehicle i, i ∈ ΩA(t) on lane h, h ∈ L , and its neighboring vehicle j, j ∈ Ni(t) on lane f ,
f ∈ Ch, respectively. v̄ih and v̄j f are the speeds of vehicles i and j, respectively. Dij is the
desired virtual position error between vehicles i and j, defined as

Dij =

{
li + dij + cij, | p̄ih| ≤ | p̄j f |
− lj − dij + cij, | p̄ih| > | p̄j f |

(5)

where li and lj denote the lengths of vehicles i and j, respectively, dij is the desired spacing
between vehicles i and j, and cij is the compensation of distance within the intersection
area, which is defined as the difference in the distance between vehicles i and j from the
stop lines to the conflict point. Ji1 indicates the performance of vehicle i in eliminating
collisions with its neighboring vehicle j, j ∈ Ni(t) when crossing the intersection. Vehicle
i and its neighboring vehicles are expected to arrive at the intersection with a desired
virtual spacing. A small value of the virtual spacing may cause collisions of vehicles at
the intersection, while a large value will reduce the traffic throughput. Ji2 indicates that
vehicle i is expected to keep a similar speed with its neighboring vehicle j to enhance safety
when crossing the intersection.

Second, we expect smooth traffic flows that push each vehicle to run at a desired
speed. It can also improve traffic mobility by regulating each vehicle on the same lane to
approach an anticipated speed. Hence, we define the index of the variance of the desired
speed as follows:

Ji3 =
Np−1

∑
k=0
||v̄ih(k + 1|t)− Vh(k + 1|t)||2 (6)

where Vh(k + 1|t) is the desired speed defined as

Vh(k + 1|t) =
∑

s∈Sh(t)
v̄sh(k|t) + Vmax

Nh(t) + 1
(7)

where v̄sh denotes the speed of vehicle s on lane h, Sh(t) is the set of vehicles on lane h,
Vmax is the maximum speed, and Nh(t) represents the number of vehicles on lane h. In
Equation (7), the desired speed is defined as the average value of the speed of all the
vehicles on the same lane and the maximum speed. This setting can propel vehicles on
the same lane to run evenly and also increase the mean speed of vehicles in the network.
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Accordingly, a smaller value of Ji3 indicates that the speed of the vehicle is closer to the
desired speed, which benefits smoother traffic flows and higher throughputs.

Third, we expect to reduce the fuel consumption of each AV by optimizing the local
control cost. It is commonly believed that a lower cost of control inputs results in a higher
fuel economy [30]. Hence, the index of the control cost is defined as follows

Ji4 =
Np−1

∑
k=0
||ui(k|t)||2. (8)

Combining Equations (3), (4), (6) and (8), we define an objective function with a
weighted sum of the four indexes

Ji = ω1Ji1 + ω2Ji2 + ω3Ji3 + ω4Ji4 (9)

where ω1, ω2, ω3, and ω4 are weight factors to penalize the virtual position errors, relative
speed errors, variances of the desired speed, and control cost, respectively. These weight
coefficients can be adjusted according to actual traffic demand in practice.

(2) Constraints: In what follows, we consider the constraints of the mobility character-
istics of vehicles and the safety condition. The vehicles have to follow the car-following
models according to their type, i.e., AVs or MVs. The trajectory of ego vehicle i, i ∈ ΩA(t),
is subject to satisfying the following constraints: p̄ih(k + 1|t) = p̄ih(k|t)− δv̄ih(k|t)−

δ2

2
ui(k|t)

v̄ih(k + 1|t) = v̄ih(k|t) + δui(k|t), i ∈ ΩA(t), h ∈ L

(10)



p̄j f (k + 1|t) = p̄j f (k|t)− δv̄j f (k|t)

v̄j f (k + 1|t) = Ra{min{vj f (k|t) + amax , Vmax , vp f (k|t) +
g− vj f (k|t)τ

(vp f (k|t) + vj f (k|t))/2bmax + τ
},

(1− ε)min{vj f (k|t) + amax , Vmax , vp f (k|t) +
g− vj f (k|t)τ

(vp f (k|t) + vj f (k|t))/2bmax + τ
}

+ ε(vj f (k|t)− amax)}, j ∈ Ni(t), f ∈ Ch

(11)

In addition, the trajectory of neighboring vehicle j is subject to either of the constraints
(10) and (11) depending on its vehicle type, i.e., AV or MV, respectively.

In Equation (11), Ra is defined as a random selection function, vp f denotes the speed
of the immediately preceding vehicle, and the definitions of other parameters are given in
Algorithm 1.

Considering the physical limitations of vehicles, road restrictions, and comfort of
passengers, the speed and acceleration of AVs should be confined to a range. Denote Amin,
Amax, Vmin, and Vmax as the minimum acceleration, maximum acceleration, minimum
speed, and maximum speed. The following constraints should be satisfied for each AV:

Amin ≤ ui(k|t) ≤ Amax. (12)

Vmin ≤ vih(k + 1|t) ≤ Vmax. (13)

To avoid rear-end collisions of vehicles on the same lane, we add a constraint to
guarantee that vehicle i stays a safe distance from its immediately preceding vehicle q.
Denote dm as the minimum gap, and lq is the length of vehicle q. The constraint of the
safety condition is defined as follows:

p̄ih(k + 1|t)− p̄qh(k + 1|t) ≥ dm + lq. (14)
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(3) Problem: We aim to minimize the objective function (9) of all AVs in the CZ in a
prediction horizon while guaranteeing that each AV satisfies the constraints (12)–(14). To
this end, we construct a distributed multi-objective optimization model as follows:

min
ui(0|t),...,ui(Np−1|t)

Ji( p̄ih, v̄ih, p̄j f , v̄j f , ui) (15)

subject to Equations (10)–(14), where the optimal control inputs of AVs are computed by
minimizing the cost metric Ji at each time step.

Remark 1. In the proposed distributed optimization control model, the performance index (9) and
the inequality constraints in (12)–(14) are convex functions with respect to the decision variable
ui(k|t). The equality constraint in (10) is an affine function of ui(k|t). Hence, the problem in (15)
is a convex optimization problem. In addition, note that the feasible domain of the decision variable
ui(k|t) is non-empty and the performance index function (9) is a coercive function during each time
step. According to the Weierstrass lemma [31], feasible solutions to the optimization problem (15)
can be always found in the feasible domain.

Remark 2. When analyzing the driving behavior of an MV approaching an intersection, it is
important to consider two different situations. In the first situation, when the MV is not the leading
vehicle in its lane, the Krauss model can be used to predict its trajectory. However, in the second
situation, when the MV is the leading vehicle in its lane, its behavior is affected by various real-world
factors such as visibility and the positions of conflicting vehicles in other lanes. To simplify this
problem while characterizing the driving behavior of leading MVs, we propose using the Krauss
model to simulate a virtual car-following behavior for the leading MV at the intersection. This
involves assuming that a neighboring vehicle j of the leading MV m is closer to the intersection and
can be treated as the virtual preceding vehicle of the leading MV. The virtual gap between vehicles m
and j can be expressed as

gmj = p̄mh − p̄j f − lj − dmj + cmj, (16)

where the variables and parameters are defined in accordance with Equations (3) and (5). The gap g
in the Krauss model for the leading MV m can be obtained as

g = min
j

gmj. (17)

In situations where there is no virtual preceding vehicle, the leading MV will accelerate to its
maximum velocity, using maximum acceleration, and continue to cross the intersection.

Remark 3. The idea of the proposed coordination scheme in this paper is inspired by the concept
of consensus control of multi-agent systems [11,18,21,32]. Each AV is regulated to cross the
intersection while staying a desired virtual safe distance from its neighboring vehicles in conflicting
lanes while improving traffic mobility and fuel economy. In other words, each AV tends to reach a
consensus with its neighboring vehicles by solving the local optimization problem (15). Therefore,
through information sharing, the ego AV and its neighboring vehicles (if they are AVs) cooperatively
optimize their trajectories, which pushes the distributed solutions towards the global optimality.

Remark 4. The current studies on vehicle consensus coordination at signal-free intersections, such
as [11,18], are subject to a fully connected AV environment. All the vehicles must be controllable to
achieve the objectives. The scheme presented in this paper can coordinate mixed-automated vehicles
to cross the signal-free intersection. When potential conflicts occur between AVs and MVs, AVs use
the predicted future trajectories of MVs to optimize their movements to avoid collisions. Note that if
two or more MVs with conflict relationships approach the intersection simultaneously, they may
slow down or even stop for safe crossing, resulting in a decrease in traffic efficiency. To alleviate
this situation, we expect to apply our scheme under high penetration rates of AVs for potential
future implementation.
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Remark 5. The optimality of the problem solution in (15) cannot characterize the stability of the
closed-loop system. The recently distributed MPC approaches focused on guaranteeing stability for
the cooperation of vehicles on a one-dimension road, i.e., vehicular platoon [33,34]. In particular,
the necessary assumptions were made for stability analysis that the vehicular platoon does not
change, and all following vehicles in the platoon formed a spanning tree rooting at the leader. For the
case of the cooperation of vehicles on a two-dimension road, i.e., intersection, most of the relevant
distributed optimization algorithms (e.g., [18,21]), as well as this study, ignore the convergence
analysis. The reasons for this are twofold: (1) the convergence plays a minor role in the performance
of the cooperation of vehicles at intersections, while the optimally, e.g., safety, traffic mobility,
and fuel economy, are the main concerns in practice; (2) the topology of vehicles on the road network
is random, time-varying, and even disconnected, such that the stability of the system is difficult
to analyze.

3.4. Algorithm of Distributed Receding Horizon Optimization

In order to address the cooperative driving issue of mixed-automated vehicles at
intersections, we present a distributed optimization algorithm under a receding horizon
framework. The details are provided in Algorithm 2, which aims to find the optimal
solutions for each AV in the CZ by solving (15). Figure 3 shows the basic procedure of the
distributed receding horizon optimization scheme. The optimization problem is solved at
each time step, and only the first element of the obtained control sequence is applied.

t
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Figure 3. Illustration of the procedure of the distributed receding horizon optimization scheme.

In Algorithm 2, initialization is conducted in step 1 , which determines the start time
of the algorithm, i.e., when ego AV i enters the CZ, and calculates initial Np-step prediction
states x̂i(k + 1|0) = [ p̂ih(k + 1|0), v̂ih(k + 1|0)]T , k = 0, . . . , Np − 1, using (10). The commu-
nication topology of vehicles in the CZ at the current time step is identified in step 3. Based
on the communication topology, ego AV i receives the information of Np-step prediction
states x̂j(k + 1|t), k = 0, . . . , Np − 1, of neighboring vehicle j, j ∈ Ni(t) in step 4. Then, in
step 5, ego AV i utilizes its current state and the predicted future Np-step trajectories of
neighboring vehicle j, j ∈ Ni(t) to solve the optimization problem (15). The first element of
the obtained optimal control sequence is applied to AV i in step 6, i.e., ui(t) = u∗i (0|t). The
prediction of the trajectory of the neighboring vehicles is the key to solving the optimization
problem (15) for the ego vehicle. Note that in the framework of distributed cooperation,
the communication, computation, and control of all vehicles are assumed to be synchronous.
Therefore, each AV i cannot receive the accurate Np-step predicted trajectories of its neigh-
boring vehicle j at the current step. To address this issue, we perform an operation to adopt
the Np-step assumed trajectories of neighboring vehicle j in the last shifted time window.
Here, we take vehicle i, i ∈ ΩA(t) as an example and illustrate the calculation process of
the assumed trajectory, as depicted in Figure 3. Define u∗i (k|t), k = 0, . . . , Np − 1 as the
optimal control sequence, and x∗i (k + 1|t) = [p∗ih(k + 1|t), v∗ih(k + 1|t)]T , k = 0, . . . , Np − 1
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are the optimal states calculated by (10) in step 7. The assumed trajectory of vehicle i
is computed in step 8 by removing the first state value of x∗i (k + 1|t), k = 0, . . . , Np − 1,
and adding the ending value x∗i (Np|t)−xe

i (Np|t), where xe
i (Np|t) = [v∗ih(Np|t)δ, 0]T . The

obtained assumed trajectory of vehicle i is transmitted to vehicle j, j ∈ Di(t), and is re-
garded as the predicted trajectory of vehicle i in the next time window. In the same way,
vehicle i receives the assumed trajectory of its neighboring vehicle j, j ∈ Ni(t). Note that
if vehicle j is an MV, Equation (11) should be used to calculate the assumed trajectory of
vehicle j. Similar approaches can be found in [33,35]. In the next shifted time window,
the problem is reformulated and solved again until ego AV i departs from the CZ.

Algorithm 2 Algorithm of Distributed Receding Horizon Optimization

Input: The communication topology of vehicles in the CZ; the state of ego AV i, i ∈ ΩA(t);
Np-step prediction states of its neighboring vehicle j, j ∈ Ni(t)

Output: Optimal trajectory of AV i.
1: Initialization: At time t = 0 (the moment AV i enters the CZ), load the current state

x̄i(0|0); Assume ui(k|0) = 0, k = 0, . . . , Np − 1, and calculate the Np-step prediction
states x̂i(k + 1|0), k = 0, . . . , Np − 1, using (10).

2: Repeat
3: Topology identification: Acquire the communication topology of vehicles at the current

step.
4: Information reception: Receive the information of Np-step prediction states x̂j(k + 1|t),

k = 0, . . . , Np − 1, of neighbor vehicle j, j ∈ Ni(t).
5: Optimization solution: At time t > 0, according to the current state x̄i(0|t) and received

x̂j(k + 1|t), k = 0, . . . , Np − 1, solve the optimal problem (15) and obtain the optimal
control sequence u∗i (k|t), k = 0, . . . , Np − 1.

6: Implementation of optimal results: Apply the first element of the optimal control sequence
to AV i, i.e., ui(t) = u∗i (0|t).

7: Iteration of optimal states: Calculate the optimal states x∗i (k + 1|t), k = 0, . . . , Np − 1,
by using (10) and u∗i (k|t), k = 0, . . . , Np − 1.

8: Estimation of assumed states: Calculate the Np-step assumed states x̂i(k + 1|t + 1) at time
t + 1 as

x̂i(k + 1|t + 1) =

{
x∗i (k + 2|t), k = 0, . . . , Np − 2
x∗i (k + 1|t)−xe

i (k + 1|t), k = Np − 1
,

then transmit x̂i(k + 1|t + 1) to vehicle j, j ∈ Di(t).
9: Return Optimal trajectory of AV i;

10: t← t + 1
11: Until Vehicle i departs from the CZ.

Remark 6. Note that the Np-step predicted trajectories of vehicles might not be entirely calculated
since the vehicles may enter the intersection within the prediction horizon. The following operations
are conducted to address this issue. (1) By detecting the predicted states of vehicle i, only the predicted
information for the valid time steps before vehicle i passes through the stop line is retained, and the
information of the remaining steps is set to null. (2) The formulated optimization problem for vehicle
i is solved just to obtain the optimization control inputs in the valid time steps. (3) The assumed
trajectory of vehicle i is calculated and then transmitted to its neighboring vehicle j, j ∈ Ni(t).
(4) To maintain the integrity of the received assumed trajectory of vehicle i, the received null
values are replaced by the desired assumed state values of the neighboring vehicles of vehicle j.
(5) The optimization problem of vehicle j can be solved. The above operations guarantee that if a
vehicle enters the intersection at a certain prediction step, the prediction information of the vehicle
after this step will not affect the solution of optimization problem (15) for the ego vehicle and its
neighboring vehicles.
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4. Simulation Results

In this section, simulations are conducted to evaluate the performance of the presented
scheme for the cooperative driving of mixed-automated vehicles at an intersection. The
proposed algorithm is coded in Python (Version 3.8.13) and run on a computer with
Intel Core i5-9500 3 GHz CPU and 8 GB of DDR4-2666 RAM. The SUMO (Version 1.13.0)
microscopic traffic simulator is used to construct the road network, generate traffic flows,
and acquire performance measurements [36]. Vehicle information is transmitted between
SUMO and our control model in Python through SUMO’s TraCI interface.

4.1. Simulation Framework

We develop a simulation framework at a single intersection to test the effectiveness of
the proposed algorithm in this paper. The test intersection has a typical symmetrical four-leg
configuration. The length of each approach and departure section is approximately 193.6 m.
Each approach includes two incoming lanes with the specific allowable movements, where
the left lane only serves left-turn traffic, and the right lane serves through traffic. The north-
and southbound approaches are main roads, and the east- and westbound approaches
are minor roads. This distinction allows for the consideration of different traffic priorities
and behaviors at the intersection. The radius of the cooperative zone is set as 100 m. The
simulation duration is 1 h. Other simulation parameter settings can be seen in Table 1.

To investigate the sensitivity of the proposed algorithm, we consider three cases based
on different traffic volumes. Table 2 summarizes the three cases tested in this study. Since
our study focuses on environments with high penetration rates of AVs, for each case, four
different penetration rates of AVs (i.e., 70%, 80%, 90%, 100%) are considered to evaluate the
validity of the proposed algorithm. In addition, the simulation results in a 15 min period
are compared to those under the no-control (NC) operation and fixed-time signal control
(FSC) strategy.

Table 1. Parameter settings.

Parameter Notation Value

Common

Radius of CZ (m) R 100
Lane length (m) L 193.6
Lane width (m) W 3.2
Road speed limit (m/s) Vlim 20
Vehicle length (m) l 5
Minimum gap (m) dm 5

AVs

Desired spacing (m) dij 10
Maximum speed (m/s) Vmax 18
Minimum speed (m/s) Vmin 5
Maximum acceleration (m/s2) Amax 3
Maximum deceleration (m/s2) Amin 3
Prediction horizon (s) Np 5
Time interval (s) δ 1
Weight ω1 2
Weight ω2 1
Weight ω3 1
Weight ω4 1

MVs

Maximum speed (m/s) Vmax 18
Maximum acceleration (m/s2) amax 3
Maximum deceleration (m/s2) bmax 4
Reaction time of drivers (s) τ 0.5
Constant ε 0.4
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Table 2. Demand for different cases.

North- and Southbound East- and Westbound

Case
Through
Demand

(veh/h/lane)

Left-Turn
Demand

(veh/h/lane)

Through
Demand

(veh/h/lane)

Left-Turn
Demand

(veh/h/lane)

1 250 125 150 75
2 300 150 200 100
3 350 175 250 125

4.2. Results

The proposed algorithm is tested under the different demand cases and penetration
rates of AVs (PRAs) to investigate the performance of the scheme in this study. Table 3
shows the comparison of the mean travel time for the different demand and PRAs. The
results show that the mean travel time increases slightly when the PRA decreases in cases 1
and 2. In contrast, the mean travel time for case 3 rises substantially with the reduction in
PRA. On the other hand, by comparing the results vertically, it slightly differs in the mean
travel time for the different cases under 80% to 100% PRA. Conversely, the mean travel
time increases significantly for case 3 under 70% PRA. The results indicate that when the
PRA is as low as 70% and the total traffic demand reaches 1800 vehicles per hour, there is
a significant adverse effect on the traffic efficiency of the intersection. Compared to the
results for under 100% PRA, the mean travel time increases by 28.9% under 70% PRA.
Table 4 shows the results for fuel consumption under the different traffic demand and PRAs,
respectively. Similarly, the differences in fuel consumption under different PRAs are less
distinct for cases 1 and 2. There are even slight drops in fuel consumption when the PRA
decreases, since the additional control cost for the desired performance indexes is reduced.
The fuel consumption rises significantly with the decline in PRA in case 3. The results
indicate that the proposed scheme has less apparent impact on fuel consumption with
different PRAs under low demand, while the differences are distinct under high demand.

Table 3. Summary of mean travel time (s) for the three cases under different penetration rates of AVs.

Case
Penetration Rate of AVs

100% 90% 80% 70%

1 30.4 30.8 31.1 31.7
2 30.6 31.5 32.1 32.7
3 30.8 32.3 34.6 39.7

Table 4. Summary of mean fuel consumptions (mL) for the three cases under different penetration
rates of AVs.

Case
Penetration Rate of AVs

100% 90% 80% 70%

1 31.8 31.6 31.4 31.5
2 33.4 33.3 33.5 33.7
3 34.7 35.3 36.4 38.8

Figure 4 shows the mean speed relative rates for case 3 in 15 min under different
PRAs. The mean speed relative rate is defined as the ratio of the actual average speed to the
desired speed. Figure 4 indicates that the mean speed under higher PRAs is generally closer
to the desired speed than that under lower PRAs. In particular, during the 700 to 900 s
period, the mean speed relative rate maintains a relatively high value under 90% and 100%
PRA, while these drop dramatically under 70% and 80% PRA. This phenomenon occurs
since more uncontrolled MVs are loaded onto the network during this period. Multiple
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MVs slow down or even stop at the intersection for safe passing, resulting in reducing the
mean speed of the road network. Figure 5 shows the number of stops for case 3 in 15 min
under different PRAs. No stops and a few stops occur in the scenarios of 100% and 90%
PRA, respectively. When the PRA drops to 70% and 80%, during the 700 to 900 s period,
more vehicles stop at the intersection for safe passing, which leads to queuing. The above
results indicate that the decrease in the PRA leads to a decline in the traffic efficiency of
the intersection.
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Figure 4. Comparison of the mean speed relative rates for case 3 in 15 min under different penetration
rates of AVs.
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Figure 5. Comparison of the number of stops for case 3 in 15 min under different penetration rates
of AVs.

To compare the performance of the proposed scheme with other methods used, we test
the no-control (NC) operation and fixed-time signal control (FSC) strategy as benchmark
baselines at the same intersection. The NC operation means allowing all vehicles to pass
through the signal-free intersection by following the driving behaviors of MVs. The cycle
time of the FSC system is set as 82 s. The green times of north- and southbound, and east-
and westbound are chosen as 20 s and 15 s, respectively. The clearance time is 3 s. Figure 6
shows the trajectories of vehicles for case 3 in 5 min under the different strategies. It is
observed that the vehicles with the proposed scheme in this paper adjust their trajectories
after entering the CZ. Especially in the scenario of 100% PRA, the vehicles pass through
the intersection smoothly. When the PRA is 70%, a few vehicles stop at the intersection.
In contrast, the vehicles under NC or FSC frequently stop at the intersection, and lots of
queues are formed. Figure 7 shows the speeds of vehicles for case 3 in 5 min under the
different strategies. Corresponding to the results in Figure 6, the vehicles using the proposed
scheme always pass the intersection without halting (speed greater than zero) under
100% PRA, and a small number of vehicles slow down to zero at the intersection under 70%
PRA. When NC or FSC is adopted, more vehicles slow to a stop at the intersection. The
above phenomena indicate that the proposed scheme in this paper notably outperforms NC
and FSC in smoothing traffic flow and improving mobility. Figure 8 shows the acceleration
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curves of vehicles with respect to distance under the proposed scheme for case 3 in 5 min.
We can easily observe that the vehicles adjust their acceleration significantly after entering
the CZ. Notice that the maximum acceleration and deceleration of MVs are 3 m/s2 and
4 m/s2 in the scenario of 70% PRA, respectively, while the maximum acceleration and
deceleration of AVs are both 3 m/s2.
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Figure 6. The trajectories of vehicles for case 3 in 5 min under the different strategies.

Table 5 shows the results of the performance, i.e., travel time and fuel consumption,
of the proposed scheme, NC operation, and the FSC strategy. The results show that the pro-
posed scheme outperforms NC and FSC by decreasing the mean travel time by 45.5% and
49.2% under 100% PRA, and by 29.7% and 34.5% under 70% PRA, respectively. In addition,
compared to NC and FSC, the proposed scheme reduces the mean fuel consumption by
35.3% and 29.9% under 100% PRA, and by 27.6% and 21.6% under 70% PRA, respectively.
Overall, the proposed scheme of this paper significantly improves traffic efficiency and fuel
economy compared to NC and FSC.

Table 5. Summary of performance for case 3 under the proposed scheme, no-control operation, and
the fixed-signal control strategy.

Performance
Proposed Scheme

NC FSC
100% AV 70% AV

Travel time (s) 30.8 39.7 56.5 60.6
Fuel consumption (mL) 34.7 38.8 53.6 49.5
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Figure 7. The speeds of vehicles for case 3 in 5 min under the different strategies.
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Figure 8. The acceleration of vehicles for case 3 in 5 min under the proposed strategy.

Figure 9 shows the mean speed of the road network with the different strategies for
case 3 in 15 min, which reflects the traffic mobility to some extent. The vehicles with the
proposed scheme in this study can always maintain a high mean speed in the scenario of
100% PRA. When the PRA is 70%, the mean speed declines, since more MVs are loaded
onto the network and slow down at the intersection. In contrast, the mean speed of vehicles
under NC or FSC is kept at a smaller value, reflecting the inefficiency of the traffic. Figure 10
shows the number of stops for case 3 in 15 min under the different strategies. It is easy to
observe that almost no stops occur in the scenario of 100% PRA with the proposed scheme,
and a small number of stops exist under 70% PRA. When NC or FSC is adopted, many
vehicles stop near the intersection, leading to queuing. Figures 9 and 10 indicate that the
proposed scheme in this paper can significantly improve mobility and smooth traffic flows
compared to the NC operation and FSC strategy.
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Figure 9. Comparison of the mean speed for case 3 in 15 min under the different strategies: (a) pro-
posed scheme under 100% penetration rate of AVs; (b) proposed scheme under 70% penetration rate
of AVs.
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Figure 10. Comparison of the number of stops for Case 3 in 15 min under the different strategies:
(a) proposed scheme under 100% penetration rate of AVs; (b) proposed scheme under 70% penetration
rate of AVs.

Since few of the current state-of-practice strategies consider mixed-automated traffic
at signal-free intersections, we have compared the results of the proposed scheme with
a recently developed strategy that jointly optimized the signal timing plans with the
trajectory of vehicles in Ramin et al. [24]. The paper developed a centralized mixed-integer
non-linear program to coordinate the trajectories of AVs and signal timing plans under
mixed-automated traffic. We adopt the same traffic parameters as [24] for comparative
simulations under the two-levels of traffic demands, i.e., demand 1 and demand 2. Demand
1 denotes low traffic demand, with 300 veh/h/lane through demand and 24 veh/h/lane
left-turn demand, and demand 2 represents high traffic demand, with 600 veh/h/lane
through demand and 48 veh/h/lane left-turn demand. Table 6 shows the total delay
between the scheme proposed in this paper and in [24] for the two demands under different
PRAs in 5 min. The results indicate that the total delay increases with PRA reduction in
both schemes. In addition, our proposed scheme performs better than [24] under high
PRAs and low traffic demand. However, when the PRA drops below 70%, especially under
high demand, the total delay in our scheme is higher than in [24]. This suggests that the
role of signal timing optimization in [24] is more significant under high demand and a
low PRA. Table 7 shows the computation performance between the proposed scheme in
this paper and [24] for demand 2 under different PRAs. The parameters # Var. and # Con.
denote the mean number of variables and constraints processed per second, and # Com.
represents the mean number of communications required per second. The results show
that the mean number of variables, constraints, and communications mostly decrease as
PRA decreases in both schemes. In addition, the proposed scheme in this paper has fewer
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computation parameters to process per second than [24], which means that our scheme has
an advantage in computational complexity.

Table 6. Comparison of total delays (s) between the scheme of this paper and Ramin et al. [24] for the
two demands under different penetration rates of AVs.

PRA
Demand 1 Demand 2

This Study Ramin et al. [24] This Study Ramin et al. [24]

100% 69.1 78.2 157.8 173.2
70% 164.2 191.6 1062.3 1057.0
50% 211.7 204.3 1552.1 1363.2
30% 265.6 228.3 2521.6 2000.1
0% 318.4 270.9 3256.2 2468.8

Table 7. Comparison of complexity parameters between the scheme of this paper and Ramin et al. [24]
for demand 2 under different penetration rates of AVs.

PRA
# Var. # Con. # Com.

This Study Ramin et al. [24] This Study Ramin et al. [24] This Study Ramin et al. [24]

100% 25.5 150.9 20.4 92.8 26.5 38.8
70% 20.3 130.3 16.2 88.5 21.6 33.0
50% 15.5 72.7 12.4 84.4 18.4 29.1
30% 10.4 51.3 5.2 82.0 15.1 25.3
0% 0 15.9 0 75.0 10.2 19.4

# Var.: Mean number of variables per second. # Con.: Mean number of constraints per second. # Com.: Mean
number of communications per second.

4.3. Discussion and Limitations

The existing literature on regulating mixed-automated traffic flow at intersections has
focused on introducing traffic lights for right-of-way allocation, e.g., [23,24]. Our study at-
tempts to optimize the behavior of AVs by predicting the trajectory of AVs and MVs, which
leads all vehicles to pass through the signal-free intersection without collision and results in
a satisfactory traffic performance. Compared to the strategies of jointly optimizing vehicle
trajectories and signal timing, our scheme theoretically makes full use of right-of-way with-
out idling caused by traffic lights. However, the increasing number of non-optimized MVs
affects the performance of the proposed scheme. In other words, our scheme is sensitive
to the PRA and traffic demand. Through the comparison simulation with [24], we find
that our scheme performed better under a high PRA and low traffic demand. The results
also imply that the application of signal lights and timing optimization for regulating
mixed-automated traffic at intersections are more necessary and superior under a low PRA
and high traffic demand. In addition, in terms of computational complexity, the proposed
scheme in this paper has a certain computational demand since the optimization problem
for each AV is solved at each step. Nevertheless, the proposed scheme still has significant
advantages in computation compared MILPs jointly optimizing the vehicle trajectory and
signal timing.

5. Conclusions

This paper developed a distributed cooperation scheme for coordinating vehicles at
signal-free intersections in a mixed traffic environment of AVs and MVs. The traffic conflict
graph was constructed to recognize the communication topologies of the vehicles in conflict
relationships, assuming that all AVs and MVs were connected and shared information in
the CZ. We formulated the coordination issue into a multi-objective optimization problem,
which was solved by optimizing the sum of weighted indexes of the conflict elimination,
traffic mobility, and fuel economy in a prediction horizon synchronously. The future trajec-
tories of AVs and MVs, as the inputs of the optimization model, were predicted by using the
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vehicular longitudinal dynamic model and Krauss car-following model, respectively. To
obtain the local optimal solutions, we presented a distributed receding horizon algorithm
to calculate the optimal control inputs for each AV in the CZ. The simulations evaluated the
effectiveness and superiority of the proposed scheme. The results showed that the proposed
scheme outperformed the no-control operation by decreasing travel time by 29.7–45.5%,
and reducing fuel consumption by 27.6–35.3% under 70–100% PRA. Compared to the
fixed-time signal control strategy, the proposed scheme decreased travel time by 34.5–49.2%
and reduced fuel consumption by 21.6–29.9% under 70–100% PRA. Additionally, according
to the comparison results with the strategy of jointly optimizing the vehicle trajectory and
signal timing, the proposed scheme performs better at high penetration rates of AVs and
under not very dense traffic demand, and suffers less computational burden.

Though this study considers a typical dual-lane intersection with four approaches, it
can be easily extended to on-ramps of expressways or other types of intersections according
to the conflict relationships. In addition, advanced driver guidance systems for MVs are
expected to be integrated into the intersection coordination framework in future studies.
Based on the prompt information of the system, the drivers of MVs can actively manipulate
the vehicles to cross the intersection safely and smoothly. In addition, the combination of
artificial intelligence methods and other types of optimization methods with the proposed
strategy of this paper will be further considered in the future. Furthermore, research on
the distributed collaboration of multiple signal-free intersections will be studied under a
mixed traffic environment.
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