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Abstract: In digital image processing, filtering noise is an important step for reconstructing a high-
quality image for further processing such as object segmentation, object detection, and object recog-
nition. Various image-denoising approaches, including median, Gaussian, and bilateral filters, are
available in the literature. Since convolutional neural networks (CNN) are able to directly learn com-
plex patterns and features from data, they have become a popular choice for image-denoising tasks.
As a result of their ability to learn and adapt to various denoising scenarios, CNNs are powerful tools
for image denoising. Some deep learning techniques such as CNN incorporate denoising strategies
directly into the CNN model layers. A primary limitation of these methods is their necessity to resize
images to a consistent size. This resizing can result in a loss of vital image details, which might
compromise CNN’s effectiveness. Because of this issue, we utilize a traditional denoising method
as a preliminary step for noise reduction before applying CNN. To our knowledge, a comparative
performance study of CNN using traditional and embedded denoising against a baseline approach
(without denoising) is yet to be performed. To analyze the impact of denoising on the CNN perfor-
mance, in this paper, firstly, we filter the noise from the images using traditional means of denoising
method before their use in the CNN model. Secondly, we embed a denoising layer in the CNN model.
To validate the performance of image denoising, we performed extensive experiments for both traffic
sign and object recognition datasets. To decide whether denoising will be adopted and to decide on
the type of filter to be used, we also present an approach exploiting the peak-signal-to-noise-ratio
(PSNRs) distribution of images. Both CNN accuracy and PSNRs distribution are used to evaluate the
effectiveness of the denoising approaches. As expected, the results vary with the type of filter, impact,
and dataset used in both traditional and embedded denoising approaches. However, traditional
denoising shows better accuracy, while embedded denoising shows lower computational time for
most of the cases. Overall, this comparative study gives insights into whether denoising will be
adopted in various CNN-based image analyses, including autonomous driving, animal detection,
and facial recognition.

Keywords: denoising; deep learning; median filter; Gaussian filter; embedded denoising; traditional
denoising

1. Introduction

In the transportation, agriculture, and defence sectors, weather phenomena can have
various negative consequences [1–4]. In these sectors, images are captured in the outdoor
environment. When images are acquired, compressed, and transmitted, noise is inherently
introduced by the environment, camera, and other factors, resulting in distortion and loss of
information. With the presence of noise, image processing tasks, such as object recognition
and segmentation, edge detection, and feature extraction are adversely affected [5]. This
is because the contrast, edges, textures, object details, and quality of a noisy image are
impacted, lowering the post-processing algorithm’s performance [6]. Therefore, image
denoising plays an important role in modern image processing systems.
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Image denoising is used to remove noise from a noisy image, to restore the true image.
As noise, edge, and texture are high-frequency components; it is difficult to distinguish them
in the denoising process, and some details may be lost as a result. In general, recovering
meaningful information from noisy images to obtain high-quality images has become an
increasingly important problem [7].

Different kinds of widely adopted image-denoising filters are used to remove noise
from the images impacted by various environmental and camera parameters [8]. The
widely used image noise denoising techniques are median [9], Gaussian [10], and bilateral
filters [11,12]. Various traditional approaches exist for image noise removal where images
are denoised as a preprocessing step. For example, for object detection, firstly, images are
denoised using a depth filter. Secondly, objects are recognized using the convolutional
neural network (CNN) [13]. Another example is [14], where images are pre-processed with
Gaussian blur. The simulation of a self-driving car has been carried out, which can learn to
drive autonomously without manual intervention of human beings using deep CNN . A
few other approaches of deep learning such as CNN having embedded image denoising
are available in the current literature. Examples of these techniques are [15–17]. Images
collected from different sources may have different sizes. Since the size of the convolution
kernel of CNNs is fixed in CNN-based deep learning techniques, the resizing of images
while denoising is required, which leads to the loss of information in the images . The image
resizing process may involve both downscaling and upscaling images. While downscaling
results in image information being lost , there is the possibility of the addition of redundant
information in images during upscaling as well. To our knowledge, no comparative
performance analysis study on the performance of CNNs for traditional and embedded
image denoising exists in the current literature. Besides the performance study presented
in this paper, the results show that denoising cannot produce superior recognition accuracy
for some impacts such as shadow and darkness compared with "without denoising". This
insight raises the question of whether we should adopt denoising for the dataset affected by
a particular impact. To address this research question, we calculate the distribution of the
PSNRs of all images of a dataset before and after denoising. We devise two principles that
help to decide whether the overall quality of images has been improved after denoising.

Motivation and Contributions of Research Work

People are working to embed filtering techniques in machine learning models for
visual analysis, especially deep learning. To our knowledge, how this embedded tech-
nique works compared to its traditional denoising counterpart is yet to be performed.
This research gap motivates us to perform a comparative study between traditional and
embedded denoising. We choose to analyze the performance of CNN for IoT image recog-
nition applications using different types of environmental impacts such as rain, shadow,
snow, darkness, and exposure. Camera impacts include lens blur and lens dirtiness. As
expected, denoising does not work for all types of impacts because all denoising techniques
consider the basic conceptual models for image filtering that are developed exploiting the
characteristics of general noises such as white Gaussian noise and salt and pepper noise.
These filtering techniques are not generic enough to encode the characteristics of all types
of impacts, raising the question of whether we should apply a denoising approach for a
particular impact. If the use of the denoising approach is decided, what type of denoising
approach will be adopted? To address this research issue, this study also proposes a con-
ceptual approach that will help in deciding whether and which type of denoising approach
should be applied for a particular impact in a recognition dataset. The major contributions
of the paper are as follows:

1. We filter image noise from training and test data sets using traditional methods of
filtering noise such as median filter and Gaussian filter.

2. We embed a layer for image denoising in the CNN model. Then, we compare the
traffic sign and general object recognition accuracy and processing time for the CNN
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algorithm with the traditional approach of denoising and embedded denoising against
a baseline approach called without denoising.

3. For the detection accuracy and computational time performance, we use challenging
unreal and real environments for traffic sign recognition (CURE-TSR) [18] and chal-
lenging unreal and real environments for object recognition (CURE-OR) [19] datasets.
We use environmental impacts such as rain, shadow, darkness, and snow. For camera
impacts, we cover lens blur and lens dirtiness from both CURE-TSR and CURE-OR
datasets. We utilize impacts such as contrast, salt and pepper noise, overexposure,
and underexposure, from the CURE-OR dataset. The recognition accuracy of CNN for
the traditional denoising approach shows superior performance to that when image
denoising is embedded in CNN.

4. To decide whether denoising would be adopted, we calculate the distribution (his-
togram) of PSNRs of the images of the dataset affected by impacts before and after
denoising. Through PSNR histograms, we assess whether the quality of images has
been improved based on our developed two principles. The histograms were pro-
duced using the two data sets for all impact types mentioned in Contribution 3 for
the median and Gaussian filters. When the overall quality of images is improved after
denoising, these histograms support the adoption of filtering for CNN-based image
recognition.

The rest of this paper is organized as follows. Related works are mentioned in Section 2.
Section 3 elaborates on our comparative performance study and an approach to decide
whether denoising will be adopted. Section 4 gives comprehensive experimental results
with the comparative approach. Conclusions are drawn in Section 5.

2. Literature Review

Image denoising is extensively investigated in various contexts such as computer
vision [20], digital photography, medical image analysis, remote sensing, surveillance, and
digital entertainment [21]. Since this research project focuses on the performance study
of deep learning (CNN) for traditional and embedded denoising, the following sections
review the literature associated with them.

2.1. Image Denoising Techniques

Widely used image-denoising filters are median, Gaussian, and bilateral filters [22].
Median filters are widely considered to be the most effective way to eliminate salt and
pepper noises. Low-density impulse noise can be effectively eliminated by it [23]. Using
the median filter, noise is removed from an image, and edge detection is improved. A
positive odd integer is used for the kernel size [24]. Another filter is the Gaussian filter,
which we use for image denoising. Gaussian filters smooth images more effectively [25].
It is based on Gaussian distribution. The probability density function (P(x)) of Gaussian
distribution is represented by Equation (1).

P(x) =
1√

2nσ2
e−(x−µ)2/(2σ2) (1)

Here, x is a grey level intensity of a pixel belonging to a window in an image. µ
is the mean pixel intensity value of all pixels within that window, and σ is the standard
deviation [26]. The amount of smoothing of the Gaussian is determined by standard
deviation σ. The Gaussian filter takes the neighborhood around the pixel and finds its
Gaussian weighted average. A Gaussian filter is based solely on space, that is, nearby pixels
are taken into account during filtering. No consideration is given to pixels with nearly the
same intensity. The algorithm does not take into account whether a pixel is an edge pixel
or not. The edges are also blurred in the Gaussian filter.

Wavelet denoising is also an effective tool for image denoising. However, it is efficient
in dealing with additive white Gaussian noise (AWGN). The method may not work well
for non-stationary noise or impulse noise without proper adaptation. The Wiener filter is
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also a fundamental and useful tool for denoising images. However, it has limitations when
applied to real-world noisy images with complex characteristics.

Recently, there has been a surge in the development of image denoising
methods [27–32] based on deep learning. To effectively remove noise from images, CNN-
based denoising techniques use a large number of convolutional layers. ResNet [33]
U-Net [34], and DenseNet [35] are typical examples of this type of architecture. Deeper
CNNs often lead to vanishing/exploding gradients that can be alleviated by adding skip
connections between neighboring layers. In U-Net, feature mapping is concatenated from
the first to the last convolutional layer, as well as from the second to the second-last convo-
lutional layer. Through skip connections, the input of the convolutional blocks (containing
multiple convolutional layers) is added directly to their output. As a result of DenseNet,
convolutional layers are connected to one another, which overcomes the limitations of
ResNet in that some layers of information are selectively discarded. DBCN [36] extracts
local and contextual information using a multibranch structure. The CMSC network [37]
infers image features by cascading subnetworks. Due to a common loss function and a
common input, these CNNs resemble wide networks, yet they are still deep networks.

To overcome this issue, authors [38] presents a true wide CNN (WCNN) that takes
advantage of the independence of wavelet decomposition and splits all convolutional
layers initially used to train one image into numerous separate subnetworks. The WCNN is
made up of numerous distinct subnetworks, each of which only serves to train the features
of its own wavelet subband and has its own input, output, and loss functions. The author’s
goal was to provide a broad CNN framework to reorganize numerous convolutional layers
and offer an innovative solution to the issue of vanishing gradients. Through wavelet
decomposition, the authors divided a huge image denoising challenge into several smaller,
independent denoising problems. For each issue, noise is eliminated from the subband in a
certain scale, a certain direction, and a smaller size .

In order to filter the noise, the authors combined batch normalization and residual
learning with a CNN [28]. A quick and adaptable convolutional neural network employed
a noisy image patch and noise mapping to speed up training in order to achieve blind
denoising [39]. In [16], the authors used a dual network to extract complementary features
to increase the robustness of a denoiser to handle noisy images from complicated screens.
The authors merged a channel attention block to boost the relationship of various channels
to improve the denoising impact, allowing for the extraction of prominent features [40]
. Blind denoising was suggested as a two-phased process by [41]. A sub-network was
employed in the initial phase to estimate the noise. The second technique utilized was
used for learning a blind denoiser. In terms of the second method, optimized methods
embedded into a CNN are very popular for image denoising. To achieve a choice between
denoising performance and efficiency, the authors used a meta-optimizer with CNN [42].
Additionally, the Bregman iteration algorithm is a particularly efficient way to convert a
depth image inpainting into image denoising [43]. The methods based on CNNs that have
been mentioned above demonstrate how successful CNNs are as tools for image denoising.

2.2. Approaches Embedding Image Denoising in Deep Learning

In image processing, neural networks are one of the most promising approaches
to denoising images. There are various types of DL [7,44,45] architectures available for
image denoising. A fully symmetric convolutional–deconvolutional network (FSCN)
is presented for image denoising in [15]. The proposed model consists of a chain of
sequential symmetric convolutional–deconvolutional layers. End-to-end, this framework
learns convolutional–deconvolutional mappings from corrupted images to clean ones
without using image priors. With the convolutional layers, the image content is encoded
while corruptions are removed. With the deconvolutional layers, it is decoded so that image
content details can be retrieved. The reconstruction loss is minimized by an adaptive moment
optimizer, which is suitable for large datasets and noisy images. A comprehensive evaluation
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of the FSCN model against existing state-of-the-art denoising algorithms was conducted. As a
result, the proposed model achieves superior denoising, both qualitatively and quantitatively.

However, in this model, because of the application of a series of symmetric con-
volutional–deconvolutional layers, there could be a considerable amount of pertinent
information loss even though reconstruction is minimized. And the number of symmetric
convolutional–deconvolutional layers is not determined by minimizing loss. Moreover,
the denoised images have not been used to test the performance of a deep learning algo-
rithm like CNN for a particular application. The approach introduced in [16] presents
a novel deep CNN for image denoising, which can directly obtain a clean image from
a noisy one. For image denoising, batch renormalization (BRN) is used, which can han-
dle small mini-batch problems. Furthermore, BRN can also accelerate the convergence
of training the network without requiring any specific hardware platform. For this, it
is a good choice to combine BRN and CNN for image denoising on low-configuration
hardware devices. The performance of image denoising is improved by residual learning.
The batch-renormalization denoising network (BRDNet) is robust to both synthetic and
real noisy images, according to experimental results. However, the effectiveness of this
method is yet to be explored for low-light and blurred images. Also, this method requires
resizing images, which results in a loss of information. To address the information loss
issue mentioned in [15], a novel method for denoising images is proposed by Yang et
al. [17] to assist intelligent robot welding. To extract and accumulate multi-scale feature
maps, an attention-dense convolutional block is proposed. To learn long-range spatial
contexts from local feature maps, a residual bi-directional conv long short-term memory
(ConvLSTM) block is proposed. The experimental results prove that the proposed image
denoising network could correctly extract the laser stripes from seam images. However, all
the above-mentioned deep learning-based denoising models require the resizing of images,
which could lead to the loss of information or the addition of redundant information in the
images. Consequently, this could impact many applications like event and object detection
and classification accuracy. For achieving effective and efficient real image denoising, the
advantages of two networks—(i) CNN and (ii) transformer—are merged in this paper [46].
A hybrid denoising model based on the transformer encoder and convolutional decoder
network (TECDNet) is proposed. Transform using radial basis functions (RBFs) attention is
used as an encoder to improve overall model representation. To reduce the computational
complexity of the entire denoising network, residual CNNs are used instead of transform-
ers. With relatively low computational costs, TECDNet achieves state-of-the-art denosing
performance on real images. Similarly, this paper [47] proposes a novel and effective net-
work architecture based on the transformer TC-Net. For image denoising, the architecture
consists of several transformer blocks and convolutions. A number of experiments have
demonstrated the effectiveness and efficiency of TC-Net in image restoration.

2.3. CNN and Transformers for Image Recognition

CNN can be employed for traffic sign recognition and general object recognition (refer
to the details of these two datasets in Section 3.3). Transformers are actively used in the field
of image processing. However, there are various studies that show that CNN is better in
performance compared to transformers. The authors experiment with seven CNNs and five
vision transformers based on datasets. They proved that transformers are not as competitive
as CNNs at classifying traffic signs. The German, Indian, and Chinese traffic sign datasets,
respectively, show performance gaps of 12.81%, 2.01%, and 4.37% [48]. Another study was
carried out for the first time, in which eight different vision transformers were validated on
three real-world traffic sign datasets . Based on their experimental results, the best vision
transformer performs between the performance of pre-trained DenseNet and DenseNet
trained from scratch. Aside from that, transformer’s best vision model generally takes less
time to train than DenseNet’s [49]. However, the transformer having the higher model
capacity takes a higher computational load than CNN. All of the approaches mentioned
in this section used neither traditional nor embedded denoising techniques for analyzing
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recognition accuracy. Since the image recognition performance of CNN is better than that
of the transformer, as evidenced by [48,49], it creates an appealing reason for us to select
CNN for our performance study.

As mentioned earlier, many approaches exist in the current literature to denoise
images using median, Gaussian, and bilateral filters. However, a comparative study of the
recognition accuracy of CNNs considering the environmental and camera impacts with
traditional and embedded approaches has not been carried out yet. In this article, we aim to
investigate the impact of image denoising on the performance of CNN for both traditional
denoising (denoising as a pre-processing step) and embedded denoising compared with a
baseline approach [? ] that does not apply denoising in CNN. Most of these techniques
employ the denoising approach as a layer of the CNN model [50–52] rather than using
traditional filtering (Gaussian and median) techniques developed specifically using CNN
models [44] . Another major merit of embedding the denoising approach as a layer of CNN
is that it sheds light on the best way to embed the denoising technique in any CNN-based
image processing technique . Therefore, in this comparative study, following the general
and widely adopted approaches, we embed denoising techniques as a layer in the CNN
model.

3. Methodology for Comparative Study

The following sections present how we conduct the comparative study in this paper.

3.1. Overview of the Comparative Study

Figure 1 represents the schematic diagram of how we conduct the comparative per-
formance study of CNN using traditional and embedded denoising against a baseline
approach (without denoising) and present an approach to decide whether denoising is to
be adopted.

Figure 1. Overview of the comparative study.

1. For the traditional denoising approach, firstly, denoising is carried out separately with
a filter as a pre-processing step. Secondly, denoised images are utilized in CNN for
the performance study of a particular application (e.g., object recognition), which is
mentioned in block 2 of Figure 1.
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2. For the embedded denoising approach, denoising and recognition are carried out
together with CNN. In this approach, a filter is embedded into the CNN model. An
example of embedding a filter into CNN is illustrated in block 3 of Figure 1.

3. Block 4 is without denoising, where no filtering is carried out representing a baseline
approach for this comparative study. The recognition accuracy is measured without
any filtering with CNN.

4. Input images (refer to block 1 of Figure 1) are also used for deciding whether denoising
will be adopted for a particular application based on the decision derived in the Y/N
form (refer to block 6 of Figure 1). Once the decision is adopted for filtering and if the
type of noise present is unknown, we can compare the PSNR before and after noise
removal and choose the filter that provides the best performance in improving image
quality after filtering, which is given in block 7 of Figure 1.

5. This comparative study will produce comparative results. A sample of the com-
parative results obtained from the performance study in the form of recognition
accuracy with the traditional, embedded, and without denoising approaches is shown
in Figure 1, which is detailed in Section 4.

3.2. Methodology for Comparative Analysis on Denoising in CNN-Based Approaches

We use median and Gaussian filter because the bilateral filter takes more processing
time in comparison with the median filter. The kernel size of the median and Gaussian
filter must be a positive odd integer.

For assessing the impact of filtering on recognition accuracy, any suitable approach
that can represent the differences between the overall image quality of a dataset before and
after denoising can be used. However, we aim to leverage the distribution of image quality
based on a histogram as a histogram can visually depict the comparative overall image
quality of the dataset well before and after filtering. Moreover, the histogram can be used
to assess quality improvement.

For such an assessment, we can apply the following two principles:

1. Higher frequency values for higher PSNRs.
2. If the histogram is right skewed.

Based on these two principles, we can qualitatively and quantitatively assess whether
the overall image quality is improved after filtering and thus decide whether denoising
and the type of filtering will be employed.

3.3. Datasets

We use two datasets for denoising: CURE-TSR [18] and CURE-OR [19]. Both these
dataset contains real and synthetic images embedded with noise. In both datasets, the
percentage of noise level is not given. However, both datasets have five different levels of
noise: (i) extreme less, (ii) less, (iii) moderate, (iv) high, and (v) extreme high. In CURE-
TSR, different traffic sign types include speed limit, goods vehicles, no overtaking, no
stopping, no parking, stop, bicycle, hump, no left, no right, priority to, no entry, yield, and
parking. We use all of the traffic sign images, including the images shown in Figure 1 for
various environmental impacts such as lens blur, lens dirtiness, rain, shadow, darkness,
and snow. For camera impacts, we cover the two most prominent impacts such as lens
blur and lens dirtiness. In CURE-OR, various classes include 23 categories of toys, 10
categories of personal items, 14 categories of office, 27 household categories, 10 categories
of sports/entertainment, and 16 health categories. In this dataset, there is a total of 100
classes, while CURE-TSR contains 14 classes of different traffic signs. All of the images for
lens blur, lens dirtiness, salt and pepper noise, contrast, overexposure, and underexposure
impacts are used from the CURE-OR dataset, which includes all 100 object classes. From
the literature, it is evident that the complex/cluttered backgrounds make object recognition
difficult [53]. Therefore, to present the type of background of the CURE-OR dataset images,
an example of a set of images having their background is shown in Figure 2.
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Figure 2. Different backgrounds in CURE-OR dataset [19].

We utilize 36,458 training and 16,670 test images for each environmental and camera
impact to test the accuracy of the traffic sign detection CNN model. On the other hand, we
use 11,220 training and 3750 test images for the CURE-OR dataset. The images without
denoising and with denoising using median and Gaussian filter for impacts shadow, lens
blur, and lens dirty are mentioned in Figure 3, 4, and 5, respectively.

(a) (b) (c)
Figure 3. Images of the shadow without denoising and denoising with median and Gaussian filter
for CURE-TSR dataset. (a) Without filter. (b) After median filter. (c) After Gaussian filter.

(a) (b) (c)
Figure 4. Images of lens blur without denoising and denoising with median and Gaussian filter for
CURE-OR dataset. (a) Without filter. (b) After median filter. (c) After Gaussian filter.

(a) (b) (c)
Figure 5. Images of lens dirty without denoising and denoising with median and Gaussian filter for
CURE-OR dataset. (a) Without filter. (b) After median filter. (c) After Gaussian filter.
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3.4. Description of CNN Model and Their Parameters

For evaluating the traffic sign and object recognition accuracy, we use a CNN model
because it was introduced mainly for image processing applications and shows its potential
efficacy in object recognition [54]. This model has less computational complexity, which is
one of the major requirements for many real-time image recognition applications like live
traffic sign detection used in autonomous vehicles. For traditional denoising, in general, a
CNN comprises convolutional layers, pooling layers, fully connected layers, and a softmax
layer for generating output.

As per [55], Figure 6 shows that the CNN model contains two convolutional and
pooling layers followed by three fully connected layers. A filtering layer can be incorporated
in any position of the CNN model but before the Softmax layer. However, in Figure 6
we embed an extra denoising layer of Gaussian or median filter, which is the first layer
in the existing CNN model. This layer is embedded before the first convolutional layer
of the CNN model. More embedded layers of Gaussian and median filters could be
added to the CNN model. However, based on our experiments, we opted for only one
embedded layer because the traffic sign and object recognition accuracy are almost the
same as with embedding the first layer. Additionally, adding more filtering layers raises
the computational complexity of the CNN model.

Figure 6. Overview of the embedded denoising approach.

4. Results and Discussions

We calculate the Top-1 detection accuracy A (refer to Section 4.2) of CNN for various
traffic signs and objects using the below-mentioned formula.

A = C/N (2)

where C and N represent the number of correct predictions and the total number of
predictions, respectively. We test the traffic sign detection accuracy and object detection
accuracy of the traditional denoising approach and CNN-based embedded denoising
approach against a baseline approach called without denoising.

4.1. Experimental Hardware and Software Settings

For our experimental purposes, we used the HP Zbook 15 G6 laptop, which has an
in-built Intel CORE i7 vPro 9th Gen processor and an Nvidia Quadro T1000 processor. HP
Zbook has 32 GB of physical memory. Our model was implemented using Python in Visual
Studio Code software (version 1.41.1) with the support of the PyTorch library.

As per the methodology presented in Section 3.2, we implemented the traditional
CNN model and the embedded CNN model using the architecture shown in Figure 6. The
kernel size of the median filter used by us was 5, and kernel size = 15 for the Gaussian filter
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was used. We utilised a softmax classifier, which gives probabilities for each class label. As
mentioned in Table 1, in our CNN model, we used 55 epochs for the CURE-TSR dataset
as a reference from [50]. Also, for the CURE-OR dataset, we used 55 epochs because this
number of epochs leads to a minimum loss, as is reflected in Figure 7. Figure 7 represents
the epochs versus cross-entropy loss for the CURE-OR dataset using the validation set used
in [50]. Cross-entropy loss continuously decreases from 4.6 to 0.3 until it reaches 55 epochs .
After this, the loss remains almost the same even if the number of epochs increases. The
learning rate was equal to 0.1. We used 256 batch sizes for our experiments.

Figure 7. Epochs vs. L=loss for CURE-OR dataset.

Table 1. Various parameters and their type/values for CNN.

Parameter Type/Value

Learning rate 0.1

Epochs 55

Batch size 256

Activation function ReLU

Classifer Softmax

Convolutional layers 3

Max-pooling 2

Fully connected layers 3

4.2. Recognition and Computational Time Analysis for CURE-TSR

Recognition refers to the ability of a computer system to identify or classify objects,
patterns, or features in an image or a video stream. Computational time analysis, on the
other hand, refers to the process of measuring the time it takes for a computer system to
perform a specific task, such as recognition or classification. This is an important metric
in computer vision and pattern recognition as it can impact the overall performance and
efficiency of the system. We calculate the traffic sign recognition accuracy and computa-
tional time for the CURE-TSR dataset. Note, in Tables 2–6, SD stands for standard deviation
(SD), which represents the variation of Top-1 accuracy and computational time for each
impact type.
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Table 2. Mean and standard deviation of gray level pixel intensities for a particular image having
different levels of impacts for shadow and darkness. Here, Levels 1-5 represent the extent of impact
starting from extreme low to extreme high. Here, the mean and standard deviation represent the
impact of each level on the gray level pixel intensities of that image.

Impact Levels Darkness Shadow

Mean SD Mean SD

Without impact 117.7 97.52 117.7 97.52

Level 1 85.99 71.36 108.12 89.07

Level 2 45.75 37.82 98.37 81.51

Level 3 24.49 20.21 88.91 76.86

Level 4 13.04 10.79 79.13 74.5

Level 5 6.93 5.84 69.49 75.09

Table 3. Traffic sign recognition accuracy (%) of CNN in different environmental and camera impacts
with various denoising approaches for CURE-TSR. Note, Acc. stands for accuracy, SH is shadow, and
DK means darkness.

Acc. for Each Impact (%) Total

Approach
Impact

Blur Dirty Rain Snow SH DK Mean SD

Without denoising 72.3 87.6 88.5 1.9 92 89.6 71.9 31.9

Embedded median 71.8 87.6 84.4 35.6 90.7 89.2 76.5 19.33

Embedded Gaussian 71.3 88.1 86.3 1.9 91.1 89.2 71.31 31.7

Traditional median 73.3 85.3 79.5 35.6 87.8 84.8 74.3 17.9

Traditional Gaussian 70.3 80.4 74.9 1.9 83.3 1.9 52.1 35.7

Table 4. Computational time (minutes) for traffic sign recognition for different impacts with various
denoising approaches in CURE-TSR. Here, mean and SD stand for the mean and standard deviation
of the computational time for all impacts.

Computational Time for Each Impact Total

Approach
Impact

Blur Dirty Rain Snow SH DK Mean SD

Without Denoising 46 45.66 45.8 43.3 43.2 38.7 43.7 2.78

Embedded median 50.5 43 45.19 44.3 44.4 46.6 45.6 2.64

Embedded Gaussian 35.6 36.9 36.5 35.8 38.5 36.4 36.6 1.03

Traditional median 46.2 51.3 54.4 43.3 44.7 43.2 47.1 4.62

Traditional Gaussian 41.6 51 54 43.4 43.1 44.6 46.2 5
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Table 5. Object recognition accuracy (%) of CNN for different impacts with various denoising
approaches.

OR Accuracy for Each Impact (%) Total

Approach
Impact

Blur Dirty S & P CT OE UE Mean SD

Without Denoising 52.6 35.84 53.7 55.8 43.5 42.4 47.3 7.2

Embedded median 32.8 34.4 41.4 31.3 34.4 30.2 34 3.6

Embedded Gaussian 49.1 46.2 50.4 55 46.5 50.7 49.6 2.9

Traditional median 52.6 35.6 50.5 60.4 34.4 32.1 44.2 10.7

Traditional Gaussian 46.7 47.6 39.2 49.6 47.6 45.9 46.1 3.2

4.2.1. Traffic Sign Recognition Accuracy

The recognition accuracy of CURE-TSR is mentioned in Table 3. The highest accuracy
is given in bold in Tables 3 and 5 . The table shows the traffic sign recognition accuracy with
both denoising approaches (embedded and traditional) using median and Gaussian filters
and no denoising. To illustrate, in lens blur, the maximum recognition accuracy comes with
the traditional denoising technique using a median filter, which is 73.3% compared with
70.3% accuracy obtained by the Gaussian filter, because Gaussian filters blur or smooth the
image, which results in more blurring of images

. Hence, the median filter is more effective at denoising lens blur in comparison with
the Gaussian filter. Contrasted to lens blur, the Gaussian filter is effective in lens dirty,
which is clearly reflected in Table 3. The traffic sign recognition accuracy is 88.1% for
the embedded denoising approach with the Gaussian filter, which is maximum, as the
Gaussian filter results in smoothening of the image while preserving the overall structure
in lens dirtiness .

Table 6. Computational time (minutes) for object recognition for different impacts with various
denoising approaches for CURE-OR. Here, mean and SD stand for the mean and standard deviation
of the computational time for all impacts.

Computational Time for Each Impact Total

Approach
Impact

Blur Dirty S & P CT OE UE Mean SD

Without denoising 60.1 41.8 43.5 46.3 48 36.9 46.1 7.86

Embedded median 40.4 42.4 43.8 60 67.8 45.4 49.9 11.19

Embedded Gaussian 39.4 61.3 41.8 48.5 37.5 41.2 44.9 8.83

Traditional median 64.9 39.3 118.4 64.8 47.6 65.5 66.7 27.55

Traditional Gaussian 39.2 43 40.3 37.6 35.4 65.2 43.4 10.95

To perceive the overall detection accuracy and reliability of a particular approach, we
calculate the mean value of Top-1 accuracies and their SD for all impacts. Overall, out
of the without denoising, traditional, and embedded denoising approaches, traditional
denoising with a median filter is superior to or similar to without denoising; it achieves
maximum accuracy for the maximum number of impacts (2/6 impacts—lens blur and
snow). Additionally, even though embedded denoising with median filter achieves the
highest mean accuracy (76.5), traditional denoising with median filter obtains the second-
highest mean accuracy (74.3) and the lowest SD (17.9) because the traditional denoising
approach does not resize the images before denoising. However, the embedded approach
requires the resizing of images before denoising, which leads to the loss of information and
the addition of some redundant data into the existing database.
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On the other hand, no denoising technique works in shadow and darkness. Table 2
shows the mean and SD of a particular image under different levels of impacts. It is
depicted in Table 2 that the mean of gray-level values decreases as the level of impact
such as darkness and shadow increases. For instance, in darkness, the value decreases
continuously from 85.99 to 6.93 because a reduction in average gray value occurs as light
intensity decreases, resulting in a reduction in overall image intensity. Similarly, in shadow,
the mean value reduces from 117.7 to 69.49. It can be particularly challenging for filters like
Gaussian and median to properly eliminate noise without altering the shadow regions since
shadows change the overall brightness and contrast of an image as mentioned in Table 3 .
As a result, the shadow regions become blurry or smoothed [54]. In shadow, we achieve
maximum recognition accuracy without any type of denoising, i.e., 89.6%. Likewise, the
maximum accuracy without using any denoising approach is seen in darkness, which
is 89.6% (refer to Table 3). Image noise and other artifacts may appear when an image
is taken in low light or complete darkness because there may not be enough lighting to
produce an accurate and well-exposed image. Gaussian and median filters may not be able
to effectively remove the noise in these circumstances.

Another environmental impact is rain, where no denoising approach works. We attain
the maximum accuracy (88.5%) of rain without using any denoising technique because rain
streaks are often more complex and correlated and can extend across multiple pixels in a
non-uniform manner . The median and Gaussian filters may not be effective at removing
the specific type of noise caused by rain streaks. Specialized algorithms are required that
are designed to specifically address this type of noise and separate it from the underlying
image content [55].

4.2.2. Computational Time for Traffic Sign Recognition

The computational time of CNNs is influenced by various factors, such as the number
of layers, the size of the input data, the number of filters in each layer, and the size of the
filters. In these experiments, we refer to both training and testing time as computational
time. In these experiments, we use the same number of layers, number of filters, and size
of the filters. However, the difference is just the size of the input data, which is mentioned
in Section 3.3. Note, in Tables 3 and 4 , SH stands for shadow and DK means darkness. In
Tables 4 and 6, we provide the bold text where the processing time is the lowest.

In lens blur, snow, and darkness, an embedded denoising approach with a median
filter takes more computational time. However, in lens dirty, rain, and snow, the traditional
denoising approach with a median filter takes maximum computational time, as is seen
in Table 4. In all the environmental and camera impacts, the median filter takes more
computational time than the Gaussian filter due to the way it processes data. We calculated
the mean values and standard deviation of computational time in each denoising approach.
Embedded denoising with a Gaussian filter takes less computational time (36.6 m) than
embedded denoising with a median filter. Also, the standard deviation of the computational
time of embedded denoising with a Gaussian filter is the smallest (1.03) among all other
denoising approaches because a Gaussian filter replaces each pixel with a weighted average
of its neighbors based on a Gaussian distribution, whereas a median filter replaces each
pixel in an image with the median value of its neighboring pixels . The neighboring pixels
must be sorted to obtain the median value, which is a computationally expensive procedure.
The Gaussian weighted average, on the other hand, can be computed quickly because it
just requires addition and multiplication operations.

4.3. Recognition and Computational Time Analysis for CURE-OR

In this section, we present the object recognition accuracy by CNN using various
denoising approaches. We also present the computational time taken by CNN for object
recognition. Note, in Tables 5 and 6, S & P stands for salt and pepper noise, OE means
overexposure, UE stands for underexposure, CT stands for contrast, and SD means standard
deviation.
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4.3.1. Object Recognition Accuracy

Table 5 shows the object recognition accuracy of CNN by using traditional and em-
bedded denoising approaches with median, Gaussian, and without a filter. For instance,
traditional denoising with a median filter has maximum object recognition accuracy for
lens blur, which is 52.6%. Similar results were seen in the CURE-TSR dataset for lens blur.
For impact contrast, the traditional denoising approach with a median filter has maximum
accuracy, i.e., 60.4%. Contrast refers to the difference in brightness or color between various
parts of an image. A Gaussian filter may actually make contrast problems worse by blurring
the borders between contrasting regions.

In overexposure, the traditional denoising approach with a Gaussian filter has max-
imum object recognition accuracy, i.e., 47.6%. When an image’s brightness is too high,
overexposure happens and features are lost in the highlights. When an image is overex-
posed, the brightest pixels may all have the same high value, which will act as the region’s
median value. This means that applying a median filter will not change the value of these
pixels and will not recover the lost details. Similarly, in underexposure, the maximum
object recognition accuracy uses an embedded denoising approach with a Gaussian filter
(50.7%). Median filters do not work in underexposure because when an image’s brightness
is too low, underexposure happens and features are lost in the shadows. The pixels in
the darkest regions of an underexposed image might all have the same low value, which
will serve as the region’s median value. A median filter cannot restore the lost features
because it will not alter the value of these pixels. Table 5 shows the traditional median
and Gaussian produce maximum accuracy for the maximum number of impacts (4/6
impacts). When we compare the mean accuracy and SD, embedded Gaussian is the best,
with mean accuracy and SD as 49.6 and 2.9, respectively, while the embedded median
appears to be the worst (its respective mean accuracy and SD are 34 and 3.6). However,
if we contrast traditional denoising against embedded denoising, traditional denoising,
especially traditional Gaussian, shows superior results overall.

4.3.2. Computational Time for Object Recognition

Table 6 represents the computational time for object recognition by different denoising
approaches. In terms of processing time, similar to the computational time of CURE-TSR,
the traditional denoising approach with a median filter takes more time (66.7 m) than the
embedded denoising approach (49.9 m) with a median filter. Also, embedded denoising
(44.9 m) and traditional denoising (43.4 m) approaches with the Gaussian filter take less
computational time because they require simple mathematical operations. We do not
consider the pre-processing time for traditional denoising because in real/live systems we
would have to apply denoising before we could run CNN.

4.4. Decision about Denoising Needs to Be Made

We compare the recognition accuracy with the quality of images through PSNR
histograms. Various image quality assessment metrics exist such as PSNR, the structural
similarity index measure (SSIM), and others to assess image quality. However, among
them, PSNR is one of the most reliable and widely used image quality assessment metrics.
As demonstrated in Figure 8, the recognition accuracy varies consistently with the PSNR
values, and in general, accuracy increases with an increased PSNR value. To illustrate this,
in lens blur with Gaussian filtering, the traffic sign recognition accuracy decreases from
87.6 to 85.3 as PSNR decreases from 31.83 to 28.05.



Appl. Sci. 2023, 13, 11560 15 of 21

Figure 8. Mean PSNR vs. recognition accuracy in CURE-TSR dataset. Here, LBWD: lens blur without
denoising; LBM: lens blur with median filtering; LBG: lens blur with Gaussian filtering; LDWD:
lens dirty without denoising; LDM: lens dirty with median filtering; LDG: lens dirty with Gaussian
filtering; RWD: rain without denoising; RM: rain with median filtering; RG: rain with Gaussian
filtering; SWD: shadow without denoising; SM: shadow with median filtering; SG: shadow with
Gaussian filtering; DWD: darkness without denoising; DM: darkness with median filtering; and DG:
darkness with Gaussian filtering.

Therefore, to compare the quality of images, we used the PSNR of all images for
a particular impact before and after Gaussian and median filtering through histograms.
Note that each image has one PSNR value. As per the discussion of results from the
CNN’s recognition accuracy, we realize that denoising with Gaussian and median filters
decreases the recognition accuracy for some environmental and camera impacts compared
to applying denoising in CNN. For example, in rain, shadow, and darkness, the recognition
accuracy decreases with denoising approaches. The decrease in recognition accuracy shows
that the application of Gaussian and median filters degrades the image quality rather than
improving it. Therefore, we need some criteria to make a firm decision on whether we
should use denoising or not.

We make a decision on assessing the image quality. If the image quality improves
after using embedded and traditional denoising with Gaussian and median filters, then
denoising works; otherwise, we should not adopt the particular method for denoising.
As alluded to before, we choose PSNR as an image quality measure and the distribution
(histogram) of PSNRs to show the comparative image quality with and without applying
denoising.

Figure 9a shows the comparative histogram of PSNR values of underexposure before
and after Gaussian denoising for the CURE-OR dataset. According to the two principles
mentioned in Section 3.2, the histogram is right skewed and has higher frequency values for
higher PSNR values such as 28.2 dB and 28.3 dB after Gaussian denoising. The right-skewed
and higher frequency values of higher PSNRs vindicate that the overall image quality of the
CURE-OR dataset in underexposure is improved after denoising with Gaussian filtering,
i.e., the Gaussian filter is effective for the removal of underexposure. Parallely, Table 3 also
shows that the highest (50.7%) and second highest (45.9%) object recognition accuracies
produced by CNN are for embedded and traditional denoising with Gaussian filtering,
respectively. Similarly, Figure 9b represents the histogram of PSNR values in underexposure
before and after median denoising for the CURE-OR dataset. In comparison to Gaussian
denoising, in this figure, the histogram is right-skewed (as it is shifted to a higher PSNR
value, which is 28.3 dB) after denoising. However, higher frequency values do not exist
for higher PSNRs (28.1 and 28.2 dB) after denoising. Only one principle is followed for



Appl. Sci. 2023, 13, 11560 16 of 21

the median filter, unlike the Gaussian filter, which follows both principles . To conclude,
it is reflected from these histograms that the Gaussian filter is effective for the removal of
underexposure. Table 5 also shows that the lowest (30.2%) and second lowest (32.1%) object
recognition accuracies produced by CNN are for embedded and traditional denoising with
median filtering, respectively.

(a) (b)
Figure 9. Comparative histogram of PSNR of underexposure without denoising and with Gaussian
and median filtering for CURE-OR dataset. (a) Before and after Gaussian filtering. (b) Before and
after median filtering.

Correspondingly, the comparative histogram of PSNR of lens blur is shown in
Figure 10. As per the principle, the histogram after Gaussian filtering is not right-skewed
and has less frequency at higher PSNRs (refer to Figure 10a). Table 5 also shows the lowest
(39.2%) and second lowest (39.4%) object recognition accuracy in the CURE-OR dataset
after embedded and traditional denoising with Gaussian filtering. It indicates that the
overall image quality of the CURE-OR dataset in lens blur is not improved after denoising
with Gaussian filtering, i.e., the Gaussian filter is not effective for the removal of lens blur.
However, with median denoising, it is not either left or right-skewed, but it has more
frequency at high PSNR (31 dB) values. In this instance, only one principle is followed. It
can be concluded that either median denoising or no denoising works in lens blur. The
results exactly correlate with Table 5, which shows that the highest object recognition
accuracy (64.9%) by CNN is with using traditional denoising with a median filter, and the
second highest is without denoising, which is 60.1%. This demonstrates that the overall
image quality of the CURE-OR dataset in lens blur is improved after denoising with median
filtering, i.e., a median filter is effective for the removal of lens blur.

In the CURE-TSR dataset, the histogram of the shadow is given in Figure 11. Figure 11a
represents the PSNR distribution before and after Gaussian filtering. The histogram is not
right skewed after Gaussian denoising and does not have a higher frequency at maximum
PSNR values. Table 2 also exhibits the lowest (83.3%) traffic sign detection accuracy for
the shadow in the CURE-TSR dataset. It concludes that the overall image quality of the
CURE-OR dataset in shadow is improved after denoising with Gaussian filtering, i.e., the
Gaussian filter is not effective for the removal of shadow. Similarly Figure 11b shows
that it is not following the two above-mentioned principles mentioned in Section 3.2. The
histogram after median filtering is not right-skewed and does not have high values at
higher PSNRs (32 dB and 34 dB). As a consequence, the quality of images is not improved
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after denoising with a median filter. Similar results are shown in Table 5, where the no
denoising approach has maximum traffic sign recognition accuracy, i.e., 92%.

This demonstrates that the overall image quality of the CURE-OR dataset in shadow is
not improved after denoising with median or Gaussian filtering. Therefore, it is not recom-
mended to use either embedded or traditional denoising with median or Gaussian filters.

(a) (b)
Figure 10. Comparative histogram of PSNR of lens blur without denoising and with Gaussian and
median filtering for CURE-OR dataset. (a) Before and after Gaussian filtering. (b) Before and after
median filtering.

(a) (b)
Figure 11. Comparative histogram of PSNR of the shadow without denoising and with Gaussian
and median filtering for CURE-TSR dataset. (a) Before and after Gaussian filtering. (b) Before and
after median filtering.

Also, in the darkness, it is clear from Table 5 and Figure 12 that denoising is not work-
ing with either median or Gaussian filter. The value of maximum traffic sign recognition
accuracy is 89.6 without a denoising approach . Also, the histogram does not follow the two
principles of right skewing and high values at higher PSNRs. It elucidates that the overall



Appl. Sci. 2023, 13, 11560 18 of 21

image quality of the CURE-OR dataset in darkness is not improved after denoising with
median or Gaussian filtering. Therefore, it is not recommended to use either embedded or
traditional denoising with median or Gaussian filters for darkness.

As a consequence, through the comparison of recognition accuracy and PSNR distribu-
tion, we can conclude whether denoising needs to be adopted in particular environmental
and camera impacts or not.

(a) (b)
Figure 12. Comparative histogram of PSNR of darkness without denoising and with Gaussian and
median filtering for CURE-TSR dataset. (a) Before and after Gaussian filtering. (b) Before and after
median filtering.

5. Conclusions

In this paper, we present traditional and embedded image-denoising approaches
to analyze the performance of a deep learning algorithm called CNN. The performance
of CNN is analyzed in terms of recognition accuracy and computational time. For this
study, we use the CURE-TSR and CURE-OR datasets. We embed the Gaussian and median
denoising filters because with the traditional approach, the results are almost the same in
median and bilateral filters. Therefore, the Gaussian and median filters are used as these
are more time-efficient among all three filters. The traditional denoising approach achieves
high traffic recognition accuracy for more impacts than the embedded-based denoising
approach. And the higher computational time is taken by both denoising approaches with
a median filter compared to the Gaussian filter. The Gaussian filter is the most time-efficient
filter to be used in denoising approaches. In this paper, for denoising embedded in CNN, we
added an extra denoising layer. It is embedded as the first layer in the existing CNN model.
However, we can add a denoising layer in any place before or after each convolution layer
as well and will evaluate the results in the future. Moreover, the performance of denoising
approaches has been evaluated using recognition accuracy. We present an approach to
deciding whether decisioning will be adopted by leveraging the PSNRs distribution of
images. The derived decisions verified the recognition accuracy for all the impacts of the
two well-known image recognition datasets used in this paper. In the future, we aim to
assess the impact of image denoising on various CNN-based image analysis applications
such as smart agriculture and others where outdoor image capturing is required. This
performance study has been conducted using traditional denoising approaches such as
Gaussian and median filters. In this performance study, we embedded the filters into the
CNN model, and these above-mentioned filters are used as a pre-processing step before
finding the recognition accuracy using CNN in traditional denoising. CNN is mainly
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focused on calculating the traffic sign and object recognition accuracy. However, there are
DL-based techniques especially using CNN dedicated to denoising that are available in the
literature. For our future study, we will exploit these DL-based denoising techniques. In
this study, we use CURE traffic signs and object recognition datasets. We will use other
image recognition benchmark datasets applied in different applications in the future.
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