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Abstract: In this paper we propose the Recurrent Embedded Topic Model (RETM) which is a
modification of the Embedded Topic Modelling (ETM) by reusing the Continuous Bag of Words
(CBOW) that the model had implemented and applying it to a recurrent neural network (LSTM),
using the order of the words of the text, in the CBOW space as the recurrency of the LSTM, while
calculating the topic–document distribution of the model. This approach is novel because the ETM
and Latent Dirichlet Allocation (LDA) do not use the order of the words while calculating the topic
proportions for each text, making worse predictions in the end. The RETM is a topic-modelling
technique that vastly improves (by more than 15 times in train data and between 10% and 90% better
based on test dataset values for perplexity) the quality of the topics that were calculated for the
datasets used in this paper. This model is explained in detail throughout the paper and presents
results on different use cases on how the model performs against ETM and LDA. The RETM can be
used with better accuracy for any topic model-related problem.

Keywords: topic modelling; natural language processing; recurrent embedded topic model; latent
dirichlet allocation; embedded topic model

1. Introduction

In recent years, understanding what is stored inside big data has proved to be a
challenge. According to the estimations of Petroc Taylor in Statista [1], in 2023, there should
be around 120 zettabytes of data created, captured, consumed and copied worldwide.
This trend keeps getting higher every single year (Table 1). Experts from Intersystems [2]
estimate that 85% of all data that exist are unstructured data, most of which is held in
text-based documents such as emails, memos, documents, social media feeds, etc.

Table 1. Table shows an estimation of how many zettabytes are currently stored worldwide. Data
from Petroc Taylor in Statista [1].

Year Number of Zettabytes Estimated to Be Stored Worldwide

2020 64.2
2021 79
2022 97
2023 120
2024 147
2025 181

Topic modelling is an area of data analytics that analyzes the words of texts to discover
the themes that run through them and help with the organization of unstructured, text-
based data at a scale that would be humanly impossible [3].
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Several topic models exist but there has been a clear evolution in the quality of the topic
models over the years. Some of the common ones are based on latent semantic analysis but
were outperformed by Latent Dirichlet Allocation (LDA), which is also currently one of the
most popular models [4,5].

LDA has been used in a variety of fields and for a variety of use cases. Some of the
highlights are in political science (where 50 years’ worth of data was fitted into LDA to
descriptively understand the solutions and strategies that have been adopted to reduce
crime) [6], software engineering (where LDA was fitted on source code from 1555 projects
and managed to extract the main concepts from the source code) [7] and social media
(where a modification of LDA was used to align events and Twitter feedback) [8].

Although LDA performs a good job at topic modelling, when using specific metrics to
measure quality such as perplexity, it still has a long way to go. Perplexity is a commonly
used metric for measuring the performance of language models [9]. When LDA is measured
by perplexity against modifications of the model, it proves to be outperformed every
time [10–12], demonstrating that there is still room for improvement in modifying LDA.

LDA assumes that each document can be represented by a mixture of topics. The aim
of the model is to create a distribution with the proportions of how much every topic has
been mentioned, throughout the document, and a distribution with the importance of each
word on representing each topic. When LDA is fitted to a database of documents, it will
provide a low-dimensional representation for each document and word representations for
each topic [5].

On the other hand, there have been realizations in other unsupervised learning prob-
lems, such as transforming raw words into vectors. The embedding layer was first proposed
by Bengio et al. [13] and was later explored by Mikolov et al. [14,15], where they noticed a
high level of accuracy for words that have similar syntactic and semantic relationships [14]
and can also capture synonyms, antonyms and spelling variations [16], until finally arriving
at the Continuous Bag of Words (CBOW) embedding layer [15].

Both models (LDA and CBOW) have been used together by Dieng et al. [17] in their
embedded topic modelling (ETM). The ETM can be seen as the best of its two parts: from
one side, as a topic model, it can provide a low-dimensional vector with the proportions
of the topics inside the text trying to generate all the syntactic and semantic relationships;
on the other side, it acts as an embedding model, where it can represent the vocabulary as
more robust and standardized vectors and exploit the relationships between words, making
the ETM a superior topic model. An important weakness that LDA tends to demonstrate
is based on the size of the vocabulary, where the bigger the vocabulary, the lower the
accuracy (measured by the Coherence-Normalized Perplexity metric); thus, one of the
biggest strengths of the ETM is making more accurate predictions where the vocabulary is
bigger, as shown by Figure 1. It is important to note that even though when the size of the
vocabulary is small, the ETM still outperforms LDA.

Although the ETM works great as a combination of LDA and CBOW, it is unable to
analyze the order of the words in the text. If the topic models were able to use the sequence of
the words, they would outperform current methodologies for calculating topic proportions.
To use the order of the words in the text, this issue can be tackled with the recurrency of
a Recurrent Neural Networks (RNN). To be specific, it can be tackled by the use of Long
Short-Term Memory neural networks (LSTMs) [18], which have been experimented on, with
great success, in Natural Language Processing (NLP) problems [19].

In this paper, we propose a new modification to the current ETM (Recurrent Embedded
Topic Modelling, RETM) by implementing LSTMs into the NN and making adjustments to
the overall architecture, where, measured by the perplexity metric, it severely outperforms
the ETM and LDA. The intuition behind using an LSTM is to remove the possibility of
having the vanishing/exploding gradient problem that usually hurts recurrent neural net-
works (given that the recurrency for this problem is based on the order of the words). Some
of the experiments that were used to validate the declaration of the RETM outperforming
LDA and ETM are based on four different datasets, containing text-based data from emails,
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books, news and movies which were utilized for calculating the topic distributions. In
all four datasets RETM proved to have an improvement of at least 15 times better in the
training dataset and at least 10% improvement in test dataset.

Figure 1. Comparison between the ETM and LDA using the coherence-normalized perplexity metric
over different vocabulary sizes [17].

In a nutshell, the reasoning behind the modification was to use the word order of the
documents and reuse the embedding layer from the CBOW model to generate the values of
each word inside the calculation of the topic–document matrix (theta) from the ETM model
and thus improve the topic assignment for each text.

The contribution of this work is based on the perplexity metric for the topic models:
when the ETM is fitted with an LSTM using the word order and the embedding layer is
used as the recurrency for the RNN while calculating the topic–document distribution,
an improvement of at least 15 times on average in the training dataset for all models
tested (Combined Topic Model, ZeroShot Cross-lingual Topic Model, LDA, ETM) and an
improvement of at least 10% over test data were achieved, ensuring higher-quality topics
and making the models more successful for topic modelling-related tasks.

To the best of our knowledge, this is the first time recurrence has been implemented in
a topic model, as we propose with RETM.

The rest of the paper is organized as follows: Section 2 tackles the related work; later,
in Section 3, the mathematical support of the model can be found alongside the inference
and estimation and the pseudo code on how the model runs; this is followed by Section 4,
which contains the code and experimentation description; next, in Section 5, the results
are shown in detail and a discussion takes place; and finally, Section 6 will close with the
general conclusions of the model and some recommendations for future work.

2. Related Work

Even though LDA is a good topic model, it has been proven that applying modifica-
tions to the base model can provide additional functionality and improve its performance,
as shown in this section.

One of the more interesting modifications of the canonical LDA models is based on
the dynamic versions, where a time series is assumed for each topic, thus resulting in the
assumption that the topic might have variations over time. The Dynamic Latent Dirichlet
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Allocation (DLDA) was proposed by Blei, et al. [20] to make LDA have variations on their
topics based on time. In terms of conversational text, a modification to DLDA is Conceptual
Dynamic Latent Dirichlet Allocation (CDLDA) [21], which detects topics using a bag of
words and then implementing temporal features. However, since DLDA and CDLDA are
LDA-based models, they suffer from the same core issues as LDA that were mentioned in
the previous section. Using the same intuition from the DLDA and having assured that the
ETM currently outperforms LDA, a modification for the ETM (with a dynamic perspective)
was implemented [22].

Looking at the solutions from another perspective, the Locally Consistent LDA
(LCLDA) was an approach designed to improve the conventional LDA model by using
an embedding layer with K-means based on the bag of words and improving the solving
method [23]. Other models that also used word vector spaces proved to be great additions
for the current modifications [24,25]. There have also been some advances regarding the
BERT architecture [26] for the embeddings and using this embedding layer to create topic
models, such as the Combined Topic Model (CTM) [27] and Zero-shot Cross-lingual Topic
Model (ZeroShot-CTM) [28]. All these models, although improving on LDA, still lack the
possibility of using the order of the words to arrive at better predictions.

In the area of Neural Topic Modelers (NTMs), which refers to the neural network mod-
els used for topic modelling, there is a model for Sentence Generating Neural Variational
Topic Model (SenGen), which uses RNN for creating the vector of topics based on sampling
sentences instead of a bag of words [29]. Continuing the trend with LSTM, there are topic
models that approach the problem by using LSTMs to understand the word sequences of
the topic and dynamically model them [30,31], until finally arriving at the more advanced
LSTM topic model with attention mechanism (Topic Attention Networks for Neural Topic
Modelling), which explores the combination of both approaches in the topic–document
distribution [32]. Although NTMs work great, word embeddings are not used to improve
the input of the models over raw text.

3. Fundamentals

The Recurrent Embedded Topic Model (RETM) is based on the current ETM (which is
based on a combination of LDA and CBOW) and Recurrent Neural Networks (i.e., LSTM).
Providing some context on the models, we assume that we have a corpus of M docu-
ments D = {d1, d2, . . . , dM}, we also assume there is a vocabulary which is indexed from
{1, 2, . . . , V}. A document is a sequence of n words denoted by w ∈ {w1, w2, . . . , wn}where
wn is the nth word in the sequence. We also assume that K topics are provided as a hyper-
parameter to the model (k ∈ {1, 2, . . . , K}) and associated with a learnable distribution over
the vocabulary (βk for each topic K).

The following Sections 3.1–3.5 will provide an overview of the models that the RETM
is based on, providing a mathematical description of the rationale behind the model and
the history of the previous models with the modifications that have been undertaken that
lead to the RETM.

3.1. Latent Dirichlet Allocation

LDA is a generative probabilistic model of documents and it assumes the following
process for each document d in the corpus D [5]:

1. Choose θ ∼ Dir(α).
2. For each topic k, γ ∼ Dir(β).
3. For each word w:

(a) Choose a topic k ∼ Multinomial(θ).
(b) Choose a word w ∼ Multinomial(γk).

For LDA, α and β are the hyperparameters that Dirichlet needs in order to properly work.
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3.2. Continuous Bag of Words

CBOW is a neural network that trains a word wz based on the context of which words
came after and before that word (wz−1, wz−2, wz+1, wz+2, etc.). These contextual words
are passed through a dense Neural Network (NN) that aims to predict the word wz. If
we look at it this way, we can notice that the vector (neurons) from the embedding layer
are the ones representing the word wz, where, using those neurons, you can represent the
vocabulary; please refer to Figure 2 for visual aid. Given a word wz and calculating the
cosine distance [33] in the embedding layer for each word, they were able to find similar
words to wz and that, precisely, is the breakthrough in CBOW [34]. Regarding the equation,
the embedding matrix ρ is a L× V matrix where ρw ∈ RL (it is important to note that L
refers to the number of neurons on the embedding layer). The context embedding is the
sum of the embedding vectors (wn−1 . . . for the words surrounding each word wn) and is
represented by αw. Inside the current model, the CBOW is defined as (1):

w ∼ softmax
(

ρ>αw

)
(1)

Figure 2. CBOW model. Adapted from [14].

3.3. Embedded Topic Modelling

The ETM [17] is a model that uses an embedding layer for the vocabulary while the
distribution of the K topics remain similar to the LDA model, however the kth topic is
a vector αk ∈ RL in the embedding space where αk is a distributed representation in the
semantic space of words. The ETM, being a log linear model, in its generative process
uses the inner product of word embeddings and the topic embeddings, assigning high
probabilities to the words w in topic k by measuring the agreement between the word’s
embedding and the topic’s embedding.

Similar to the LDA, for each of the d documents in the corpus D:
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1. Choose θ ∼ LN (0, I).
2. For each word w:

(a) Choose a topic k ∼ Multinomial(θ).
(b) Choose a word w ∼ softmax

(
ρ>αk

)
.

The modification in θd is changing the Dirichlet process to a logistic normal distribution
and it was carried out to easily reparametrize the inference algorithm (based on variational
inference) [17]. If analyzed closely against LDA and CBOW, you can easily spot the changes
on the distribution Dirichlet for θd and the substitution of the word distribution for the
softmax of the embedded layer.

3.4. LSTM

Speaking of recurrent neural networks, since the recurrency is for the L dimension,
the exploding/vanishing problem easily arrives at the RETM. Given this, the model uses
the LSTM neural networks for the recurrency in the calculation of θd. The LSTM model was
initially proposed by Hochreiter et al. [35] and the following definition of the model will be
based on Graves’ book [36]. For ease of the explanation, we will just go through the forward
pass, stating that we recommend going through the backward pass involved during the
training process from the original paper. We call mij as the weight of the connection between
unit I and unit J, we also denote st

c as the state of cell c (this refers to one of the C memory
cells) at time t, bt

j as the network input for unit j in time t and at
j as the activation for unit j

in time t. ι, φ and ω refer to the input gate, forget gate and output gate of the block. The
peephole weights (previous internal states and hidden states) from cell c for the input,
forget and output gates are denoted as mcι, mcφ and mcω respectively. In the context of the
current work, xt = ρ>αwt . Finally, f is the activation function of the gates, g and h are the
cell input and output activation functions. To simplify, a single cell of the LSTM can be
observed in Figure 3.

Input gates

at
ι =

I

∑
i=1

miιxt
i +

H

∑
h=1

mhιbt−1
h +

C

∑
c=1

mcιst−1
c

bt
ι = f

(
at

ι

)
Forget gates

at
φ =

I

∑
i=1

miφxt
i +

H

∑
h=1

mhφbt−1
h +

C

∑
c=1

mcφst−1
c

bt
φ = f

(
at

φ

)
Cells

at
c =

I

∑
i=1

micxt
i +

H

∑
h=1

mhcbt−1
h

st
c = bt

φst−1
c + bt

ι g
(
at

c
)

Output gates

at
ω =

I

∑
i=1

miωxt
i +

H

∑
h=1

mhωbt−1
h +

C

∑
c=1

mcωst
c

bt
ω = f

(
at

ω

)
Cell outputs

bt
c = bt

ωh
(
st

c
)
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Figure 3. LSTM model, single cell. Adapted from [36].

3.5. Inference and Estimation

In Equation (2), the parameters ρ and α determine the word distribution; furthermore,
δd is a Gaussian seed during the generative process. The inferential problem to be solved in
this model is calculating the posterior distribution of the variables for any given document,
although this distribution is computationally unrealistic to achieve (due to the integral, as
we are sampling a continuous variable), such as is shown in (2) [17].

p(wd | α, ρ) =
∫

p(δd)
Nd

∏
n=1

p(wdn | δd, α, ρ)dδd (2)

Like LDA, ETM uses variational inference to get around calculating the previous
equation and going through proven approximations [37]. They used amortized inference
where the variational distribution of δd depends on wd and the variational parameters v,
where a Gaussian distribution whose mean and variance comes from a neural network
parametrized by v (when wd is ingested it outputs the mean and variance of δd). The
ELBO (Evidence Lower Bound) is the function of the model parameters and variational
parameters that is optimized throughout the training of the model, as shown in (3) [17].

L(α, ρ, ν) =
D

∑
d=1

Nd

∑
n=1

Eq[log p(wnd | δd, ρ, α)]

−
D

∑
d=1

KL(q(δd; wd, ν)‖p(δd)).

(3)

This equation helps δd to place mass on topic proportions to explain the observed
words where the Kullback Leibler (KL) divergence helps them get closer to the prior
p(δd). This metric supports the maximization of the expected complete log-likelihood
∑d log p(δd, wd | α, ρ) [17].

The next Algorithm 1 assumes that NN(x; v) refers to a neural network (linear) where
x is the input and v are the variational parameters of the network:
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Algorithm 1 ETM

1: Initialize model and variational parameters
2: for epoch do
3: Compute βk = softmax

(
ρ>αk

)
for each topic k

4: Choose a minibatch d of documents
5: for each document d in d do
6: Get normalized bag-of-word. xd
7: Compute µd = NN

(
xd; νµ

)
8: Compute Σd = NN(xd; νΣ)
9: Sample θd ∼ LN (µd, Σd)

10: for each word w in the document d do
11: Compute p(w | θd) = θ>d β·, w
12: end for
13: end for
14: Estimate the ELBO and its gradient (backprop.)
15: Update model parameters α1:K
16: Update variational parameters

(
νµ, νΣ

)
17: end for

3.6. Recurrent Embedded Topic Modelling

In this paper, the Recurrent Embedded Topic Model (RETM) is proposed to enhance
the quality of the topics for data analysis and data organization purposes by reusing the
embedding layer into a recurrent neural network (LSTM). The rationale behind is based
on trying to extract the meaning of the word currently analyzed by each of the values it
has on the L dimensional space of the CBOW. To simplify, since it has been proven that the
CBOW model contains the “meaning” of the word in an L dimensional space [34], then
using the recurrency of the order of the words in the text can help the model to provide
“context” when determining the topic distributions. Thus, given the recurrency of the
L dimensional space inside an LSTM, the neural network can further predict θd, which
corresponds to the topic–document distribution of the model. As it can be seen in the
pseudo code 2 after obtaining the normalized bag of words for each document on the
minibatch, the embedded layer is used to generate the third dimension of the tensor (the
recurrency layer of the LSTM). This means that the shape of the tensor is [wdn, d, L], and it
is important to note that d is defined in the pseudo code as the mini batch of documents
and wn is referring to maximum number of words w that exist in D. After the tensor is
created, the LSTM is computed with the variational parameters and then a dropout is
executed to prevent overfitting. Next, the computations of µd and Σd are calculated to
sample using a logistic normal distribution, θd. Prior to the calculation of the ELBO, the
tensor must be returned to a two-dimensional space to be able to multiply against β, this
reduction of the dimensionality is made with an aggregation based on max (the aggregation
is further explain after Algorithm 2), until finally arriving at the calculation of the ELBO
and the gradient.

Coming back to the training and inference/estimation of the model, it remains the
same as what the ETM has already proposed.

Algorithm 2 shows how the model works step by step. Some recommendations to
ensure that the RETM works properly are to use only a text column (discard everything
else) and apply some cleaning techniques to the raw text prior to using the RETM.

After the LSTM calculations (in step number 15), where θd is a third-dimensional
tensor) and prior to computing the ELBO, θd must be transformed to a two-dimensional
tensor. To achieve this two-dimensional tensor, an aggregation was applied by using max.
Max was used to prioritize the most salient words for each topic creating clear cut topics. It
is important to know that this strategy can create bias to extreme values. If using another
aggregation, min can create more general topics with the downfall of hitting the topic
coherence metrics where the words will be more dispersed between them. Average can
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provide a balanced representation of the topics leading to more comprehensive topics. In
the end, max was used since it provided better perplexity scores, but the door is not closed
for more experimentation on the reduction of the recurrent dimension.

Algorithm 2 RETM

1: Generate train and test datasets plus the vocabulary vector
2: Calculate the CBOW or use the standard one
3: Initialize model and variational parameters
4: for epoch do
5: Compute βk = softmax

(
ρ>αk

)
for each topic k

6: Choose a minibatch d of documents
7: for each document d in d do
8: Get normalized bag-of-word. xd
9: Add the extra dimension to xd by ordering the words and extracting

their values from the CBOW
10: Compute ζd = LSTM(xd; νζ)
11: Create dropout νζ

12: Compute µd = NN
(
xd; νµ

)
13: Compute Σd = NN(xd; νΣ)
14: Sample θd ∼ LN (µd, Σd)
15: Return matrix to 2 dimensional by applying aggregation (max) for θd
16: for each word w in the document d do
17: Compute p(w | θd) = θ>d β·, w
18: end for
19: end for
20: Estimate the ELBO and its gradient (backprop.)
21: Update model parameters α1:K
22: Update variational parameters

(
νζ , νµ, νΣ

)
23: end for

4. Code and Experimentation

As previously stated, the current model and code act as a modification to the current
ETM model that was originally proposed by Dieng et al. in their paper Topic Modelling in
Embedding spaces [17]. This paper also includes an original version of the code that can
be found on Github [38], but although all the core code is inside the Github, in this paper
we preferred to use a modification of the code that was created by Luis Mateos, which
provided some adaptations and an overall better structure [39]. To be specific, some of
the changes inside the code for this paper were based on the architecture of the model.
The perplexity calculation inside the training dataset was captured by reusing the existing
calculations’ (Reconstruction loss) that were happening on each epoch. Another of the big
changes has to do with the creation of a new pipeline for loading and transforming (capi-
talization, stopwords removal and punctuation/special characters removal) the datasets.
After the data are ready to be used, the models were fitted, evaluated and compared to
each other (LDA, ETM, Zeroshot-CTM, CTM and RETM). The data pipeline, model fitting
and evaluation can be found in main.py inside the repository. Requirements.txt lives inside
the repository for help on easy installation. Github is available for this code [40]. Finally, all
the code was implemented on Pytorch, where the stochastic optimization was used with
Adam [41] for the learning rate and using the ELBO as the metric to be optimized on the
NN (RETM).

Among the models that are used for comparison to RETM, we can find CTM and
Zeroshot-CTM, which were both taken from Github [42]. Although there is no direct
implementation of the perplexity metrics for CTM and Zeroshot-CTM, the perplexity
metric was calculated by reusing the reconstruction loss, in the same way that the ETM
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and RETM calculate theirs. In the scenario of LDA, the model was used from the Github
page of ScikitLearn [43].

For the datasets used in this paper, we compare the performance of the five models
in different applications of what unstructured text data might look like. The way we
compared the performance was by fitting and predicting the models on different datasets
and extracting their perplexity and topic coherence metrics (same data and same process
for all five models). The datasets range between emails [44], genre classification of movies
from IMDb [45], book summaries [46] and news [47]. All these datasets vary drastically
between each other, from the words and sentence structure to the number of words in each
document (rows) and the probability of occurrence of each of the words inside the text,
as can be seen in Table 2. Although the datasets provide thousands of rows to use, given
computational limitations the amount rows that were used was lowered to 30,000, where
in experimental fashion, there was small differences comparing to full dataset for each file
were used (the shuffle was conducted with random seed to ensure repeatability).

Table 2. Table shows descriptive data of the datasets used on the experiments.

Dataset Total Number of Words Average Number of Words

Movies 170,085 58
Email 40,557 166
Books 117,764 234
News 79,150 4066

The computer that was used to create and run all models has the following specs:
System Manufacturer = Gigabyte, System Model = Aorus 15P XC, BIOS = FB07, Operating
System = Windows 11 Home, Python 3.9 (plus all the dependencies that can be found on
the requirements.txt of the repository), RAM = 32 GB, CPU = Intel Core i7-10870H and
GPU = Nvidia GeForce RTX 3070 Laptop.

After the dataset is loaded into memory, a small preparation of the text was conducted
prior to using it on the model. The text transformation pipeline was as follows:

1. Apply lower capitalization.
2. Remove stop words using nltk.corpus.
3. Remove all numbers and punctations (including special characters).
4. Randomize all rows with a random seed = 42.
5. Extract the top 30,000 rows.

The metric that was used to compare the performance of the model was the perplexity,
which represents one of the most important metrics for topic modelling. Perplexity can
be defined as the exponentiated average negative log-likelihood of a sequence [48], as
shown in (4). Another metric that was used to analyze the topics that were created by
the Zeroshot-CTM, CTM, ETM and RETM was the topic coherence. Topic coherence is a
measure to understand how close the words inside a topic (the closer the words are, the
more condensed the topic is). It is calculated by the Pointwise Mutual Information [49],
which is used to measure the connection between two things (in this case x and y), as
shown in (5) (this equation was taken from Wu et al. [50]).

perplexity
(
ntest , λ, α

)
, exp

{
−
(

∑
i

log p
(
ntest

i | α, β
))

/

(
∑
i,w

ntest
iw

)}
(4)

PMI(x, y) = log
p(x, y)

p(x)p(y)
= log

p(x | y)
p(x)

= log
p(y | x)

p(y)
(5)

5. Results

In this section, the RETM is compared based on perplexity and topic coherence against
other models using the datasets that were previously exposed in Section 4. Table 3 demon-
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strates how the RETM stacks against the other models (CTM = more than 5162 times
better, Zeroshot-CTM = more than 5336 times better, LDA = more than 25 times better
and ETM = more than 15 times better) using perplexity (where lower is better) on the
training dataset by proving to be extremely efficient at creating quality topics thanks to its
recurrency on the neural network calculation.

Table 3. Table shows the perplexity values on training datasets used on the experiments.

Dataset LDA CTM Zeroshot-CTM ETM RETM

Movies 4557.30 473,741.98 490,147.51 632.4 39.6
Email 2612.94 301,272.40 477,580.90 763.2 34.5
Books 4524.45 243,154.4 315,798.9 1675.5 47.1
News 2400.48 607,338.92 495,231.35 4191.4 92.8

On the test dataset, the RETM still proves to outperform CTM (more than 121 times
better), Zeroshot-CTM (more than 71 times better), LDA (more than 1689 times better) and
ETM (between 10% and 90% better), as shown by Table 4.

Table 4. Table shows the perplexity values on test datasets used on the experiments.

Dataset LDA CTM Zeroshot-CTM ETM RETM

Movies 8928.18 × 105 463,774.15 476,982.15 647.2 328.3
Email 5,964,502.4 245,077.4 407,738.1 758 516.8
Books 2,068,412.6 203,167.4 333,945.1 1717.6 1224.5
News 8580.2 × 1013 591,459.6 349,622.3 5396.5 4878.8

Speaking of topic coherence (which refers to how condensed the words are between
others), there is small difference between the RETM and the ETM in the books, news and
movie datasets, but a significant difference for the email dataset, as shown by the Figure 4.
Zeroshot-CTM and CTM are far away from being good models compared to ETM and
RETM. As a side note, for topic coherence, more is better.

Figure 4. Comparative between CTM, ZeroShot-CTM, ETM and RETM using the topic coherence
metric over different datasets (emails, book summaries, news and genre classification of movies).

Finally, Figure 5 shows a single topic, using the RETM model, from the book’s dataset.
T-distributed Stochastic Neighbour Embedding (TSNE) [51] was implemented over the L
dimensional vector of the embedding to reduce the dimensionality to two dimensions and
create a visualization of how the words look for the topic (and the distances between them).
It shows the top 20 words for the topic, where each word has a different color and size
(where bigger the size, the more impact it has over the topic distribution).
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As shown in the graph, this topic must talk about books with stories from the medieval
era (probably) and as expected, most words are near each other.

Figure 5. Two-dimensional representation of the embedding space where the top 20 words for a
topic are shown. Each word is represented by a color and the size of the circle corresponds to the
importance of that word at describing the topic.

Discussion

Pairing the results of the train data set, it showed an improvement of at least 15 times
better perplexity values over CTM, Zeroshot-CTM, ETM and LDA, meaning that every
time a text-based dataset is needed for data analysis, data organization or any task where
no prediction is needed over new data, this model proved to heavily outperform current
models. On the other hand, the perplexity calculated in test dataset, although, still better
than all models, proved to not be as high as the training dataset, being at least 10% better
than the other models.

In terms of topic coherence, the RETM showed slightly worse results for the books
(RETM = 0.1602, ETM = 0.1630), movies (RETM = 0.0789, ETM = 0.0828) and news (RETM = 0.1587,
ETM = 0.1816) datasets, but better for the email (RETM = 0.3188, ETM = 0.2364) dataset; how-
ever, it still severely outperformed CTM and Zeroshot-CTM, showing a possible hypothesis
that since the email dataset has a much lower vocabulary, this could have affected the
predictions for the RETM, since ρ has less coordinates in V which could increase the con-
vergence in αw. Unfortunately, there is not sufficient data to prove this hypothesis, and so
it will be highly encouraged as future work.

Outside of previously stated results, it is important to mention that one of the biggest
limitations to the RETM is represented by the high computational cost it needs to fit to
a dataset. As the recurrence of the model is based on the order of the words per text,
coupling this with the embedding layer, if using the 300-dimensional space (as it was the
case for these experiments), the amount of V-RAM that the GPU (Nvidia GeForce RTX 3070
Laptop) needs to process the model represents a high cost. To reduce the cost of V-RAM,
the batch size can be lowered, but it can penalize the final scores. Once the batch sizes are
lowered, it is normal to expect a higher time to compute the model, although it is faster
than the traditional LDA calculations on big vocabularies. Also, to reduce computational
power, the average amount of words in the dataset was used as the size of the vector for the
topic–document distribution calculation, and the door is still open for running the model
using the full size vector, given the hypothesis that this can also prove beneficial for the
results of the model. Running the current model on a CPU seemed to be a never-ending
task. To provide an example, the movie dataset (which contains 30,000 rows worth of text
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data), using a batch size of six, with eight neurons inside the LSTM, cost 5 GB of RAM and
4 GB of VRAM from the GPU and took 28 min to fit the model; in comparison, the ETM,
for the same dataset, took 1.5 GB of RAM and 2.3 GB of VRAM and only spent 1 min fitting
the model.

LSTM has opened the door for several applications in the topic modelling area. Given that
the aggregation level for the LSTM on this model was based on max this created clear-cut topics
and improved the quality in almost all datasets; however, there is still room for experimentation
and different uses cases for the current RETM (different aggregations) that can benefit from
the current implementation, making a less static model compared to the rest.

The RETM was shown to be outstanding at topic modelling tasks: any database that
uses text-based data can benefit from the implementation of this model, although it may
be penalized with small vocabularies. Since the RETM can calculate its own CBOW, it
can provide useful topic modelling in domain-specific documents similar to the ETM. In
the end, the RETM heavily outperformed previous methodologies and proved to be a
state-of-the-art model for topic-modelling problems.

6. Conclusions

The Recurrent Embedded Topic Model was proposed in this paper with the aim
of using the order of the words in an LSTM to provide more accurate representations
of the topics. Four experiments were conducted using text-based datasets (email data,
movie genre classification, news and book summaries) with different distributions and
vocabularies, to test the model against CTM, Zeroshot-CTM, LDA and ETM. The metrics
that were used to test the model were perplexity and topic coherence and the model proved
to outperform all models in almost all scenarios. Although there were great results from the
RETM, the full power of the model still remains in the shadows (based on the computational
limitations that were faced), however the RETM is a state-of-the-art model for conducting
topic proportion distributions and is highly recommended to extract quality-based topics
out of the documents.

The Recurrent Embedded Topic Model has proved to be a computationally expensive
model due to the recurrence of the word order applied on the neural network architecture.
As of the writing of this paper, the batch size remained consistently low due to the amount
of V-RAM required for the model, and the average of the words inside the texts were used
to create the three-dimensional vector for the LSTM, so the hypothesis of how the model
would work on bigger GPUs remains unanswered.

Recalling the embedded layer, there was not any detailed work on the standard natural
language processing pipeline that was applied to the text prior to introducing the data into
the model. There could be some potential improvement while calculating the CBOW over
cleaned text, providing another hypothesis on how to improve the current model.
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