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Abstract: This contribution presents a finite element shell model capable of performing linear
vibration analyses of shell-type structures made of functionally graded material (FGM). The model
is based on the seven-parameter spectral/hp finite element formulation, which allows the analysis
ofFG shells of either uniform or nonuniform thickness. Equations of motion are derived using
the Hamilton’s principle and the material properties of the constituents are considered to follow a
power-law volume distribution through the thickness direction. The verification of the present model
is carried out by comparing with numerical results available in the literature, and with numerical
simulations performed in a commercial software. To demonstrate the capabilities of the present
formulation, the free vibration response of different shell structures, with nonuniform thickness,
to the variation of the geometrical parameters (e.g., radius-to-thickness ratio) and the mechanical
properties is reported.

Keywords: functionally graded material; seven-parameter shell formulation; finite element model;
natural frequencies; numerical results; thickness variation

1. Introduction

The extensive field of engineering applications in diverse industries (e.g., automotive,
nautical, aeronautics, aerospace) in conjunction with the continuously more demanding
design requirements has led to the development of advanced materials capable of address-
ing their needs, improving their performance, or eliminating deficiencies of conventional
materials. For instance, composite materials allow a weight reduction in structural mem-
bers or machine components without compromising the design requirements. Among
these advanced materials, an interesting material known as functionally graded material
(FGM) is found, which is basically a material with a variation of mechanical properties
along one direction or more. In the literature, it is well known that FGMs were introduced
to overcome the limitations of composites, such as delamination at high temperatures
due to stress concentrations at interfaces of the composite [1,2]. The concept of FGM was
introduced in the 1980s by a group of scientists in Japan [1,3,4]. The available computational
resources nowadays, which are very powerful tools for engineers, and the complexities
involved in the modeling of new materials have motivated the development of numerical
models to predict their mechanical behavior. In the last three decades, researchers have
shown increasing interest in the area of FGMs.

As mentioned earlier, the functionally graded materials present—in the most general
case—a variation of properties through various directions (e.g., along thickness coordinate),
and they are usually composed of a mixture of two materials. Therefore, this variation
made the FGM a heterogeneous material; due to this fact, different mathematical models,
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also known as homogenization schemes [5], have been used to evaluate the effective prop-
erties of the FGMs, and the gradation of the volume fraction. Several analytic approaches
have been proposed, like self-consistent estimates, Mori–Tanaka scheme, Vegard’s rule,
composite sphere assemblage model, composite cylindrical assemblage model, the simpli-
fied strength of materials method, the method of cells, and micromechanical models [5–7].
Some models that have attracted more attention are Voigt’s mixture rule, Mori–Tanaka
scheme, and self-consistent models [8]. Generally, the rule of mixture and Mori–Tanaka
schemes are used by researchers [3].

The present literature review is limited to those works reporting the free vibration
analysis of functionally graded (FG) shell structures, specially those considering a variation
of the material properties through the thickness and using a power-law volume distribution
of the constituents. Despite this, during the review, free vibration analyses of FG plates
with uniform thickness were also found in the works [9–17], while vibration analyses of FG
plates with variable thickness can be found in [18–20].

Studies related to shells of uniform thickness were presented by Matsunaga [21],
Tornabene, Viola and Inman [22], Tornabene and Viola [23], Iqbal, Naeem and Sultana [24],
Neves et al. [25], Su et al. [26,27], Su, Jin and Ye [28], Torabi and Ansari [29], Ersoy, Mercan
and Civalek [30], Brischetto [31], Pham et al. [32], Moita et al. [33], Zannon et al. [34], and
Bagheri et al. [35]. In the aforementioned works, the formulations are based on different
theories such as first-order shear deformation theory (FSDT), third-order shear deformation
theory (TSDT), higher-order shear deformation theory (HSDT), wave propagation approach,
Carrera’s unified formulation, and three-dimensional elasticity theory.

Analysis of the free vibration of stepped FG shells was reported by Li et al. [36]
and Gong et al. [37]. Formulations considering the variation of the shell thickness were
presented by Tornabene, Fantuzzi, and Bacciocchi [38] for the analysis of FG laminated free-
form doubly-curved shells and panels, and by Tornabene et al. [39] for FG sandwich shell
structures. However, they used different schemes to model the variation of the mechanical
properties, such as four-parameter power-law, Weibull, and exponential distributions.

Furthermore, in the literature, the modeling of FG shell type structures or FG plates by
means of commercial finite element codes is also reported. Examples of models using AN-
SYS are the works of Rao, Blessington, and Tarapada [40], Mouli et al. [41], and Marzavan
and Nastasescu [42]. In this regard, Burlayenko et al. [43] used a three-dimensional brick
finite element available in ABAQUS to model the free vibration of FG sandwich plates.

In the literature, several works related to the seven-parameter finite element formula-
tion can be found [44–48]. However, to date, the implementations of this formulation were
devoted to performing different analyses than the modal analysis of FG shell structures
with nonuniform thickness.

The main aim of this work is to extend the finite element analysis previously presented
in [49] for the modeling of shell-type structures made of FGMs; that is, to take into account
the FGM behavior in the seven-parameter finite element formulation in order to determine
the natural frequencies and vibration modes of arbitrary FG shell structures with uniform
and nonuniform thicknesses. Moreover, due to the few results available in the literature for
FG shell-like structures with variable thickness, a user-defined routine to model these type
of structures by means of the commercial code ANSYS mechanical APDL is developed and
used to compare the results of the present finite element model. In addition, the routine
performance is verified using natural frequencies of FG structures with constant thickness
reported in the literature.

2. Theoretical Formulation

Since the present work is an extension of the finite element model presented in [49], the
most relevant aspects related to the formulation are given below, and a more detailed expla-
nation can be found in the previously mentioned work. In Figure 1, the three-dimensional
(3D) geometry of the shell element Φ and the discretization of the mid-surface Ω are shown;
the main idea to model the 3D domain is to represent it by means of its mid-surface. In this
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case, Figure 1 illustrates the discretization of the shell’s mid-surface using spectral nodes
for an element with polynomial order p = 4.

X1 X2

X3

ξ1 ξ2

ξ3

h

Φ
Ω

Xk

Figure 1. Mid-surface and spectral nodes of a shell element.

2.1. Geometrical Parameters

The position vector of a typical point in the element Φ can be approximated as

X =
q

∑
k=1

ψk(ξ1, ξ2)

(
Xk + ξ3 h

2
nk
)

, (1)

where ψk
(
ξ1, ξ2) is the k-th two-dimensional (2D) Lagrange interpolation function of

order p, Xk is the position vector, nk is the unit normal vector of the k-th spectral node, and
h denotes the thickness in the k-th spectral node position, so the thickness variation can be
easily considered. The total number of nodes per element is q = (p + 1)(p + 1).

Additionally, a set of covariant basis vectors for each point in the element must
be defined:

gi =
∂X
∂ξ i ≡ X,i i = 1, 2, 3. (2)

A differential line element in the typical shell element, in terms of the curvilinear
coordinates, can be expressed as


dX1
dX2
dX3


T

=


dξ1

dξ2

dξ3


T



∂X1

∂ξ1
∂X2

∂ξ1
∂X3

∂ξ1

∂X1

∂ξ2
∂X2

∂ξ2
∂X3

∂ξ2

∂X1

∂ξ3
∂X2

∂ξ3
∂X3

∂ξ3

 = {dξ}T [J], (3)

where [J] is the Jacobian matrix with determinant J. In conjunction with the covariant basis
vectors, a contravariant set of basis vectors gi is defined, as follows:

g1 =
g2 × g3

J
, g2 =

g3 × g1

J
, g3 =

g1 × g2

J
.
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2.2. Displacement Field

The displacement field of the seven-parameter formulation considered in this work is
given by [46,47]

u(X, t) = u(ξα, t) + ξ3 h
2

ϕ(ξα, t) +
(

ξ3
)2 h

2
Ψ(ξα, t), (4)

where

u(ξα, t) = ui(ξ
α, t)Êi, ϕ(ξα, t) = ϕi(ξ

α, t)Êi, Ψ(ξα, t) = Ψ(ξα, t)n(ξα),

Here, Êi is a unit vector in direction i of the Cartesian coordinate system X1X2X3; therefore,
the subindex i takes the values of 1, 2, and 3.

In Equation (4), the vector u(ξα, t) is associated with the mid-surface displacements
in the three directions, ϕ(ξα, t) is the difference vector which gives the change in the mid-
surface director, and the vector Ψ(ξα, t) is defined by scaling the normal vector n with
the seventh parameter Ψ, which denotes the thickness stretch and mitigates the Poisson’s
locking phenomena that appear in the six-parameter formulation [47,48].

2.3. Strains

The strains in the element are obtained by considering only the linear part of the
Green–Lagrange strain tensor, and are given by

E =
1
2
(
u,i · gj + gi · u,j

)
gi ⊗ gj, (5)

which can be expressed in their covariant components as [50]

E = Eαβ gα ⊗ gβ + Eα3 gα ⊗ g3 + E3α g3 ⊗ gα + E33 g3 ⊗ g3, (6)

where, considering only the linear terms associated with the thickness coordinate, the
covariant components are

Eαβ = ε
(0)
αβ (ξ

α, t) + ξ3ε
(1)
αβ (ξ

α, t), (7)

Eα3 = ε
(0)
α3 (ξ

α, t) + ξ3ε
(1)
α3 (ξ

α, t), (8)

E3α = Eα3, (9)

E33 = ε
(0)
33 (ξ

α, t) + ξ3ε
(1)
33 (ξ

α, t). (10)

3. Constitutive Equations

In this work, the FGM constituents are considered to behave as isotropic linear elastic
materials. It is worth pointing out that despite this assumption, the FGM analyzed here
remains heterogeneous along the thickness direction, and the simple rule of mixtures is
used as a homogenization scheme to evaluate the effective material properties of the FGM,
which is written as [47,51]

P
(

ξ3
)
=
(

Ptop − Pbot
)
Vi

top

(
ξ3
)
+ Pbot, (11)

where P
(
ξ3) denotes the effective material property (e.g., Young’s modulus, mass density,

Poisson’s ratio) along the thickness coordinate, Ptop and Pbot are the material properties of
the top and bottom constituents, respectively, while Vi

top
(
ξ3) is the volume distribution

of the top constituent—through thickness—corresponding to the following forms of the
power-law [22]:

V I
top

(
ξ3
)
=

(
1 + ξ3

2

)n

, (12)
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V I I
top

(
ξ3
)
=

(
1− ξ3

2

)n

, (13)

where n is the volume fraction exponent or power-law index, and its value may be greater
or equal to zero. In order to adequately compare with numerical results reported in the
literature, the volume distribution V I I

top
(
ξ3) is also considered in this work.

From now on, to distinguish the aforementioned volume distributions, the volume
distribution given by Equation (12) is referred to as FG-I and the volume distribution
described by Equation (13) is referred to as FG-II.

Now, for the assumed constituent materials, the fourth-order elasticity tensor, in terms
of contravariant vectors, is given by

C = Cijklgi ⊗ gj ⊗ gk ⊗ gl , (14)

where the contravariant components are determined by

Cijkl = λ
(

ξ3
)

gijgkl + µ
(

ξ3
)(

gikgjl + gil gjk
)

. (15)

In Equation (15), λ
(
ξ3) and µ

(
ξ3) are the Lamé parameters defined in terms of Young’s

modulus, E
(
ξ3), and Poisson’s ratio, ν

(
ξ3), as

λ
(

ξ3
)
=

ν
(
ξ3) E

(
ξ3)

[1 + ν(ξ3)][1− 2ν(ξ3)]
, µ

(
ξ3
)
=

E
(
ξ3)

2[1 + ν(ξ3)]
.

Also, in Equation (15), gij denotes the contravariant components of the Riemannian
metric tensor in the reference configuration, given as gij = gi · gj.

Recalling the considerations of the constituents behavior previously mentioned in
this section, the mechanical behavior is assumed to follow Hooke’s law. Then, the relation
between the second Piola–Kirchhoff stress tensor and the Green–Lagrange strain tensor is
given by

S = CE, (16)

And the contravariant components of S are determined by Sij = CijklEkl .

4. Equations of Motion

The equations of motion associated with the present finite element model are derived
using the Hamilton’s principle, which is defined as [52]∫ T

0
[δK− (δU + δV)] dt = 0, (17)

where δK represents the virtual kinetic energy, δU is the virtual strain energy, and δV is the
virtual potential energy due to external loads.

From Hamilton’s principle, the mass matrix, the stiffness matrix, and the load vector
can be obtained straightforwardly using the virtual kinetic energy, the virtual strain energy,
and the virtual potential energy, respectively. However, for the present study, it is sufficient
to compute the stiffness and mass matrices to define the finite element model.

For the displacement field considered here, the virtual kinetic energy is given by

δK =
∫

A

{
I0(δu̇ · u̇) + I1

[
h
2
(u̇ · δϕ̇+ ϕ̇ · δu̇)

]
+ I2

[
h
2

(
u̇ · δΨ̇n +

h
2

ϕ̇ · δϕ̇+ Ψ̇n · δu̇
)]

+

+ I3

[
h2

4
(
ϕ̇ · δΨ̇n + Ψ̇n · δϕ̇

)]
+ I4

[
h2

4

(
Ψ̇δΨ̇||n||2

)]}
dA, (18)
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And the virtual strain energy is given by

δU =
∫

A

[
Aijklδε

(0)
ij ε

(0)
kl + Bijkl

(
δε

(1)
ij ε

(0)
kl + δε

(0)
ij ε

(1)
kl

)
+ Dijklδε

(1)
ij ε

(1)
kl

]
dA. (19)

In Equation (18), ||n|| is the norm of the normal vector n, the dot indicates the partial
derivative with respect time, and the mass inertias are defined as

{I0, I1, I2, I3, I4} =
∫ 1

−1

{
1, ξ3,

(
ξ3
)2

,
(

ξ3
)3

,
(

ξ3
)4
}

ρ
(

ξ3
)

Jdξ3,

where ρ
(
ξ3) is the mass density.

In Equation (19), the contravariant components Aijkl , Bijkl , Dijkl are the effective exten-
sional, extensional–bending coupling, and bending fourth-order stiffness tensor compo-
nents [47]. Such components are calculated using the following definitions:

Aijkl =
∫ 1

−1
Cijkl Jdξ3, Bijkl =

∫ 1

−1
ξ3Cijkl Jdξ3, Dijkl =

∫ 1

−1

(
ξ3
)2

Cijkl Jdξ3.

The expressions of Equations (18) and (19) are used to determine the mass and stiffness
matrices, respectively.

5. Finite Element Model

The present vibration analysis assumes harmonic motion; therefore, the generalized
displacements u(ξα, t), ϕ(ξα, t) and the seventh parameter Ψ can be expressed as [53]

u(ξα, t) = u(ξα)e−iωt, (20)

ϕ(ξα, t) = ϕ(ξα)e−iωt, (21)

Ψ(ξα, t) = Ψ(ξα)e−iωt, (22)

Note that ω represents the frequency of natural vibration and i =
√
−1. For the finite

element approximation, the displacements and the seventh parameter are approximated as

u(ξα) =
q

∑
j=1

ψj(ξ
α)u, ϕ(ξα) =

q

∑
j=1

ψj(ξ
α)ϕ, Ψ(ξα) =

q

∑
j=1

ψj(ξ
α)Ψ. (23)

To obtain the mass matrix [Me] and the stiffness matrix [Ke] of the element e, the
generalized displacements and the seventh parameter must be replaced by their approxi-
mations in the virtual kinetic energy of Equation (18) and in the virtual strain energy of
Equation (19), respectively.

Therefore, the finite element model (i.e., the eigenvalue problem) governing the free
vibration analysis can be written as(

[K]−ω2[M]
)
{∆} = {0}, (24)

where {∆} is the vibration mode vector associated with ω, and [K] and [M] are the global
stiffness and mass matrices, respectively, which result from assembling the local stiffness
and mass matrices of each element. Note that, if it is the case, boundary conditions must be
applied to the global matrices. In this work, the eigenvalue problem is solved using a C++
template library for linear algebra called Eigen [54].

Finally, to illustrate the general process for the present finite element analysis, a
flowchart is depicted in Figure 2. The dashed rectangle represents the processes executed
for each seven-parameter element in the model mesh.
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• Input mesh data: X, n, h
• Input material properties
• Input boundary conditions

START

Read data
for element e

Compute local stiffness
and mass matrices

Assamble local matri-
ces to global stiffness

and mass matrices

Has global
assamble finished?

Application of
boundary conditions

Solution of the
eigenvalue problem

Post-Processing
(write results, plot vibration modes) END

NO

YES

Figure 2. Flowchart for the overall finite element analysis process.

6. Solid Model

This section presents a brief description about the solid model made in ANSYS,
which is used to compare results with the ones obtained by means of the present finite
element model.

The solid model is meshed using linear solid elements, i.e., SOLID185 elements.
To emulate the mechanical property variations of the FGM, several layers were defined
through thickness direction. An isotropic material was assigned to each layer, where its
mechanical properties were evaluated according to its position along the thickness direction
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and using Equation (11). For instance, in Figure 3, a close-up image of the materials through
the thickness direction is depicted.

Figure 3. Solid model for a parabolic shell and a close-up image showing the materials through
thickness direction.

Regarding the boundary conditions used in this study, clamped edge and simply
supported edge, these are defined as follows:

• Clamped edge: all the degrees of freedom of the nodes associated with the correspond-
ing edge are constrained.

• Simply supported edge: all the degrees of freedom for the nodes located at the mid-
surface of the solid model are constrained, and the remaining nodes are constrained
in the tangential and the thickness directions.

Note that, in order to obtain nodes at the mid-surface, an even number of layers must
be defined, since linear solid elements are used.

7. Results

In this section, the geometrical parameters of the shell structures analyzed here are
introduced. In addition, the convergence studies and numerical comparisons are included.
At the end, the influence of the geometrical parameters and material properties on the
natural frequencies is presented to illustrate the performance of the present model. All
natural frequencies are reported in Hertz.

7.1. Geometrical Parameters

For the shells studied here, the position vector used to describe the mid-surface of
the shell and the functions for variation of the thickness are listed below. In addition, the
geometrical parameters are depicted in Figures 4–6. Note that the thickness variation is
linear for all the shells, and the conical, parabolic, and hemispherical shells are truncated.
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1. Conical shell

• Mid-surface:

r(θ, z) = r(z) cos θ î + r(z) sin θ ĵ + z k̂,

0 ≤ z ≤ L cos α

0 ≤ α < π/2

0 ≤ θ ≤ 2π

(25)

where r(z) = r0 +
r1 − r0

L cos α
z.

• Thickness variation:

h(z) = h0 + (h1 − h0)
z

L cos α
,

0 ≤ z ≤ L cos α

0 ≤ α < π/2
(26)

2. Cylindrical shell (α = 0)

• Mid-surface:

r(θ, z) = r0 cos θ î + r0 sin θ ĵ + z k̂,
0 ≤ z ≤ L

0 ≤ θ ≤ 2π
(27)

• Thickness variation:

h(z) = h0

[
1 +

h1 − h0

h0

z
L

]
, 0 ≤ z ≤ L (28)

3. Parabolic shell

• Mid-surface:

r(ϕ, θ) = r(ϕ) cos θ î + r(ϕ) sin θ ĵ +
r(ϕ)2

4F
k̂,

ϕ0 ≤ ϕ ≤ ϕ1

0 ≤ θ ≤ 2π
(29)

where r(ϕ) = 2F tan ϕ, with F being the focal distance [55].
• Thickness variation:

h(ϕ) = h0

[
1 + β

(
ϕ− ϕ0

ϕ1 − ϕ0

)]
, ϕ0 ≤ ϕ ≤ ϕ1 (30)

4. Hemispherical shell

• Mid-surface:

r(ϕ, θ) = r0 sin ϕ cos θ î + r0 sin ϕ sin θ ĵ + r0 cos ϕ k̂,
ϕ0 ≤ ϕ ≤ ϕ1

0 ≤ θ ≤ 2π
(31)

• Thickness variation:

h(ϕ) = h0

[
1− β

(
ϕ− ϕ0

ϕ1 − ϕ0

)]
, ϕ0 ≥ ϕ ≥ ϕ1 (32)

An additional parameter, used in the following sections when reporting natural fre-
quencies of shells with variable thickness, is the average thickness, hm, which is defined as

hm =
h0 + h1

2
. (33)
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α

x

z

L

r(z)h0

h1

r0

r1

Figure 4. Geometrical parameters and revolution profile for a conical shell.

x

z

r(ϕ)

h0

h1

F

ρ2 (ϕ)

ϕ

ϕ0

ϕ1

Figure 5. Geometrical parameters and revolution profile for a parabolic shell.

x

z

h0

h1

r0

ϕ0

ϕ1

Figure 6. Geometrical parameters and revolution profile for a hemispherical shell.

7.2. Boundary Conditions

For convenience, a nomenclature based on capital letters is used to describe the
boundary conditions applied in each case of study. The letters C, F, and S denote a clamped
edge, a free edge, and a simply supported edge, respectively.

The clamped edge (C) restricts all the degrees of freedom associated with the nodes at
the end that represent the maximum thickness, while the nodes located at a free edge (F)
are unrestricted.
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Furthermore, the parabolic shell structure analyzed here is subjected to SF boundary
conditions (i.e., simply-supported-free). Therefore, the degrees of freedom of the nodes at
the simply supported edge (S) are restricted as follows:

u = Ψ = 0. (34)

7.3. Material Properties

The mechanical properties used in this work, for the bottom and top constituents, are
listed below [23]:

• Aluminum: Ebot = 70 GPa, ρbot = 2707 kg/m3, νbot = 0.3;
• Zirconia: Etop = 168 GPa, ρtop = 5700 kg/m3, νtop = 0.3.

where Ei is the modulus of elasticity, ρi denotes the mass density, and νi the Poisson’s ratio.
Note that subindex i indicates the surface position.

7.4. Convergence Study

To achieve mesh independence, convergence studies were performed for each shell
geometry analyzed in this work. The results of these studies are presented and discussed
in Appendix A. It is worth mentioning that for all cases analyzed with the present finite
element model, seven-parameter elements of order p = 8 were used to mesh the domains.

In general, for the shells with uniform thickness (UT) and linear variable thickness
(LVT) studied in this work, it is observed that convergence is obtained with a mesh size of
25 elements—within the first ten frequencies. The only case where a good convergence is
achieved with a mesh size of 16 elements is the parabolic shell with UT.

7.5. Numerical Verification

To verify the performance of the present model, the natural frequencies obtained were
compared with those results reported in the literature. It must be noted that the numerical
comparisons correspond to shells with uniform thickness. In addition, a comparison is
included with results obtained by using linear solid elements (SOLID185). The latter allows
us to verify the behavior of the present model for shells with thickness variation.

In the following comparisons, the natural frequencies obtained by means of the present
model are indicated by the label 7-PL. On the other hand, the label 3D represents the results
obtained using solid elements in the commercial code ANSYS.

Tables 1–3 present a comparison for conical, cylindrical, and parabolic shells, respec-
tively. The natural frequencies obtained using the present formulation show very good
agreement with the ones reported in the literature and the ones computed by means of
solid elements in ANSYS.

Table 1. Comparison for a conical shell with UT and CF boundary conditions (FG-II).

Natural Frequency

n Model f1– f2 f3– f4 f5– f6 f7– f8 f9– f10
f11–
f12

f13–
f14

f15

0.6
7-PL 206.20 225.98 279.08 318.23 348.99 355.98 398.53 444.36
3D * 205.93 226.02 279.55 318.32 348.57 356.80 397.36 444.55

FSDT [22] 205.96 225.52 277.93 318.18 349.48 - - -

1
7-PL 205.12 224.88 277.82 316.39 347.13 354.42 396.71 441.88
3D * 204.79 224.81 278.08 316.47 346.59 354.94 395.26 442.02

FSDT [22] 204.91 224.44 276.66 316.32 347.66 - - -

5
7-PL 204.19 228.16 285.59 309.64 346.64 366.47 404.55 434.38
3D * 203.69 227.75 285.14 309.65 345.64 365.74 402.10 434.30

FSDT [22] 203.93 227.67 284.26 309.57 347.08 - - -
* 1,188,000 SOLID185 elements.
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Table 2. Comparison for a cylindrical shell with UT and CF boundary conditions (FG-II).

Natural Frequency

n Model f1– f2 f3– f4 f5– f6 f7– f8 f9
f10–
f11

f12–
f13

f14–
f15

0.6
7-PL 148.95 213.76 250.23 375.14 414.34 418.82 454.43 523.52
3D * 148.68 212.79 250.17 372.70 414.69 417.01 453.73 519.60

FSDT [22] 150.03 212.94 250.74 370.63 415.47 420.39 - -

1
7-PL 148.07 213.04 248.56 374.04 411.54 416.78 451.68 521.55
3D * 147.74 211.83 248.49 371.09 411.89 414.67 450.87 517.02

FSDT [22] 149.29 212.22 249.31 369.46 412.97 418.46 - -

5
7-PL 147.51 220.44 242.75 388.72 401.19 422.08 446.11 537.48
3D * 147.04 218.65 242.64 384.31 401.56 418.91 444.89 530.75

FSDT [22] 148.75 219.49 243.43 383.71 402.56 423.57 - -
* 990,000 SOLID185 elements.

Table 3. Comparison for a parabolic shell with UT and SF boundary conditions (FG-I).

Natural Frequency

n Model f1– f2 f3– f4 f5– f6 f7 f8 f9
f10–
f11

f12–
f13

0.6
7-PL 115.04 162.58 162.67 190.60 194.75 194.75 205.35 218.29
3D * 115.01 162.54 162.88 190.60 195.42 195.42 205.37 217.36

FSDT [23] 115.40 162.85 165.07 193.28 193.28 196.66 210.82 -

1
7-PL 114.15 161.55 161.83 189.18 193.88 193.88 203.94 217.37
3D * 114.10 161.52 161.98 189.16 194.43 194.43 203.95 216.39

FSDT [23] 114.49 161.95 164.01 192.32 192.32 195.22 209.38 -

5
7-PL 114.15 157.94 161.82 186.26 195.78 195.78 202.13 218.63
3D * 113.98 157.87 161.79 186.15 196.02 196.02 201.99 217.16

FSDT [23] 114.44 160.33 161.78 194.04 194.04 194.05 207.19 -
* 840,000 SOLID185 elements.

In addition, Table 4 shows a comparison of the vibration modes for a parabolic shell
with uniform thickness and with a volume distribution of the type FG-I. A very good
coincidence is observed in the depicted modes. Moreover, similar modes were reported
in [23].

Table 4. Vibration mode comparison for a parabolic shell with UT and SF boundary conditions, n = 5
(FG-I).

Model
Vibration Mode

f1– f2 f3– f4 f5– f6 f7 f8– f9 f10– f11

7-PL

114.15 Hz 157.94 Hz 161.82 Hz 186.26 Hz 195.78 Hz 202.13 Hz

3D

113.98 Hz 157.87 Hz 161.79 Hz 186.15 Hz 196.02 Hz 201.99 Hz
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Finally, a comparison of the natural frequencies for a hemispherical shell with constant
thickness and CF boundary conditions is shown in Table 5. The results of the present model
and the 3D model are in accordance with those reported in [23].

Table 5. Comparison for a hemispherical shell with UT and CF boundary conditions (FG-I).

Natural Frequency

n Model f1– f2 f3– f4 f5– f6 f7– f8 f9
f10–
f11

f12–
f13

f14–
f15

0.6
7-PL 142.75 204.61 286.86 335.28 379.76 411.97 450.15 457.29
3D * 143.01 205.53 286.90 336.75 379.75 411.97 450.15 459.24

FSDT [23] 142.56 204.01 286.77 334.14 379.53 411.83 - -

1
7-PL 141.76 203.20 284.87 332.97 377.05 409.05 446.97 454.12
3D * 142.01 204.09 284.89 334.38 377.04 409.05 446.96 456.00

FSDT [23] 141.59 202.64 284.78 331.87 376.84 408.93 - -

5
7-PL 141.34 207.57 278.77 338.35 369.92 401.34 440.98 456.69
3D * 141.43 207.98 278.72 338.95 369.76 401.19 440.70 457.67

FSDT [23] 141.14 206.90 278.68 337.12 369.68 401.19 - -
* 1,017,000 SOLID185 elements.

7.6. Numerical Results

The main aim of this section is to present the natural frequencies for several type of
shells with LVT, such as conical, cylindrical, parabolic, and hemispherical. Along with
the present results (7-PL), the natural frequencies obtained by means of solid elements in
ANSYS are included for comparison purposes. For all study cases and listed frequencies,
the maximum relative errors of the present model with respect to 3D result are reported for
each power-law index.

The natural frequencies for conical shells with LVT under CF boundary conditions
are presented in Tables 6–8 for different values of the ratio r0/hm and angle α. The volume
distribution of the top constituent follows the expression of Equation (13), i.e., FG-II.

Table 6. Natural frequencies for conical shells with LVT and CF boundary conditions (FG-II,
r0/hm = 2.5, hm = 3/4, L/hm = 10, h1/h0 = 2).

α = 30◦ α = 60◦

n n

0.6 1 5 0.6 1 5

7PL 3D 7PL 3D 7PL 3D 7PL 3D 7PL 3D 7PL 3D

f1– f2 101.96 99.10 101.58 98.62 103.00 99.57 88.96 86.55 88.61 86.12 90.34 87.46
f3– f4 125.12 124.75 124.38 124.02 121.97 121.50 93.71 92.40 93.41 91.98 92.86 91.27

f5 160.29 155.02 159.92 154.34 164.31 157.48 106.33 105.18 106.04 104.73 104.82 103.43
f6 160.29 155.02 159.92 154.34 164.31 157.48 120.96 117.73 120.49 117.11 124.14 119.97
f7 181.57 177.36 180.78 176.37 182.29 176.86 120.96 117.73 120.49 117.11 124.14 119.97
f8 181.57 177.36 180.78 176.37 182.29 176.86 154.15 151.57 153.71 150.91 153.15 149.78
f9 205.72 204.42 204.22 203.21 198.99 199.79 159.58 156.52 159.04 155.78 159.71 155.72
f10 205.91 204.42 204.77 203.21 201.79 199.86 159.58 156.52 159.04 155.78 159.71 155.72
f11 205.91 206.41 204.77 205.02 201.79 199.87 164.50 160.34 163.86 159.44 168.87 163.06
f12 207.73 206.85 207.01 205.99 202.72 201.65 164.50 160.34 163.86 159.44 168.87 163.06

Max.
Error 3.40% - 3.61% - 4.34% - 2.77% - 2.89% - 3.56% -
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Table 7. Natural frequencies for conical shells with LVT and CF boundary conditions (FG-II,
r0/hm = 5, hm = 3/4, L/hm = 10, h1/h0 = 2).

α = 30◦ α = 60◦

n n

0.6 1 5 0.6 1 5

7PL 3D 7PL 3D 7PL 3D 7PL 3D 7PL 3D 7PL 3D

f1– f2 73.76 72.43 73.38 72.01 73.23 71.65 64.23 62.47 63.98 62.16 64.69 62.64
f3– f4 84.73 82.08 84.41 81.68 86.67 83.55 72.78 71.76 72.55 71.44 71.84 70.62
f5– f6 104.14 103.72 103.58 103.14 101.67 101.15 77.18 74.79 76.86 74.40 79.19 76.38

f7 124.04 120.57 123.65 120.00 127.76 123.35 82.39 81.54 82.17 81.20 80.96 79.93
f8 124.04 120.57 123.65 120.00 127.76 123.35 105.15 102.48 104.71 101.93 108.29 104.89
f9 151.23 147.91 150.50 147.07 149.20 147.02 105.15 102.48 104.71 101.93 108.29 104.89
f10 151.23 147.91 150.50 147.07 151.13 147.02 119.33 115.18 118.91 114.62 119.88 114.99
f11 152.28 151.27 151.73 150.61 151.13 148.02 121.86 117.67 121.40 117.08 122.83 117.87
f12 156.70 152.27 156.02 151.42 158.92 153.33 121.86 117.67 121.40 117.08 122.83 117.87

Max.
Error 3.22% - 3.34% - 3.74% - 3.61% - 3.74% - 4.25% -

Table 8. Natural frequencies for conical shells with LVT and CF boundary conditions (FG-II,
r0/hm = 10, hm = 3/4, L/hm = 10, h1/h0 = 2).

α = 30◦ α = 60◦

n n

0.6 1 5 0.6 1 5

7PL 3D 7PL 3D 7PL 3D 7PL 3D 7PL 3D 7PL 3D

f1– f2 52.69 51.04 52.43 50.75 52.89 51.00 45.53 43.84 45.36 43.63 45.57 43.66
f3– f4 58.04 55.90 57.78 55.60 58.52 56.87 46.64 44.56 46.44 44.33 47.45 45.13
f5– f6 59.39 58.42 59.08 58.08 59.31 57.38 50.32 48.99 50.15 48.77 49.73 48.21

f7 72.78 70.51 72.48 70.14 74.97 72.28 54.03 52.76 53.87 52.48 53.19 51.78
f8 72.78 70.51 72.48 70.14 74.98 72.28 54.96 52.76 54.71 52.48 56.50 54.00
f9 77.08 76.52 76.69 76.11 75.30 74.63 54.96 52.81 54.71 52.58 56.50 54.00
f10 77.08 76.52 76.69 76.11 75.30 74.63 68.97 66.86 68.65 66.49 71.16 68.65
f11 92.91 91.54 92.51 91.07 90.61 89.98 68.97 66.86 68.65 66.49 71.16 68.65
f12 93.83 91.54 93.45 91.07 96.85 93.97 87.13 85.17 86.73 84.70 89.95 87.44

Max.
Error 3.84% - 3.92% - 3.73% - 4.66% - 4.76% - 5.14% -

From the comparisons presented in Tables 6–8, the maximum values of relative error
ranges from 3.22% to 4.34% for conical shells with an angle α = 30◦, and the maximum
value is obtained when n = 5. Regarding the conical shells with α = 60◦, the maximum
errors are found in a range from 2.77% to 5.14%, with the maximum value occurring
when n = 5. Considering fixed values of the power-law exponent, the natural frequencies
decrease as the value of ratio r0/hm increases, which is an expected behavior since the ratio
values reported are related to thick and thin shells. In addition, the angle α also has an
influence on the natural frequencies as it can be seen for fixed ratios of r0/hm, that is, lower
values are obtained as the angle α increases.

In Table 9, several vibration modes for a conical shell with LVT, CF boundary condi-
tions, and n = 0.6 are compared with those obtained by means of the solid elements (3D
model). For both models, the vibration modes are very similar.
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Table 9. Vibration modes for a conical shell with LVT, CF boundary conditions and α = 60◦, n = 0.6
(FG-II, r0/hm = 5, hm = 3/4, L/hm = 10, h1/h0 = 2).

Model
Vibration Mode

f1– f2 f3– f4 f5– f6 f7 f8– f9 f10 f11– f12

7-PL

64.23 Hz 72.78 Hz 77.18 Hz 82.39 Hz 105.15 Hz 119.33 Hz 121.86 Hz

3D

62.47 Hz 71.76 Hz 74.79 Hz 81.54 Hz 102.48 Hz 115.18 Hz 117.67 Hz

In Tables 10–12, the natural frequencies for several ratios r0/hm of a cylindrical shell
with LVT subjected to CF boundary conditions are reported.

Table 10. Natural frequencies for a cylindrical shell with LVT and CF boundary conditions (FG-II,
r0/hm = 2.5, hm = 3/4, L/hm = 10, h1/h0 = 2).

n

0.6 1 5

7PL 3D 7PL 3D 7PL 3D

f1– f2 64.07 63.72 63.28 62.98 62.17 61.75
f3 123.97 121.23 122.50 120.98 119.37 121.87
f4 129.65 121.23 129.78 120.98 134.06 124.17
f5 129.65 126.14 129.78 124.89 134.06 124.17

f6– f7 191.89 191.01 190.34 189.49 186.81 185.65
f8 203.99 203.77 202.46 202.23 197.49 197.18

f9– f10 217.19 204.85 217.00 204.04 220.95 205.82
f11 313.85 294.01 314.23 293.37 320.46 299.19
f12 313.85 294.01 314.23 293.37 323.41 299.19

Max. Error 6.95% - 7.28% - 8.10% -

Table 11. Natural frequencies for a cylindrical shell with LVT and CF boundary conditions (FG-II,
r0/hm = 5, hm = 3/4, L/hm = 10, h1/h0 = 2).

n

0.6 1 5

7PL 3D 7PL 3D 7PL 3D

f1– f2 58.50 56.58 58.17 56.21 58.80 56.58
f3– f4 79.10 78.91 78.44 78.29 76.87 76.63
f5– f6 96.15 92.18 95.92 91.81 99.21 94.57

f7 125.24 125.97 124.11 124.94 120.98 121.83
f8– f9 157.38 153.83 156.55 152.89 156.72 152.33

f10– f11 162.94 156.82 162.61 156.20 168.25 160.75
f12– f13 179.49 173.24 178.90 172.36 182.66 174.78

Max. Error 4.31% - 4.48% - 4.91% -
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Table 12. Natural frequencies for a cylindrical shell with LVT and CF boundary conditions (FG-II,
r0/hm = 10, hm = 3/4, L/hm = 10, h1/h0 = 2).

n

0.6 1 5

7PL 3D 7PL 3D 7PL 3D

f1– f2 48.37 46.58 48.11 46.30 48.72 46.67
f3– f4 54.00 53.11 53.65 52.75 53.14 52.09
f5– f6 58.00 55.57 57.75 55.28 59.51 56.76
f7– f8 76.64 75.27 76.13 74.90 74.61 74.25
f9– f10 78.00 76.34 77.70 75.84 80.52 77.33
f11– f12 104.59 101.58 104.20 101.09 108.05 104.37

Max. Error 4.36% - 4.46% - 4.84% -

For the natural frequencies presented in Tables 10–12, corresponding to cylindrical
shells, the range for the maximum errors is between 4.31% and 8.10%, with the maximum
value occurring in the case when r0/hm = 2.5 and n = 5. Note that the aforementioned
radius-to-thickness ratio describes a very thick shell. However, for greater values of the
ratio, the value of errors are below 4.91%. For illustration purposes, a comparison of several
vibration modes of a cylindrical shell with LVT, CF boundary conditions, and n = 5 is
presented in Table 13.

Table 13. Vibration modes for a cylindrical shell with LVT and CF boundary conditions, n = 5 (FG-II,
r0/hm = 5, hm = 3/4, L/hm = 10, h1/h0 = 2).

Model
Vibration Mode

f1– f2 f3– f4 f5– f6 f7 f8– f9 f10

7-PL

58.80 Hz 76.87 Hz 99.21 Hz 120.98 Hz 156.72 Hz 168.25 Hz

3D

56.58 Hz 76.63 Hz 94.57 Hz 121.83 Hz 152.33 Hz 160.75 Hz

Natural frequencies for parabolic shells with LVT and under SF boundary conditions
are presented in Tables 14–16. The volume distribution of the top constituent follows the
expression of Equation (12), i.e., FG-I.

From the comparisons presented for parabolic shells in Tables 14–16, the maximum
values of relative error are within the range of 3.18% to 4.59%. In these comparisons, note
that for a thin shell (e.g., F/hm = 20), the maximum error occurs when n = 0.6, conversely
to minor values of the ratio. For a fixed value of the volume fraction exponent, a decrease
in values of the natural frequencies is observed as the ratio F/hm increases.
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Table 14. Natural frequencies for a parabolic shell with LVT and SF boundary conditions (FG-I,
F/hm = 5, F = 0.875 m, β = 1.5, ϕ0 = π/6, ϕ1 = π/3).

n

0.6 1 5

7PL 3D 7PL 3D 7PL 3D

f1– f2 138.98 133.61 137.35 132.00 136.85 130.85
f3– f4 181.80 177.58 180.53 176.21 183.46 179.06
f5– f6 232.68 232.88 230.73 230.96 225.53 225.64
f7– f8 252.57 252.06 251.06 250.34 255.86 254.68
f9– f10 302.11 298.29 300.57 296.72 299.31 294.62
f11– f12 306.54 300.91 305.01 299.20 309.83 303.04

Max. Error 4.02% - 4.05% - 4.59% -

Table 15. Natural frequencies for a parabolic shell with LVT and SF boundary conditions (FG-I,
F/hm = 10, F = 0.875 m, β = 1.5, ϕ0 = π/6, ϕ1 = π/3).

n

0.6 1 5

7PL 3D 7PL 3D 7PL 3D

f1– f2 119.48 115.77 118.64 114.89 118.94 116.41
f3– f4 122.05 119.91 120.77 118.66 120.81 116.84
f5– f6 172.76 172.33 171.76 171.22 173.29 172.75
f7– f8 208.23 210.71 207.04 209.37 209.48 211.53
f9– f10 228.63 227.59 227.39 226.31 223.38 223.67
f11– f12 230.51 230.82 228.80 229.13 225.88 224.48

Max. Error 3.21% - 3.26% - 3.40% -

Table 16. Natural frequencies for a parabolic shell with LVT and SF boundary conditions (FG-I,
F/hm = 20, F = 0.875 m, β = 1.5, ϕ0 = π/6, ϕ1 = π/3).

n

0.6 1 5

7PL 3D 7PL 3D 7PL 3D

f1– f2 78.31 78.03 77.70 77.41 78.79 78.05
f3– f4 112.95 114.96 112.32 114.26 112.91 112.39
f5– f6 116.41 116.08 115.36 115.04 115.13 116.39
f7– f8 155.52 159.99 154.62 158.99 154.93 158.71
f9– f10 170.88 176.93 169.87 175.80 170.10 175.69
f11– f12 182.82 184.09 181.73 182.96 179.73 180.76

Max. Error 3.42% - 3.38% - 3.18% -

To complement the comparisons presented for parabolic shells, the vibration modes
corresponding to a parabolic shell with LVT, SF boundary conditions, and n = 0.6 are
shown in Table 17. It can be noted that similar contours are obtained using both models.



Appl. Sci. 2023, 13, 11540 18 of 26

Table 17. Vibration modes for a parabolic shell with LVT and SF boundary conditions, n = 0.6 (FG-I,
F/hm = 5, F = 0.875 m, β = 1.5, ϕ0 = π/6, ϕ1 = π/3).

Model
Vibration Mode

f1– f2 f3– f4 f5– f6 f7– f8 f9– f10 f11– f12

7-PL

138.98 Hz 181.80 Hz 232.68 Hz 252.57 Hz 302.11 Hz 306.54 Hz

3D

133.61 Hz 177.58 Hz 232.88 Hz 252.06 Hz 298.29 Hz 300.91 Hz

For the hemispherical shell, the natural frequencies for several values of the ratio
r0/hm are presented in Tables 18–21.

Table 18. Natural frequencies for a hemispherical shell with LVT and CF boundary conditions (FG-I,
r0/hm = 2.5, r0 = 2 m, β = 2, ϕ0 = π/2, ϕ1 = π/6).

n

0.6 1 5

7PL 3D 7PL 3D 7PL 3D

f1– f2 442.59 423.35 437.86 418.65 434.18 413.44
f3– f4 458.16 425.35 453.14 420.03 456.14 419.90

f5 619.59 598.02 615.52 589.93 598.59 583.48
f6 634.79 626.47 625.45 621.43 620.69 605.34

f7– f8 687.08 643.50 679.83 635.00 683.42 632.22
f9 756.26 718.08 747.01 708.77 738.23 693.93

f10– f11 774.88 721.68 763.24 711.05 757.58 699.82
f12 906.26 881.70 899.18 868.81 874.43 854.77

Max. Error 7.16% - 7.31% - 7.95% -

Table 19. Natural frequencies for a hemispherical shell with LVT and CF boundary conditions (FG-I,
r0/hm = 5, r0 = 2 m, β = 2, ϕ0 = π/2, ϕ1 = π/6).

n

0.6 1 5

7PL 3D 7PL 3D 7PL 3D

f1– f2 312.90 292.48 310.07 289.79 315.58 293.36
f3– f4 382.61 375.14 379.14 371.83 375.03 366.38
f5– f6 461.50 433.85 457.54 429.81 467.90 437.24

f7 563.95 542.00 556.87 536.10 550.30 528.42
f8 632.93 598.01 625.57 591.51 619.64 588.23
f9 632.93 598.02 625.57 591.51 626.45 588.23
f10 634.47 614.37 628.57 608.52 626.45 602.37
f11 639.65 642.00 635.46 637.34 626.63 621.72
f12 687.48 654.55 681.40 648.09 694.55 655.38

Max. Error 6.53% - 6.54% - 7.04% -
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Table 20. Natural frequencies for a hemispherical shell with LVT and CF boundary conditions (FG-I,
r0/hm = 10, r0 = 2 m, β = 2, ϕ0 = π/2, ϕ1 = π/6).

n

0.6 1 5

7PL 3D 7PL 3D 7PL 3D

f1– f2 213.69 204.60 212.06 203.05 213.72 203.73
f3– f4 278.82 261.85 276.89 259.97 284.29 266.47
f5– f6 348.85 347.55 346.21 344.94 340.23 338.50
f7– f8 428.30 410.50 425.27 407.47 435.41 416.22

f9 478.89 465.83 474.40 461.85 471.54 457.11
f10– f11 496.81 482.31 492.13 478.18 490.25 474.15

f12 541.01 522.79 536.21 518.42 538.24 517.91
Max. Error 6.08% - 6.11% - 6.27% -

Table 21. Natural frequencies for a hemispherical shell with LVT and CF boundary conditions (FG-I,
r0/hm = 20, r0 = 2 m, β = 2, ϕ0 = π/2, ϕ1 = π/6).

n

0.6 1 5

7PL 3D 7PL 3D 7PL 3D

f1– f2 166.08 156.34 165.07 155.34 165.93 159.11
f3– f4 168.36 165.52 167.19 164.37 169.40 162.67
f5– f6 258.15 247.58 256.59 246.01 263.57 252.32
f7– f8 330.83 331.02 328.56 328.75 321.87 321.89
f9– f10 368.54 359.67 366.25 357.34 375.09 365.31

f11 422.31 419.84 419.00 416.72 412.14 409.15
f12– f13 437.11 434.21 433.59 430.96 426.26 422.88

Max. Error 5.87% - 5.89% - 4.27% -

Lastly, from the natural frequencies of hemispherical shells presented in Tables 18–21,
it is noted that the maximum relative errors are above the values obtained in the previous
comparisons reported here; they are found in a range between 4.27% and 7.95%. The
higher values of maximum relative errors occur when a very thick shell is analyzed, i.e.,
r/hm = 2.5. It must be mentioned that the majority of the maximum relative errors are
above 5%.

In addition, Table 22 presents comparisons of the vibration modes obtained using both
models (7-PL and 3D) for a hemispherical shell with LVT, CF boundary conditions, and
n = 5. The similarities between models for vibration modes and natural frequencies are
noted in these comparisons.

In general, the behavior of natural frequencies is similar to that observed when ana-
lyzing thin and thick shells, that is, an increase in the frequencies value is observed when
the shells become thicker. In addition, the study cases analyzed in this section demonstrate
the behavior of the present model.
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Table 22. Vibration modes for a hemispherical shell with LVT and CF boundary conditions, n = 5
(FG-I, r0/hm = 10, r0 = 2 m, β = 2, ϕ0 = π/2, ϕ1 = π/6).

Model
Vibration Mode

f1– f2 f3– f4 f5– f6 f7– f8 f9 f10– f11

7-PL

213.72 Hz 284.29 Hz 340.23 Hz 435.41 Hz 471.54 Hz 490.25 Hz

3D

203.73 Hz 266.47 Hz 338.50 Hz 416.22 Hz 457.11 Hz 474.15 Hz

8. Conclusions

From the present work, the following conclusions can be drawn:

• A finite element model for the linear vibration analysis, using spectral/hp elements
based on a seven-parameter shell formulation, is extended to study functionally
graded shells.

• Comparisons with the numerical results of a simulation using solid elements verify the
performance of the present formulation. In addition, the comparisons suggest that the
present formulation shows a better behavior for the modeling of conical, cylindrical,
and parabolic shells subjected to the boundary conditions considered herein.

• In general, although the relative errors are between 6% and 8% obtained in the study of
hemispherical shells, the present formulation has a good behavior for moderately thick
to thin shells. It must be recalled that mechanical properties through the thickness
of the 3D model are approximated using several layers in this direction. On the
other hand, in the studies reported using the present formulation, the variation of
the mechanical properties is evaluated using several Gauss-points while numerical
integration through thickness is made, resulting in a closer approximation of them. For
the aforementioned reasons, some differences between results, but a similar behavior,
can be expected.

• Studying the effect of the power-law index on the free vibration response is relevant
since, for a given thick or thin shell and boundary conditions, its response may be
stiffer or not as the power-law index increases.

• Finally, the spectral/hp seven-parameter formulation used in the present finite element
model allows a straightforward implementation of the FGM behavior and the use of
three-dimensional constitutive equations. These features allow the use of considerably
fewer elements, and therefore computational time, to model FG shell structures, when
compared with models made of solid elements.
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Abbreviations and Nomenclature
The following abbreviations and nomenclature are used in this manuscript:

Abbreviations
FGM Functionally graded material
FG Functionally graded
FSDT First-order shear deformation theory
TSDT Third-order shear deformation theory
HSDT Higher-order shear deformation theory
3D Three-dimensional
2D Two-dimensional
FG-I Volume distribution of top constituent according to Equation (12)
FG-II Volume distribution of top constituent according to Equation (13)
C Clamped boundary condition
S Simply supported boundary condition
F Free edge boundary condition
UT Uniform or constant thickness
LVT Linear variable thickness
Nomenclature
Φ 3D geometry of the shell element
Ω Shell’s mid-surface
ξ i Direction i of the curvilinear coordinates
p Polynomial order
ψk
(
ξ1, ξ2) 2D Lagrange interpolation function of order p

Xk Position vector of k-th spectral node
nk Unit normal vector of the k-th spectral node
h Thickness at the k-th spectral node position
q Number of spectral nodes per element
(•),i First derivative with respect ξ i

gi Set of covariant basis vectors
[J] Jacobian matrix
J Determinant of the Jacobian matrix
gi Set of contravariant basis vectors
u(ξα, t) Vector of the mid-surface displacements
ϕ(ξα, t) Difference vector
Ψ Seventh parameter
E Green–Lagrange strain tensor
Eαβ Strain covariant component

ε
(0)
αβ Strain covariant component associated with constant terms according to ξ3

ε
(1)
αβ Strain covariant component associated with linear terms according to ξ3

n Volume fraction exponent or power-law index
Vi

top
(
ξ3) Volume distribution of the top constituent following the power-law form i

Cijkl Contravariant components of the fourth-order elasticity tensor
λ
(
ξ3), µ

(
ξ3) Lamé parameters as a function of ξ3

gij Contravariant components of the Riemannian metric tensor
˙(•) Partial derivative with respect to time

Ii Mass inertia
Aijkl Effective extensional fourth-order stiffness tensor component
Bijkl Effective extensional–bending coupling fourth-order stiffness tensor component
Dijkl Effective bending fourth-order stiffness tensor component
ω Frequency of natural vibration
∆e Vibration mode vector of the element e
hm Average thickness
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Appendix A. Convergence Study

In this appendix, the results of the convergence study performed to determine the
mesh size for the numerical comparisons are presented. They were obtained using meshes
with seven-parameter elements of order p = 8. For conical and cylindrical shells with
uniform thickness, the geometrical parameters considered are those reported in [22], and
for parabolic and hemispherical shells they are those presented in [23].

In the following tables, the label Size indicates the number of elements used for each
mesh analyzed in the convergence study, and the mesh sizes considered were 4, 16, 25,
and 36. Note that the first mesh size corresponds to a coarse mesh, and the last one
corresponds to a fine mesh.

Table A1 presents the convergence study for conical shells with uniform thickness
(UT) and linear variable thickness (LVT), and both truncated cones are under CF boundary
conditions and their volume distribution is type FG-II; see Equation (13). From the results, it
is observed that meshes of 25 elements give a good convergence for the first ten frequencies.

Table A1. Convergence of natural frequencies for conical shells with UT and LVT under CF boundary
conditions (FG-II).

Natural Frequency

n Size f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

UT

0.6

4 206.3399 206.3406 228.7445 228.7594 307.8573 310.0378 318.3083 318.3083 349.2583 349.2601
16 206.2043 206.2043 225.9955 225.9955 279.1271 279.1425 318.2458 318.2458 349.0163 349.0163
25 206.1950 206.1950 225.9754 225.9754 279.0831 279.0831 318.2343 318.2343 348.9862 348.9862
36 206.1895 206.1895 225.9625 225.9625 279.0604 279.0604 318.2267 318.2267 348.9669 348.9669

1

4 205.2655 205.2661 227.6316 227.6455 306.4297 308.6182 316.4647 316.4647 347.4014 347.4036
16 205.1328 205.1328 224.9006 224.9006 277.8596 277.8751 316.4039 316.4039 347.1603 347.1603
25 205.1241 205.1241 224.8809 224.8809 277.8168 277.8168 316.3927 316.3927 347.1300 347.1300
36 205.1192 205.1192 224.8691 224.8691 277.7954 277.7954 316.3855 316.3855 347.1107 347.1107

5

4 204.3267 204.3273 230.8937 230.9606 309.7112 309.7112 313.8276 316.9194 346.9169 346.9202
16 204.1959 204.1959 228.1823 228.1823 285.6315 285.6461 309.6502 309.6502 346.6729 346.6729
25 204.1866 204.1866 228.1618 228.1618 285.5871 285.5871 309.6392 309.6392 346.6426 346.6426
36 204.1816 204.1816 228.149 228.149 285.5645 285.5645 309.6318 309.6318 346.6229 346.6229

VT α = 60◦, r0/hm = 5, L/hm = 10, h1/h0 = 2

0.6

4 64.2671 64.2683 72.8039 72.8039 77.7359 77.8637 82.4200 111.7707 112.4981 119.3929
16 64.2381 64.2383 72.7834 72.7834 77.1862 77.1862 82.3982 105.1581 105.1593 119.3415
25 64.2342 64.2342 72.7792 72.7792 77.1813 77.1813 82.3935 105.1495 105.1496 119.3310
36 64.2314 64.2316 72.7765 72.7765 77.1782 77.1782 82.3906 105.1451 105.1451 119.3240

1

4 64.0133 64.0147 72.5720 72.5720 77.4079 77.5351 82.1966 111.3054 112.0354 118.9686
16 63.9856 63.9856 72.5516 72.5516 76.8608 76.8608 82.1739 104.7152 104.7165 118.9188
25 63.9819 63.9819 72.5476 72.5476 76.8562 76.8562 82.1693 104.7070 104.7070 118.9087
36 63.9793 63.9793 72.5448 72.5448 76.8531 76.8531 82.1662 104.7027 104.7027 118.9018

5

4 64.7178 64.7191 71.8602 71.8604 79.7390 79.8619 80.9811 114.8458 115.4412 119.9444
16 64.6894 64.6896 71.8401 71.8401 79.1981 79.1981 80.9595 108.2964 108.2974 119.8919
25 64.6855 64.6855 71.8360 71.8360 79.1933 79.1933 80.9551 108.2880 108.2880 119.8812
36 64.6829 64.6829 71.8332 71.8332 79.1901 79.1901 80.9522 108.2835 108.2835 119.8740

The results of the convergence study for cylindrical shells with UT and LVT are
presented in Table A2, both of them under CF boundary conditions. From this study, in
general, the convergence was observed for a mesh size of 25 elements.

Table A3 shows the convergence of the natural frequencies for parabolic shells under
SF boundary conditions, and for several values of the power-law index n. For uniform
thickness, a good convergence was obtained using a mesh size of 16 elements. However,
for a parabolic shell with LVT, the convergence was observed at meshes of 25 elements.
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Table A2. Convergence of natural frequencies for cylindrical shells with UT and with LVT under CF
boundary conditions (FG-II).

Natural Frequency

n Size f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

UT r/h = 10

0.6

4 149.0672 149.0813 217.4327 220.1873 250.289 250.289 414.3378 421.2149 422.6686 431.4761
16 148.9533 148.9533 213.7694 213.7694 250.2324 250.2324 375.1731 375.2126 414.3378 418.8546
25 148.9471 148.9471 213.7647 213.7647 250.2258 250.2258 375.1441 375.1441 414.3378 418.8213
36 148.9438 148.9438 213.7629 213.7629 250.2222 250.2222 375.1404 375.1404 414.3378 418.8004

1

4 148.1871 148.2012 216.6958 219.4371 248.6176 248.6176 411.5388 419.159 420.6086 430.1546
16 148.0766 148.0766 213.0478 213.0478 248.5642 248.5642 374.0646 374.1038 411.5388 416.811
25 148.0712 148.0712 213.043 213.043 248.5585 248.5585 374.0361 374.0361 411.5388 416.7794
36 148.0683 148.0683 213.0418 213.0418 248.5555 248.5555 374.0327 374.0327 411.5388 416.7596

5

4 147.6200 147.6372 224.2188 226.9312 242.8096 242.8096 401.1873 424.5701 426.0516 445.3043
16 147.5116 147.5116 220.4488 220.4488 242.759 242.759 388.7491 388.7856 401.1873 422.1085
25 147.5064 147.5064 220.4442 220.4442 242.7538 242.7538 388.7211 388.7211 401.1873 422.0764
36 147.5035 147.5035 220.4425 220.4425 242.7507 242.7507 388.7175 388.7175 401.1873 422.0560

LVT r0/hm = 5, hm = 3/4, L/hm = 10, h1/h0 = 2

0.6

4 58.5325 58.5403 79.1170 79.1170 97.4787 98.0998 125.2401 157.4556 157.4597 180.5150
16 58.5032 58.5035 79.1061 79.1061 96.1520 96.1520 125.2401 157.3938 157.3941 162.9478
25 58.5015 58.5015 79.1040 79.1040 96.1511 96.1511 125.2401 157.3840 157.3840 162.9408
36 58.5002 58.5004 79.1026 79.1026 96.1505 96.1505 125.2401 157.3773 157.3774 162.9400

1

4 58.2046 58.2122 78.4490 78.4490 97.2474 97.8640 124.1085 156.6195 156.6236 179.9211
16 58.1765 58.1767 78.4397 78.4397 95.9248 95.9248 124.1085 156.5594 156.5598 162.6202
25 58.1750 58.1750 78.4377 78.4377 95.9238 95.9238 124.1085 156.5500 156.5501 162.6132
36 58.1739 58.1739 78.4366 78.4366 95.9233 95.9234 124.1085 156.5436 156.5437 162.6124

5

4 58.8273 58.8348 76.8844 76.8844 100.5552 101.1290 120.9788 156.7878 156.7918 183.6858
16 58.7989 58.7991 76.8743 76.8743 99.2149 99.2149 120.9788 156.7283 156.7286 168.2562
25 58.7974 58.7974 76.8723 76.8723 99.2141 99.2141 120.9788 156.7189 156.7189 168.2494
36 58.7963 58.7963 76.8710 76.8710 99.2135 99.2137 120.9788 156.7125 156.7126 168.2487

Table A3. Convergence of natural frequencies for parabolic shells with UT and LVT under SF
boundary conditions (FG-I).

Natural Frequency

n Size f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

UT

0.6

4 115.0771 115.0783 162.5836 162.5836 163.816 163.8276 190.6016 205.3549 205.3549 205.7548
16 115.0375 115.0375 162.5828 162.5828 162.6739 162.6739 190.6009 194.7506 194.7545 205.3518
25 115.0374 115.0374 162.5828 162.5828 162.6739 162.6739 190.6009 194.7454 194.7454 205.3518
36 115.0373 115.0373 162.5828 162.5828 162.6732 162.6732 190.6009 194.7448 194.7448 205.3518

1

4 114.1884 114.1895 161.5536 161.5536 162.9672 162.9773 189.1796 203.9445 203.9445 204.8127
16 114.1494 114.1494 161.5521 161.5521 161.8309 161.8309 189.1789 193.8818 193.8857 203.9420
25 114.1493 114.1493 161.5521 161.5521 161.8301 161.8301 189.1789 193.8772 193.8772 203.9420
36 114.1492 114.1492 161.5521 161.5521 161.8301 161.8301 189.1789 193.8766 193.8766 203.9420

5

4 114.1847 114.1854 157.9431 157.9431 162.9485 162.9594 186.2609 202.1293 202.1293 206.7551
16 114.1467 114.1467 157.9423 157.9423 161.8215 161.8215 186.2609 195.7845 195.7884 202.1268
25 114.1466 114.1466 157.9423 157.9423 161.8207 161.8207 186.2602 195.7800 195.7800 202.1268
36 114.1465 114.1465 157.9423 157.9423 161.8207 161.8207 186.2602 195.7793 195.7793 202.1262
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Table A3. Cont.

Natural Frequency

n Size f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

LVT F/hm = 5, F = 0.875 m, β = 1.5, ϕ0 = π/6, ϕ1 = π/3

0.6

4 139.0314 139.0330 184.2228 184.5964 232.6821 232.6821 273.5517 277.8245 302.1489 302.1493
16 138.9795 138.9801 181.8076 181.8076 232.6816 232.6816 252.5840 252.5940 302.1124 302.1128
25 138.9790 138.9790 181.8048 181.8048 232.6810 232.6816 252.5714 252.5714 302.1111 302.1111
36 138.9782 138.9784 181.8041 181.8041 232.6810 232.6810 252.5694 252.5694 302.1111 302.1116

1

4 137.4007 137.4023 182.9299 183.3013 230.7302 230.7302 271.8826 276.1198 300.6015 300.6019
16 137.3496 137.3502 180.5318 180.5318 230.7280 230.7280 251.0767 251.0868 300.5687 300.5691
25 137.3490 137.3490 180.5297 180.5297 230.7280 230.7280 251.0646 251.0646 300.5674 300.5678
36 137.3481 137.3482 180.5290 180.5290 230.7275 230.7280 251.0626 251.0631 300.5678 300.5678

5

4 136.9053 136.9081 185.7905 186.1861 225.5277 225.5277 276.6422 281.0989 299.3446 299.3454
16 136.8544 136.8549 183.4657 183.4657 225.5265 225.5265 255.8724 255.8819 299.3099 299.3099
25 136.8537 136.8538 183.4636 183.4636 225.5260 225.5265 255.8606 255.8606 299.3086 299.3086
36 136.8530 136.8531 183.4629 183.4629 225.5260 225.5260 255.8591 255.8591 299.3086 299.3091

For several values of the power-law index n, Table A4 presents the convergence of the
natural frequencies of hemispherical shells with UT and LVT under CF boundary conditions.
For both cases, within the first ten frequencies, a good convergence was observed when a
mesh of 25 elements was used.

Table A4. Convergence of natural frequencies for hemispherical shells with UT and LVT under CF
boundary conditions (FG-I).

Natural Frequency

n Size f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

UT

0.6

4 142.9211 142.9228 208.2505 209.0329 286.9648 286.9648 371.2498 378.0133 379.8979 412.0659
16 142.7639 142.7639 204.6190 204.6190 286.8809 286.8809 335.2968 335.3127 379.7792 411.9857
25 142.7490 142.7490 204.6141 204.6141 286.8646 286.8646 335.2817 335.2817 379.7558 411.9716
36 142.7395 142.7395 204.6122 204.6122 286.8536 286.8536 335.2802 335.2802 379.7405 411.9624

1

4 141.9287 141.9304 206.8133 207.592 284.9687 284.9687 368.682 375.4016 377.1949 409.1480
16 141.7716 141.7716 203.2066 203.2066 284.8847 284.8847 332.9832 332.9992 377.0763 409.0685
25 141.7565 141.7565 203.2023 203.2023 284.8682 284.8682 332.9683 332.9683 377.0531 409.0542
36 141.7468 141.7468 203.2004 203.2004 284.8576 284.8576 332.9668 332.9668 377.0377 409.0449

5

4 141.5049 141.5083 211.0865 211.8818 278.8679 278.8679 370.0573 372.969 379.5433 401.4401
16 141.3544 141.3544 207.5792 207.5792 278.7852 278.7852 338.3654 338.3804 369.9389 401.3587
25 141.3400 141.3400 207.5749 207.5749 278.7689 278.7689 338.3516 338.3516 369.9159 401.3441
36 141.3306 141.3306 207.5731 207.5731 278.7584 278.7584 338.3505 338.3505 369.9005 401.3347

LVT r0/hm = 10, r0 = 2 m, β = 2, ϕ0 = π/2, ϕ1 = π/6

0.6

4 213.8630 213.8719 282.1387 283.0775 348.9506 348.9506 465.8914 475.1184 479.0508 496.9698
16 213.7054 213.7054 278.8270 278.8270 348.8689 348.8689 428.3164 428.3294 478.9194 496.8319
25 213.6865 213.6865 278.8166 278.8166 348.8526 348.8526 428.2966 428.2966 478.8930 496.8067
36 213.6740 213.6740 278.8107 278.8107 348.8417 348.8417 428.2918 428.2918 478.8750 496.7901

1

4 212.2336 212.2425 280.1837 281.1138 346.3059 346.3059 462.5427 471.6680 474.5570 492.2946
16 212.0760 212.0760 276.8967 276.8967 346.2251 346.2251 425.2914 425.3042 474.4270 492.1577
25 212.0569 212.0569 276.8862 276.8862 346.2086 346.2086 425.2717 425.2717 474.4008 492.1327
36 212.0443 212.0443 276.8807 276.8807 346.1977 346.1977 425.2672 425.2672 474.3832 492.1162

5

4 213.8920 213.9015 287.5137 288.4290 340.3234 340.3234 471.6913 472.2575 480.9917 490.4160
16 213.7380 213.7380 284.2981 284.2981 340.2437 340.2437 435.4306 435.4425 471.5627 490.2747
25 213.7191 213.7191 284.2879 284.2879 340.2277 340.2277 435.4117 435.4117 471.5366 490.2486
36 213.7066 213.7066 284.2821 284.2821 340.2169 340.2169 435.4067 435.4067 471.5192 490.2313
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