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Abstract

:

This contribution presents a finite element shell model capable of performing linear vibration analyses of shell-type structures made of functionally graded material (FGM). The model is based on the seven-parameter spectral/hp finite element formulation, which allows the analysis ofFG shells of either uniform or nonuniform thickness. Equations of motion are derived using the Hamilton’s principle and the material properties of the constituents are considered to follow a power-law volume distribution through the thickness direction. The verification of the present model is carried out by comparing with numerical results available in the literature, and with numerical simulations performed in a commercial software. To demonstrate the capabilities of the present formulation, the free vibration response of different shell structures, with nonuniform thickness, to the variation of the geometrical parameters (e.g., radius-to-thickness ratio) and the mechanical properties is reported.
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1. Introduction


The extensive field of engineering applications in diverse industries (e.g., automotive, nautical, aeronautics, aerospace) in conjunction with the continuously more demanding design requirements has led to the development of advanced materials capable of addressing their needs, improving their performance, or eliminating deficiencies of conventional materials. For instance, composite materials allow a weight reduction in structural members or machine components without compromising the design requirements. Among these advanced materials, an interesting material known as functionally graded material (FGM) is found, which is basically a material with a variation of mechanical properties along one direction or more. In the literature, it is well known that FGMs were introduced to overcome the limitations of composites, such as delamination at high temperatures due to stress concentrations at interfaces of the composite [1,2]. The concept of FGM was introduced in the 1980s by a group of scientists in Japan [1,3,4]. The available computational resources nowadays, which are very powerful tools for engineers, and the complexities involved in the modeling of new materials have motivated the development of numerical models to predict their mechanical behavior. In the last three decades, researchers have shown increasing interest in the area of FGMs.



As mentioned earlier, the functionally graded materials present—in the most general case—a variation of properties through various directions (e.g., along thickness coordinate), and they are usually composed of a mixture of two materials. Therefore, this variation made the FGM a heterogeneous material; due to this fact, different mathematical models, also known as homogenization schemes [5], have been used to evaluate the effective properties of the FGMs, and the gradation of the volume fraction. Several analytic approaches have been proposed, like self-consistent estimates, Mori–Tanaka scheme, Vegard’s rule, composite sphere assemblage model, composite cylindrical assemblage model, the simplified strength of materials method, the method of cells, and micromechanical models [5,6,7]. Some models that have attracted more attention are Voigt’s mixture rule, Mori–Tanaka scheme, and self-consistent models [8]. Generally, the rule of mixture and Mori–Tanaka schemes are used by researchers [3].



The present literature review is limited to those works reporting the free vibration analysis of functionally graded (FG) shell structures, specially those considering a variation of the material properties through the thickness and using a power-law volume distribution of the constituents. Despite this, during the review, free vibration analyses of FG plates with uniform thickness were also found in the works [9,10,11,12,13,14,15,16,17], while vibration analyses of FG plates with variable thickness can be found in [18,19,20].



Studies related to shells of uniform thickness were presented by Matsunaga [21], Tornabene, Viola and Inman [22], Tornabene and Viola [23], Iqbal, Naeem and Sultana [24], Neves et al. [25], Su et al. [26,27], Su, Jin and Ye [28], Torabi and Ansari [29], Ersoy, Mercan and Civalek [30], Brischetto [31], Pham et al. [32], Moita et al. [33], Zannon et al. [34], and Bagheri et al. [35]. In the aforementioned works, the formulations are based on different theories such as first-order shear deformation theory (FSDT), third-order shear deformation theory (TSDT), higher-order shear deformation theory (HSDT), wave propagation approach, Carrera’s unified formulation, and three-dimensional elasticity theory.



Analysis of the free vibration of stepped FG shells was reported by Li et al. [36] and Gong et al. [37]. Formulations considering the variation of the shell thickness were presented by Tornabene, Fantuzzi, and Bacciocchi [38] for the analysis of FG laminated free-form doubly-curved shells and panels, and by Tornabene et al. [39] for FG sandwich shell structures. However, they used different schemes to model the variation of the mechanical properties, such as four-parameter power-law, Weibull, and exponential distributions.



Furthermore, in the literature, the modeling of FG shell type structures or FG plates by means of commercial finite element codes is also reported. Examples of models using ANSYS are the works of Rao, Blessington, and Tarapada [40], Mouli et al. [41], and Marzavan and Nastasescu [42]. In this regard, Burlayenko et al. [43] used a three-dimensional brick finite element available in ABAQUS to model the free vibration of FG sandwich plates.



In the literature, several works related to the seven-parameter finite element formulation can be found [44,45,46,47,48]. However, to date, the implementations of this formulation were devoted to performing different analyses than the modal analysis of FG shell structures with nonuniform thickness.



The main aim of this work is to extend the finite element analysis previously presented in [49] for the modeling of shell-type structures made of FGMs; that is, to take into account the FGM behavior in the seven-parameter finite element formulation in order to determine the natural frequencies and vibration modes of arbitrary FG shell structures with uniform and nonuniform thicknesses. Moreover, due to the few results available in the literature for FG shell-like structures with variable thickness, a user-defined routine to model these type of structures by means of the commercial code ANSYS mechanical APDL is developed and used to compare the results of the present finite element model. In addition, the routine performance is verified using natural frequencies of FG structures with constant thickness reported in the literature.




2. Theoretical Formulation


Since the present work is an extension of the finite element model presented in [49], the most relevant aspects related to the formulation are given below, and a more detailed explanation can be found in the previously mentioned work. In Figure 1, the three-dimensional (3D) geometry of the shell element  Φ  and the discretization of the mid-surface  Ω  are shown; the main idea to model the 3D domain is to represent it by means of its mid-surface. In this case, Figure 1 illustrates the discretization of the shell’s mid-surface using spectral nodes for an element with polynomial order   p = 4  .



2.1. Geometrical Parameters


The position vector of a typical point in the element  Φ  can be approximated as


  X =  ∑  k = 1  q    ψ k    ξ 1  ,   ξ 2       X ̲  k  +  ξ 3   h 2    n ̲  k   ,  



(1)




where    ψ k    ξ 1  ,   ξ 2     is the k-th two-dimensional (2D) Lagrange interpolation function of order p,    X ̲  k   is the position vector,    n ̲  k   is the unit normal vector of the k-th spectral node, and h denotes the thickness in the k-th spectral node position, so the thickness variation can be easily considered. The total number of nodes per element is   q =  p + 1   p + 1   .



Additionally, a set of covariant basis vectors for each point in the element must be defined:  


   g i  =   ∂ X   ∂  ξ i    ≡  X  , i     i = 1 ,  2 ,  3 .  



(2)







A differential line element in the typical shell element, in terms of the curvilinear coordinates, can be expressed as


        d  X 1        d  X 2        d  X 3       T  =       d  ξ 1        d  ξ 2        d  ξ 3       T         ∂  X 1    ∂  ξ 1          ∂  X 2    ∂  ξ 1          ∂  X 3    ∂  ξ 1            ∂  X 1    ∂  ξ 2          ∂  X 2    ∂  ξ 2          ∂  X 3    ∂  ξ 2            ∂  X 1    ∂  ξ 3          ∂  X 2    ∂  ξ 3          ∂  X 3    ∂  ξ 3         =   d ξ  T   J  ,  



(3)




where   J   is the Jacobian matrix with determinant J. In conjunction with the covariant basis vectors, a contravariant set of basis vectors   g i   is defined, as follows:


      g 1  =     g 2  ×  g 3   J   ,      g 2  =     g 3  ×  g 1   J   ,      g 3  =     g 1  ×  g 2   J   .     












2.2. Displacement Field


The displacement field of the seven-parameter formulation considered in this work is given by [46,47]


  u  X , t  =  u ̲    ξ α  , t  +  ξ 3    h 2   φ   ξ α  , t  +    ξ 3   2    h 2   Ψ   ξ α  , t  ,  



(4)




where


   u ̲    ξ α  , t  =   u ̲  i    ξ α  , t    E ^  i  ,  φ   ξ α  , t  =  φ i    ξ α  , t    E ^  i  ,  Ψ   ξ α  , t  = Ψ   ξ α  , t   n ̲    ξ α   ,  








Here,    E ^  i   is a unit vector in direction i of the Cartesian coordinate system    X 1   X 2   X 3   ; therefore, the subindex i takes the values of 1, 2, and 3.



In Equation (4), the vector    u ̲    ξ α  , t    is associated with the mid-surface displacements in the three directions,   φ   ξ α  , t    is the difference vector which gives the change in the mid-surface director, and the vector   Ψ   ξ α  , t    is defined by scaling the normal vector   n ̲   with the seventh parameter  Ψ , which denotes the thickness stretch and mitigates the Poisson’s locking phenomena that appear in the six-parameter formulation [47,48].




2.3. Strains


The strains in the element are obtained by considering only the linear part of the Green–Lagrange strain tensor, and are given by


  E =   1 2     u  , i   ·  g j  +  g i  ·  u  , j     g i  ⊗  g j  ,  



(5)




which can be expressed in their covariant components as [50]


  E =  E  α β     g α  ⊗  g β  +  E  α 3     g α  ⊗  g 3  +  E  3 α     g 3  ⊗  g α  +  E 33    g 3  ⊗  g 3  ,  



(6)




where, considering only the linear terms associated with the thickness coordinate, the covariant components are


     E  α β     =     ε  α β   0     ξ α  , t  +  ξ 3   ε  α β   1     ξ α  , t  ,     



(7)






     E  α 3     =     ε  α 3   0     ξ α  , t  +  ξ 3   ε  α 3   1     ξ α  , t  ,     



(8)






     E  3 α     =     E  α 3   ,     



(9)






     E 33    =     ε  33   0     ξ α  , t  +  ξ 3   ε  33   1     ξ α  , t  .     



(10)









3. Constitutive Equations


In this work, the FGM constituents are considered to behave as isotropic linear elastic materials. It is worth pointing out that despite this assumption, the FGM analyzed here remains heterogeneous along the thickness direction, and the simple rule of mixtures is used as a homogenization scheme to evaluate the effective material properties of the FGM, which is written as [47,51]


  P   ξ 3   =   P  t o p   −  P  b o t     V  t o p  i    ξ 3   +  P  b o t   ,  



(11)




where   P   ξ 3     denotes the effective material property (e.g., Young’s modulus, mass density, Poisson’s ratio) along the thickness coordinate,   P  t o p    and   P  b o t    are the material properties of the top and bottom constituents, respectively, while    V  t o p  i    ξ 3     is the volume distribution of the top constituent—through thickness—corresponding to the following forms of the power-law [22]:


   V  t o p  I    ξ 3   =      1 +  ξ 3   2    n  ,  



(12)






   V  t o p   I I     ξ 3   =      1 −  ξ 3   2    n  ,  



(13)




where n is the volume fraction exponent or power-law index, and its value may be greater or equal to zero. In order to adequately compare with numerical results reported in the literature, the volume distribution    V  t o p   I I     ξ 3     is also considered in this work.



From now on, to distinguish the aforementioned volume distributions, the volume distribution given by Equation (12) is referred to as FG-I and the volume distribution described by Equation (13) is referred to as FG-II.



Now, for the assumed constituent materials, the fourth-order elasticity tensor, in terms of contravariant vectors, is given by


  C =  C  i j k l    g i  ⊗  g j  ⊗  g k  ⊗  g l  ,  



(14)




where the contravariant components are determined by


   C  i j k l   = λ   ξ 3    g  i j    g  k l   + μ   ξ 3     g  i k    g  j l   +  g  i l    g  j k    .  



(15)







In Equation (15),   λ   ξ 3     and   μ   ξ 3     are the Lamé parameters defined in terms of Young’s modulus,   E   ξ 3    , and Poisson’s ratio,   ν   ξ 3    , as


  λ   ξ 3   =    ν   ξ 3    E   ξ 3      1 + ν   ξ 3     1 − 2 ν   ξ 3       ,   μ   ξ 3   =    E   ξ 3     2  1 + ν   ξ 3       .  











Also, in Equation (15),   g  i j    denotes the contravariant components of the Riemannian metric tensor in the reference configuration, given as     g  i j   =  g i  ·  g j    .



Recalling the considerations of the constituents behavior previously mentioned in this section, the mechanical behavior is assumed to follow Hooke’s law. Then, the relation between the second Piola–Kirchhoff stress tensor and the Green–Lagrange strain tensor is given by   


  S = C E ,  



(16)







And the contravariant components of  S  are determined by    S  i j   =  C  i j k l    E  k l    .




4. Equations of Motion


The equations of motion associated with the present finite element model are derived using the Hamilton’s principle, which is defined as [52]


   ∫  0    T    δ K −  δ U + δ V    d t = 0 ,  



(17)




where   δ K   represents the virtual kinetic energy,   δ U   is the virtual strain energy, and   δ V   is the virtual potential energy due to external loads.



From Hamilton’s principle, the mass matrix, the stiffness matrix, and the load vector can be obtained straightforwardly using the virtual kinetic energy, the virtual strain energy, and the virtual potential energy, respectively. However, for the present study, it is sufficient to compute the stiffness and mass matrices to define the finite element model.



For the displacement field considered here, the virtual kinetic energy is given by


      δ K     =     ∫ A    I 0   δ   u ̲  ˙  ·   u ̲  ˙    +   I 1     h 2      u ̲  ˙  · δ  φ ˙  +  φ ˙  · δ   u ̲  ˙    +  I 2     h 2      u ̲  ˙  · δ  Ψ ˙  n +   h 2     φ ˙  · δ  φ ˙  +  Ψ ˙  n · δ   u ̲  ˙    +             +   I 3      h 2  4     φ ˙  · δ  Ψ ˙  n +  Ψ ˙  n · δ  φ ˙    +  I 4      h 2  4     Ψ ˙  δ  Ψ ˙    | | n | |  2     d A ,     



(18)







And the virtual strain energy is given by


  δ U =  ∫ A    A  i j k l   δ  ε  i j   ( 0 )    ε  k l   ( 0 )   +  B  i j k l    δ  ε  i j   ( 1 )    ε  k l   ( 0 )   + δ  ε  i j   ( 0 )    ε  k l   ( 1 )    +  D  i j k l   δ  ε  i j   ( 1 )    ε  k l   ( 1 )     d A .  



(19)







In Equation (18),   | | n | |   is the norm of the normal vector   n ̲  , the dot indicates the partial derivative with respect time, and the mass inertias are defined as


     I 0  ,  I 1  ,  I 2  ,  I 3  ,  I 4   =  ∫  − 1    1    1 ,  ξ 3  ,    ξ 3   2  ,    ξ 3   3  ,    ξ 3   4   ρ   ξ 3   J d  ξ 3  ,   








where   ρ   ξ 3     is the mass density.



In Equation (19), the contravariant components    A  i j k l   ,  B  i j k l   ,  D  i j k l     are the effective extensional, extensional–bending coupling, and bending fourth-order stiffness tensor components [47]. Such components are calculated using the following definitions:


       A  i j k l   =  ∫  − 1    1    C  i j k l    J d  ξ 3  ,        B  i j k l   =  ∫  − 1    1    ξ 3   C  i j k l    J d  ξ 3  ,        D  i j k l   =  ∫  − 1    1      ξ 3   2   C  i j k l    J d  ξ 3  .      











The expressions of Equations (18) and (19) are used to determine the mass and stiffness matrices, respectively.




5. Finite Element Model


The present vibration analysis assumes harmonic motion; therefore, the generalized displacements    u ̲    ξ α  , t   ,   φ   ξ α  , t    and the seventh parameter  Ψ  can be expressed as [53]


      u ̲    ξ α  , t     =     u ̲    ξ α    e  − i ω t   ,     



(20)






     φ   ξ α  , t     =    φ   ξ α    e  − i ω t   ,     



(21)






     Ψ   ξ α  , t     =    Ψ   ξ α    e  − i ω t   ,     



(22)







Note that  ω  represents the frequency of natural vibration and   i =   − 1    . For the finite element approximation, the displacements and the seventh parameter are approximated as


       u ̲    ξ α   =  ∑  j = 1  q   ψ j    ξ α    u ̲  ,        φ   ξ α   =  ∑  j = 1  q   ψ j    ξ α   φ ,        Ψ   ξ α   =  ∑  j = 1  q   ψ j    ξ α   Ψ .      



(23)







To obtain the mass matrix   [  M e  ]   and the stiffness matrix   [  K e  ]   of the element e, the generalized displacements and the seventh parameter must be replaced by their approximations in the virtual kinetic energy of Equation (18) and in the virtual strain energy of Equation (19), respectively.



Therefore, the finite element model (i.e., the eigenvalue problem) governing the free vibration analysis can be written as


    [ K ]  −  ω 2   [ M ]    Δ  =  0  ,  



(24)




where   Δ   is the vibration mode vector associated with  ω , and   [ K ]   and   [ M ]   are the global stiffness and mass matrices, respectively, which result from assembling the local stiffness and mass matrices of each element. Note that, if it is the case, boundary conditions must be applied to the global matrices. In this work, the eigenvalue problem is solved using a C++ template library for linear algebra called Eigen [54].



Finally, to illustrate the general process for the present finite element analysis, a flowchart is depicted in Figure 2. The dashed rectangle represents the processes executed for each seven-parameter element in the model mesh.




6. Solid Model


This section presents a brief description about the solid model made in ANSYS, which is used to compare results with the ones obtained by means of the present finite element model.



The solid model is meshed using linear solid elements, i.e., SOLID185 elements. To emulate the mechanical property variations of the FGM, several layers were defined through thickness direction. An isotropic material was assigned to each layer, where its mechanical properties were evaluated according to its position along the thickness direction and using Equation (11). For instance, in Figure 3, a close-up image of the materials through the thickness direction is depicted.



Regarding the boundary conditions used in this study, clamped edge and simply supported edge, these are defined as follows:




	
Clamped edge: all the degrees of freedom of the nodes associated with the corresponding edge are constrained.



	
Simply supported edge: all the degrees of freedom for the nodes located at the mid-surface of the solid model are constrained, and the remaining nodes are constrained in the tangential and the thickness directions.








Note that, in order to obtain nodes at the mid-surface, an even number of layers must be defined, since linear solid elements are used.




7. Results


In this section, the geometrical parameters of the shell structures analyzed here are introduced. In addition, the convergence studies and numerical comparisons are included. At the end, the influence of the geometrical parameters and material properties on the natural frequencies is presented to illustrate the performance of the present model. All natural frequencies are reported in Hertz.



7.1. Geometrical Parameters


For the shells studied here, the position vector used to describe the mid-surface of the shell and the functions for variation of the thickness are listed below. In addition, the geometrical parameters are depicted in Figure 4, Figure 5 and Figure 6. Note that the thickness variation is linear for all the shells, and the conical, parabolic, and hemispherical shells are truncated.



	1.

	
Conical shell



	
Mid-surface:


  r  ( θ , z )  = r  ( z )  cos θ   i ^  + r  ( z )  sin θ   j ^  + z   k ^  ,     0 ≤ z ≤ L cos α       0 ≤ α < π / 2       0 ≤ θ ≤ 2 π      



(25)




where   r  ( z )  =  r 0  +     r 1  −  r 0    L cos α    z  .



	
Thickness variation:


  h  ( z )  =  h 0  +   h 1  −  h 0     z  L cos α    ,     0 ≤ z ≤ L cos α       0 ≤ α < π / 2      



(26)











	2.

	
Cylindrical shell   α = 0  



	
Mid-surface:


  r  ( θ , z )  =  r 0  cos θ   i ^  +  r 0  sin θ   j ^  + z   k ^  ,      0 ≤ z ≤ L       0 ≤ θ ≤ 2 π      



(27)







	
Thickness variation:


  h  ( z )  =  h 0   1 +     h 1  −  h 0    h 0      z L    ,  0 ≤ z ≤ L  



(28)











	3.

	
Parabolic shell



	
Mid-surface:


  r  ( φ , θ )  = r  ( φ )  cos θ   i ^  + r  ( φ )  sin θ   j ^  +    r   ( φ )  2    4 F      k ^  ,       φ 0  ≤ φ ≤  φ 1        0 ≤ θ ≤ 2 π      



(29)




where   r ( φ ) = 2 F tan φ  , with F being the focal distance [55].



	
Thickness variation:


  h  ( φ )  =  h 0   1 + β     φ −  φ 0     φ 1  −  φ 0       ,   φ 0  ≤ φ ≤  φ 1   



(30)











	4.

	
Hemispherical shell



	
Mid-surface:


  r  ( φ , θ )  =  r 0  sin φ cos θ   i ^  +  r 0  sin φ sin θ   j ^  +  r 0  cos φ   k ^  ,       φ 0  ≤ φ ≤  φ 1        0 ≤ θ ≤ 2 π      



(31)







	
Thickness variation:


  h  ( φ )  =  h 0   1 − β     φ −  φ 0     φ 1  −  φ 0       ,   φ 0  ≥ φ ≥  φ 1   



(32)














An additional parameter, used in the following sections when reporting natural frequencies of shells with variable thickness, is the average thickness,   h m  , which is defined as


   h m  =     h 0  +  h 1   2   .  



(33)








7.2. Boundary Conditions


For convenience, a nomenclature based on capital letters is used to describe the boundary conditions applied in each case of study. The letters C, F, and S denote a clamped edge, a free edge, and a simply supported edge, respectively.



The clamped edge (C) restricts all the degrees of freedom associated with the nodes at the end that represent the maximum thickness, while the nodes located at a free edge (F) are unrestricted.



Furthermore, the parabolic shell structure analyzed here is subjected to SF boundary conditions (i.e., simply-supported-free). Therefore, the degrees of freedom of the nodes at the simply supported edge (S) are restricted as follows:


   u ̲  = Ψ = 0 .  



(34)








7.3. Material Properties


The mechanical properties used in this work, for the bottom and top constituents, are listed below [23]:




	
Aluminum:    E  b o t   = 70   GPa,    ρ  b o t   = 2707   kg/m   3  ,    ν  b o t   = 0.3  ;



	
Zirconia:    E  t o p   = 168   GPa,    ρ  t o p   = 5700   kg/m   3  ,    ν  t o p   = 0.3  .








where   E i   is the modulus of elasticity,   ρ i   denotes the mass density, and   ν i   the Poisson’s ratio. Note that subindex i indicates the surface position.




7.4. Convergence Study


To achieve mesh independence, convergence studies were performed for each shell geometry analyzed in this work. The results of these studies are presented and discussed in Appendix A. It is worth mentioning that for all cases analyzed with the present finite element model, seven-parameter elements of order   p = 8   were used to mesh the domains.



In general, for the shells with uniform thickness (UT) and linear variable thickness (LVT) studied in this work, it is observed that convergence is obtained with a mesh size of 25 elements—within the first ten frequencies. The only case where a good convergence is achieved with a mesh size of 16 elements is the parabolic shell with UT.




7.5. Numerical Verification


To verify the performance of the present model, the natural frequencies obtained were compared with those results reported in the literature. It must be noted that the numerical comparisons correspond to shells with uniform thickness. In addition, a comparison is included with results obtained by using linear solid elements (SOLID185). The latter allows us to verify the behavior of the present model for shells with thickness variation.



In the following comparisons, the natural frequencies obtained by means of the present model are indicated by the label 7-PL. On the other hand, the label 3D represents the results obtained using solid elements in the commercial code ANSYS.



Table 1, Table 2 and Table 3 present a comparison for conical, cylindrical, and parabolic shells, respectively. The natural frequencies obtained using the present formulation show very good agreement with the ones reported in the literature and the ones computed by means of solid elements in ANSYS.



In addition, Table 4 shows a comparison of the vibration modes for a parabolic shell with uniform thickness and with a volume distribution of the type FG-I. A very good coincidence is observed in the depicted modes. Moreover, similar modes were reported in [23].



Finally, a comparison of the natural frequencies for a hemispherical shell with constant thickness and CF boundary conditions is shown in Table 5. The results of the present model and the 3D model are in accordance with those reported in [23].




7.6. Numerical Results


The main aim of this section is to present the natural frequencies for several type of shells with LVT, such as conical, cylindrical, parabolic, and hemispherical. Along with the present results (7-PL), the natural frequencies obtained by means of solid elements in ANSYS are included for comparison purposes. For all study cases and listed frequencies, the maximum relative errors of the present model with respect to 3D result are reported for each power-law index.



The natural frequencies for conical shells with LVT under CF boundary conditions are presented in Table 6, Table 7 and Table 8 for different values of the ratio    r 0  /  h m    and angle  α . The volume distribution of the top constituent follows the expression of Equation (13), i.e., FG-II.



From the comparisons presented in Table 6, Table 7 and Table 8, the maximum values of relative error ranges from   3.22 %   to   4.34 %   for conical shells with an angle   α =  30 ∘   , and the maximum value is obtained when   n = 5  . Regarding the conical shells with   α =  60 ∘   , the maximum errors are found in a range from   2.77 %   to   5.14 %  , with the maximum value occurring when   n = 5  . Considering fixed values of the power-law exponent, the natural frequencies decrease as the value of ratio    r 0  /  h m    increases, which is an expected behavior since the ratio values reported are related to thick and thin shells. In addition, the angle  α  also has an influence on the natural frequencies as it can be seen for fixed ratios of    r 0  /  h m   , that is, lower values are obtained as the angle  α  increases.



In Table 9, several vibration modes for a conical shell with LVT, CF boundary conditions, and   n = 0.6   are compared with those obtained by means of the solid elements (3D model). For both models, the vibration modes are very similar.



In Table 10, Table 11 and Table 12, the natural frequencies for several ratios    r 0  /  h m    of a cylindrical shell with LVT subjected to CF boundary conditions are reported.



For the natural frequencies presented in Table 10, Table 11 and Table 12, corresponding to cylindrical shells, the range for the maximum errors is between   4.31 %   and   8.10 %  , with the maximum value occurring in the case when    r 0  /  h m  = 2.5   and   n = 5  . Note that the aforementioned radius-to-thickness ratio describes a very thick shell. However, for greater values of the ratio, the value of errors are below   4.91 %  . For illustration purposes, a comparison of several vibration modes of a cylindrical shell with LVT, CF boundary conditions, and   n = 5   is presented in Table 13.



Natural frequencies for parabolic shells with LVT and under SF boundary conditions are presented in Table 14, Table 15 and Table 16. The volume distribution of the top constituent follows the expression of Equation (12), i.e., FG-I.



From the comparisons presented for parabolic shells in Table 14, Table 15 and Table 16, the maximum values of relative error are within the range of   3.18 %   to   4.59 %  . In these comparisons, note that for a thin shell (e.g.,   F /  h m  = 20  ), the maximum error occurs when   n = 0.6  , conversely to minor values of the ratio. For a fixed value of the volume fraction exponent, a decrease in values of the natural frequencies is observed as the ratio   F /  h m    increases.



To complement the comparisons presented for parabolic shells, the vibration modes corresponding to a parabolic shell with LVT, SF boundary conditions, and   n = 0.6   are shown in Table 17. It can be noted that similar contours are obtained using both models.



For the hemispherical shell, the natural frequencies for several values of the ratio    r 0  /  h m    are presented in Table 18, Table 19, Table 20 and Table 21.



Lastly, from the natural frequencies of hemispherical shells presented in Table 18, Table 19, Table 20 and Table 21, it is noted that the maximum relative errors are above the values obtained in the previous comparisons reported here; they are found in a range between   4.27 %   and   7.95 %  . The higher values of maximum relative errors occur when a very thick shell is analyzed, i.e.,   r /  h m  = 2.5  . It must be mentioned that the majority of the maximum relative errors are above   5 %  .



In addition, Table 22 presents comparisons of the vibration modes obtained using both models (7-PL and 3D) for a hemispherical shell with LVT, CF boundary conditions, and   n = 5  . The similarities between models for vibration modes and natural frequencies are noted in these comparisons.



In general, the behavior of natural frequencies is similar to that observed when analyzing thin and thick shells, that is, an increase in the frequencies value is observed when the shells become thicker. In addition, the study cases analyzed in this section demonstrate the behavior of the present model.





8. Conclusions


From the present work, the following conclusions can be drawn:




	
A finite element model for the linear vibration analysis, using spectral/hp elements based on a seven-parameter shell formulation, is extended to study functionally graded shells.



	
Comparisons with the numerical results of a simulation using solid elements verify the performance of the present formulation. In addition, the comparisons suggest that the present formulation shows a better behavior for the modeling of conical, cylindrical, and parabolic shells subjected to the boundary conditions considered herein.



	
In general, although the relative errors are between   6 %   and   8 %   obtained in the study of hemispherical shells, the present formulation has a good behavior for moderately thick to thin shells. It must be recalled that mechanical properties through the thickness of the 3D model are approximated using several layers in this direction. On the other hand, in the studies reported using the present formulation, the variation of the mechanical properties is evaluated using several Gauss-points while numerical integration through thickness is made, resulting in a closer approximation of them. For the aforementioned reasons, some differences between results, but a similar behavior, can be expected.



	
Studying the effect of the power-law index on the free vibration response is relevant since, for a given thick or thin shell and boundary conditions, its response may be stiffer or not as the power-law index increases.



	
Finally, the spectral/hp seven-parameter formulation used in the present finite element model allows a straightforward implementation of the FGM behavior and the use of three-dimensional constitutive equations. These features allow the use of considerably fewer elements, and therefore computational time, to model FG shell structures, when compared with models made of solid elements.
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Abbreviations and Nomenclature


The following abbreviations and nomenclature are used in this manuscript:



	
Abbreviations

	




	
FGM

	
Functionally graded material




	
FG

	
Functionally graded




	
FSDT

	
First-order shear deformation theory




	
TSDT

	
Third-order shear deformation theory




	
HSDT

	
Higher-order shear deformation theory




	
3D

	
Three-dimensional




	
2D

	
Two-dimensional




	
FG-I

	
Volume distribution of top constituent according to Equation (12)




	
FG-II

	
Volume distribution of top constituent according to Equation (13)




	
C

	
Clamped boundary condition




	
S

	
Simply supported boundary condition




	
F

	
Free edge boundary condition




	
UT

	
Uniform or constant thickness




	
LVT

	
Linear variable thickness




	
Nomenclature




	
 Φ 

	
3D geometry of the shell element




	
 Ω 

	
Shell’s mid-surface




	
  ξ i  

	
Direction i of the curvilinear coordinates




	
p

	
Polynomial order




	
   ψ k    ξ 1  ,   ξ 2    

	
2D Lagrange interpolation function of order p




	
   X ̲  k  

	
Position vector of k-th spectral node




	
   n ̲  k  

	
Unit normal vector of the k-th spectral node




	
h

	
Thickness at the k-th spectral node position




	
q

	
Number of spectral nodes per element




	
   •   , i   

	
First derivative with respect   ξ i  




	
  g i  

	
Set of covariant basis vectors




	
  J  

	
Jacobian matrix




	
J

	
Determinant of the Jacobian matrix




	
  g i  

	
Set of contravariant basis vectors




	
   u ̲    ξ α  , t   

	
Vector of the mid-surface displacements




	
  φ   ξ α  , t   

	
Difference vector




	
 Ψ 

	
Seventh parameter




	
 E 

	
Green–Lagrange strain tensor




	
  E  α β   

	
Strain covariant component




	
  ε  α β   0   

	
Strain covariant component associated with constant terms according to   ξ 3  




	
  ε  α β   1   

	
Strain covariant component associated with linear terms according to   ξ 3  




	
n

	
Volume fraction exponent or power-law index




	
   V  t o p  i    ξ 3    

	
Volume distribution of the top constituent following the power-law form i




	
  C  i j k l   

	
Contravariant components of the fourth-order elasticity tensor




	
  λ   ξ 3   ,  μ   ξ 3    

	
Lamé parameters as a function of   ξ 3  




	
   g  i j    

	
Contravariant components of the Riemannian metric tensor




	
   •  ˙  

	
Partial derivative with respect to time




	
  I i  

	
Mass inertia




	
  A  i j k l   

	
Effective extensional fourth-order stiffness tensor component




	
  B  i j k l   

	
Effective extensional–bending coupling fourth-order stiffness tensor component




	
  D  i j k l   

	
Effective bending fourth-order stiffness tensor component




	
 ω 

	
Frequency of natural vibration




	
  Δ e  

	
Vibration mode vector of the element e




	
  h m  

	
Average thickness











Appendix A. Convergence Study


In this appendix, the results of the convergence study performed to determine the mesh size for the numerical comparisons are presented. They were obtained using meshes with seven-parameter elements of order   p = 8  . For conical and cylindrical shells with uniform thickness, the geometrical parameters considered are those reported in [22], and for parabolic and hemispherical shells they are those presented in [23].



In the following tables, the label Size indicates the number of elements used for each mesh analyzed in the convergence study, and the mesh sizes considered were 4, 16, 25, and 36. Note that the first mesh size corresponds to a coarse mesh, and the last one corresponds to a fine mesh.



Table A1 presents the convergence study for conical shells with uniform thickness (UT) and linear variable thickness (LVT), and both truncated cones are under CF boundary conditions and their volume distribution is type FG-II; see Equation (13). From the results, it is observed that meshes of 25 elements give a good convergence for the first ten frequencies.





 





Table A1. Convergence of natural frequencies for conical shells with UT and LVT under CF boundary conditions (FG-II).






Table A1. Convergence of natural frequencies for conical shells with UT and LVT under CF boundary conditions (FG-II).





	

	

	
Natural Frequency




	
  n  

	
Size

	
   f 1   

	
   f 2   

	
   f 3   

	
   f 4   

	
   f 5   

	
   f 6   

	
   f 7   

	
   f 8   

	
   f 9   

	
   f 10   






	
UT

	

	




	
0.6

	
4

	
206.3399

	
206.3406

	
228.7445

	
228.7594

	
307.8573

	
310.0378

	
318.3083

	
318.3083

	
349.2583

	
349.2601




	
16

	
206.2043

	
206.2043

	
225.9955

	
225.9955

	
279.1271

	
279.1425

	
318.2458

	
318.2458

	
349.0163

	
349.0163




	
25

	
206.1950

	
206.1950

	
225.9754

	
225.9754

	
279.0831

	
279.0831

	
318.2343

	
318.2343

	
348.9862

	
348.9862




	
36

	
206.1895

	
206.1895

	
225.9625

	
225.9625

	
279.0604

	
279.0604

	
318.2267

	
318.2267

	
348.9669

	
348.9669




	
1

	
4

	
205.2655

	
205.2661

	
227.6316

	
227.6455

	
306.4297

	
308.6182

	
316.4647

	
316.4647

	
347.4014

	
347.4036




	
16

	
205.1328

	
205.1328

	
224.9006

	
224.9006

	
277.8596

	
277.8751

	
316.4039

	
316.4039

	
347.1603

	
347.1603




	
25

	
205.1241

	
205.1241

	
224.8809

	
224.8809

	
277.8168

	
277.8168

	
316.3927

	
316.3927

	
347.1300

	
347.1300




	
36

	
205.1192

	
205.1192

	
224.8691

	
224.8691

	
277.7954

	
277.7954

	
316.3855

	
316.3855

	
347.1107

	
347.1107




	
5

	
4

	
204.3267

	
204.3273

	
230.8937

	
230.9606

	
309.7112

	
309.7112

	
313.8276

	
316.9194

	
346.9169

	
346.9202




	
16

	
204.1959

	
204.1959

	
228.1823

	
228.1823

	
285.6315

	
285.6461

	
309.6502

	
309.6502

	
346.6729

	
346.6729




	
25

	
204.1866

	
204.1866

	
228.1618

	
228.1618

	
285.5871

	
285.5871

	
309.6392

	
309.6392

	
346.6426

	
346.6426




	
36

	
204.1816

	
204.1816

	
228.149

	
228.149

	
285.5645

	
285.5645

	
309.6318

	
309.6318

	
346.6229

	
346.6229




	
VT

	

	
  α =  60 ∘   ,    r 0  /  h m  = 5  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  




	
0.6

	
4

	
64.2671

	
64.2683

	
72.8039

	
72.8039

	
77.7359

	
77.8637

	
82.4200

	
111.7707

	
112.4981

	
119.3929




	
16

	
64.2381

	
64.2383

	
72.7834

	
72.7834

	
77.1862

	
77.1862

	
82.3982

	
105.1581

	
105.1593

	
119.3415




	
25

	
64.2342

	
64.2342

	
72.7792

	
72.7792

	
77.1813

	
77.1813

	
82.3935

	
105.1495

	
105.1496

	
119.3310




	
36

	
64.2314

	
64.2316

	
72.7765

	
72.7765

	
77.1782

	
77.1782

	
82.3906

	
105.1451

	
105.1451

	
119.3240




	
1

	
4

	
64.0133

	
64.0147

	
72.5720

	
72.5720

	
77.4079

	
77.5351

	
82.1966

	
111.3054

	
112.0354

	
118.9686




	
16

	
63.9856

	
63.9856

	
72.5516

	
72.5516

	
76.8608

	
76.8608

	
82.1739

	
104.7152

	
104.7165

	
118.9188




	
25

	
63.9819

	
63.9819

	
72.5476

	
72.5476

	
76.8562

	
76.8562

	
82.1693

	
104.7070

	
104.7070

	
118.9087




	
36

	
63.9793

	
63.9793

	
72.5448

	
72.5448

	
76.8531

	
76.8531

	
82.1662

	
104.7027

	
104.7027

	
118.9018




	
5

	
4

	
64.7178

	
64.7191

	
71.8602

	
71.8604

	
79.7390

	
79.8619

	
80.9811

	
114.8458

	
115.4412

	
119.9444




	
16

	
64.6894

	
64.6896

	
71.8401

	
71.8401

	
79.1981

	
79.1981

	
80.9595

	
108.2964

	
108.2974

	
119.8919




	
25

	
64.6855

	
64.6855

	
71.8360

	
71.8360

	
79.1933

	
79.1933

	
80.9551

	
108.2880

	
108.2880

	
119.8812




	
36

	
64.6829

	
64.6829

	
71.8332

	
71.8332

	
79.1901

	
79.1901

	
80.9522

	
108.2835

	
108.2835

	
119.8740









The results of the convergence study for cylindrical shells with UT and LVT are presented in Table A2, both of them under CF boundary conditions. From this study, in general, the convergence was observed for a mesh size of 25 elements.



Table A3 shows the convergence of the natural frequencies for parabolic shells under SF boundary conditions, and for several values of the power-law index n. For uniform thickness, a good convergence was obtained using a mesh size of 16 elements. However, for a parabolic shell with LVT, the convergence was observed at meshes of 25 elements.





 





Table A2. Convergence of natural frequencies for cylindrical shells with UT and with LVT under CF boundary conditions (FG-II).
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Natural Frequency




	
  n  

	
Size

	
   f 1   

	
   f 2   

	
   f 3   

	
   f 4   

	
   f 5   

	
   f 6   

	
   f 7   

	
   f 8   

	
   f 9   

	
   f 10   






	
UT

	

	
   r / h = 10   




	
0.6

	
4

	
149.0672

	
149.0813

	
217.4327

	
220.1873

	
250.289

	
250.289

	
414.3378

	
421.2149

	
422.6686

	
431.4761




	
16

	
148.9533

	
148.9533

	
213.7694

	
213.7694

	
250.2324

	
250.2324

	
375.1731

	
375.2126

	
414.3378

	
418.8546




	
25

	
148.9471

	
148.9471

	
213.7647

	
213.7647

	
250.2258

	
250.2258

	
375.1441

	
375.1441

	
414.3378

	
418.8213




	
36

	
148.9438

	
148.9438

	
213.7629

	
213.7629

	
250.2222

	
250.2222

	
375.1404

	
375.1404

	
414.3378

	
418.8004




	
1

	
4

	
148.1871

	
148.2012

	
216.6958

	
219.4371

	
248.6176

	
248.6176

	
411.5388

	
419.159

	
420.6086

	
430.1546




	
16

	
148.0766

	
148.0766

	
213.0478

	
213.0478

	
248.5642

	
248.5642

	
374.0646

	
374.1038

	
411.5388

	
416.811




	
25

	
148.0712

	
148.0712

	
213.043

	
213.043

	
248.5585

	
248.5585

	
374.0361

	
374.0361

	
411.5388

	
416.7794




	
36

	
148.0683

	
148.0683

	
213.0418

	
213.0418

	
248.5555

	
248.5555

	
374.0327

	
374.0327

	
411.5388

	
416.7596




	
5

	
4

	
147.6200

	
147.6372

	
224.2188

	
226.9312

	
242.8096

	
242.8096

	
401.1873

	
424.5701

	
426.0516

	
445.3043




	
16

	
147.5116

	
147.5116

	
220.4488

	
220.4488

	
242.759

	
242.759

	
388.7491

	
388.7856

	
401.1873

	
422.1085




	
25

	
147.5064

	
147.5064

	
220.4442

	
220.4442

	
242.7538

	
242.7538

	
388.7211

	
388.7211

	
401.1873

	
422.0764




	
36

	
147.5035

	
147.5035

	
220.4425

	
220.4425

	
242.7507

	
242.7507

	
388.7175

	
388.7175

	
401.1873

	
422.0560




	
LVT

	

	
   r 0  /  h m  = 5  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  




	
0.6

	
4

	
58.5325

	
58.5403

	
79.1170

	
79.1170

	
97.4787

	
98.0998

	
125.2401

	
157.4556

	
157.4597

	
180.5150




	
16

	
58.5032

	
58.5035

	
79.1061

	
79.1061

	
96.1520

	
96.1520

	
125.2401

	
157.3938

	
157.3941

	
162.9478




	
25

	
58.5015

	
58.5015

	
79.1040

	
79.1040

	
96.1511

	
96.1511

	
125.2401

	
157.3840

	
157.3840

	
162.9408




	
36

	
58.5002

	
58.5004

	
79.1026

	
79.1026

	
96.1505

	
96.1505

	
125.2401

	
157.3773

	
157.3774

	
162.9400




	
1

	
4

	
58.2046

	
58.2122

	
78.4490

	
78.4490

	
97.2474

	
97.8640

	
124.1085

	
156.6195

	
156.6236

	
179.9211




	
16

	
58.1765

	
58.1767

	
78.4397

	
78.4397

	
95.9248

	
95.9248

	
124.1085

	
156.5594

	
156.5598

	
162.6202




	
25

	
58.1750

	
58.1750

	
78.4377

	
78.4377

	
95.9238

	
95.9238

	
124.1085

	
156.5500

	
156.5501

	
162.6132




	
36

	
58.1739

	
58.1739

	
78.4366

	
78.4366

	
95.9233

	
95.9234

	
124.1085

	
156.5436

	
156.5437

	
162.6124




	
5

	
4

	
58.8273

	
58.8348

	
76.8844

	
76.8844

	
100.5552

	
101.1290

	
120.9788

	
156.7878

	
156.7918

	
183.6858




	
16

	
58.7989

	
58.7991

	
76.8743

	
76.8743

	
99.2149

	
99.2149

	
120.9788

	
156.7283

	
156.7286

	
168.2562




	
25

	
58.7974

	
58.7974

	
76.8723

	
76.8723

	
99.2141

	
99.2141

	
120.9788

	
156.7189

	
156.7189

	
168.2494




	
36

	
58.7963

	
58.7963

	
76.8710

	
76.8710

	
99.2135

	
99.2137

	
120.9788

	
156.7125

	
156.7126

	
168.2487











 





Table A3. Convergence of natural frequencies for parabolic shells with UT and LVT under SF boundary conditions (FG-I).
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Natural Frequency




	
  n  

	
Size

	
   f 1   

	
   f 2   

	
   f 3   

	
   f 4   

	
   f 5   

	
   f 6   

	
   f 7   

	
   f 8   

	
   f 9   

	
   f 10   






	
UT

	

	




	
0.6

	
4

	
115.0771

	
115.0783

	
162.5836

	
162.5836

	
163.816

	
163.8276

	
190.6016

	
205.3549

	
205.3549

	
205.7548




	
16

	
115.0375

	
115.0375

	
162.5828

	
162.5828

	
162.6739

	
162.6739

	
190.6009

	
194.7506

	
194.7545

	
205.3518




	
25

	
115.0374

	
115.0374

	
162.5828

	
162.5828

	
162.6739

	
162.6739

	
190.6009

	
194.7454

	
194.7454

	
205.3518




	
36

	
115.0373

	
115.0373

	
162.5828

	
162.5828

	
162.6732

	
162.6732

	
190.6009

	
194.7448

	
194.7448

	
205.3518




	
1

	
4

	
114.1884

	
114.1895

	
161.5536

	
161.5536

	
162.9672

	
162.9773

	
189.1796

	
203.9445

	
203.9445

	
204.8127




	
16

	
114.1494

	
114.1494

	
161.5521

	
161.5521

	
161.8309

	
161.8309

	
189.1789

	
193.8818

	
193.8857

	
203.9420




	
25

	
114.1493

	
114.1493

	
161.5521

	
161.5521

	
161.8301

	
161.8301

	
189.1789

	
193.8772

	
193.8772

	
203.9420




	
36

	
114.1492

	
114.1492

	
161.5521

	
161.5521

	
161.8301

	
161.8301

	
189.1789

	
193.8766

	
193.8766

	
203.9420




	
5

	
4

	
114.1847

	
114.1854

	
157.9431

	
157.9431

	
162.9485

	
162.9594

	
186.2609

	
202.1293

	
202.1293

	
206.7551




	
16

	
114.1467

	
114.1467

	
157.9423

	
157.9423

	
161.8215

	
161.8215

	
186.2609

	
195.7845

	
195.7884

	
202.1268




	
25

	
114.1466

	
114.1466

	
157.9423

	
157.9423

	
161.8207

	
161.8207

	
186.2602

	
195.7800

	
195.7800

	
202.1268




	
36

	
114.1465

	
114.1465

	
157.9423

	
157.9423

	
161.8207

	
161.8207

	
186.2602

	
195.7793

	
195.7793

	
202.1262




	
LVT

	

	
  F /  h m  = 5  ,   F = 0.875   m,   β = 1.5  ,    φ 0  = π / 6  ,    φ 1  = π / 3  




	
0.6

	
4

	
139.0314

	
139.0330

	
184.2228

	
184.5964

	
232.6821

	
232.6821

	
273.5517

	
277.8245

	
302.1489

	
302.1493




	
16

	
138.9795

	
138.9801

	
181.8076

	
181.8076

	
232.6816

	
232.6816

	
252.5840

	
252.5940

	
302.1124

	
302.1128




	
25

	
138.9790

	
138.9790

	
181.8048

	
181.8048

	
232.6810

	
232.6816

	
252.5714

	
252.5714

	
302.1111

	
302.1111




	
36

	
138.9782

	
138.9784

	
181.8041

	
181.8041

	
232.6810

	
232.6810

	
252.5694

	
252.5694

	
302.1111

	
302.1116




	
1

	
4

	
137.4007

	
137.4023

	
182.9299

	
183.3013

	
230.7302

	
230.7302

	
271.8826

	
276.1198

	
300.6015

	
300.6019




	
16

	
137.3496

	
137.3502

	
180.5318

	
180.5318

	
230.7280

	
230.7280

	
251.0767

	
251.0868

	
300.5687

	
300.5691




	
25

	
137.3490

	
137.3490

	
180.5297

	
180.5297

	
230.7280

	
230.7280

	
251.0646

	
251.0646

	
300.5674

	
300.5678




	
36

	
137.3481

	
137.3482

	
180.5290

	
180.5290

	
230.7275

	
230.7280

	
251.0626

	
251.0631

	
300.5678

	
300.5678




	
5

	
4

	
136.9053

	
136.9081

	
185.7905

	
186.1861

	
225.5277

	
225.5277

	
276.6422

	
281.0989

	
299.3446

	
299.3454




	
16

	
136.8544

	
136.8549

	
183.4657

	
183.4657

	
225.5265

	
225.5265

	
255.8724

	
255.8819

	
299.3099

	
299.3099




	
25

	
136.8537

	
136.8538

	
183.4636

	
183.4636

	
225.5260

	
225.5265

	
255.8606

	
255.8606

	
299.3086

	
299.3086




	
36

	
136.8530

	
136.8531

	
183.4629

	
183.4629

	
225.5260

	
225.5260

	
255.8591

	
255.8591

	
299.3086

	
299.3091









For several values of the power-law index n, Table A4 presents the convergence of the natural frequencies of hemispherical shells with UT and LVT under CF boundary conditions. For both cases, within the first ten frequencies, a good convergence was observed when a mesh of 25 elements was used.





 





Table A4. Convergence of natural frequencies for hemispherical shells with UT and LVT under CF boundary conditions (FG-I).
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Natural Frequency




	
  n  

	
Size

	
   f 1   

	
   f 2   

	
   f 3   

	
   f 4   

	
   f 5   

	
   f 6   

	
   f 7   

	
   f 8   

	
   f 9   

	
   f 10   






	
UT

	

	




	
0.6

	
4

	
142.9211

	
142.9228

	
208.2505

	
209.0329

	
286.9648

	
286.9648

	
371.2498

	
378.0133

	
379.8979

	
412.0659




	
16

	
142.7639

	
142.7639

	
204.6190

	
204.6190

	
286.8809

	
286.8809

	
335.2968

	
335.3127

	
379.7792

	
411.9857




	
25

	
142.7490

	
142.7490

	
204.6141

	
204.6141

	
286.8646

	
286.8646

	
335.2817

	
335.2817

	
379.7558

	
411.9716




	
36

	
142.7395

	
142.7395

	
204.6122

	
204.6122

	
286.8536

	
286.8536

	
335.2802

	
335.2802

	
379.7405

	
411.9624




	
1

	
4

	
141.9287

	
141.9304

	
206.8133

	
207.592

	
284.9687

	
284.9687

	
368.682

	
375.4016

	
377.1949

	
409.1480




	
16

	
141.7716

	
141.7716

	
203.2066

	
203.2066

	
284.8847

	
284.8847

	
332.9832

	
332.9992

	
377.0763

	
409.0685




	
25

	
141.7565

	
141.7565

	
203.2023

	
203.2023

	
284.8682

	
284.8682

	
332.9683

	
332.9683

	
377.0531

	
409.0542




	
36

	
141.7468

	
141.7468

	
203.2004

	
203.2004

	
284.8576

	
284.8576

	
332.9668

	
332.9668

	
377.0377

	
409.0449




	
5

	
4

	
141.5049

	
141.5083

	
211.0865

	
211.8818

	
278.8679

	
278.8679

	
370.0573

	
372.969

	
379.5433

	
401.4401




	
16

	
141.3544

	
141.3544

	
207.5792

	
207.5792

	
278.7852

	
278.7852

	
338.3654

	
338.3804

	
369.9389

	
401.3587




	
25

	
141.3400

	
141.3400

	
207.5749

	
207.5749

	
278.7689

	
278.7689

	
338.3516

	
338.3516

	
369.9159

	
401.3441




	
36

	
141.3306

	
141.3306

	
207.5731

	
207.5731

	
278.7584

	
278.7584

	
338.3505

	
338.3505

	
369.9005

	
401.3347




	
LVT

	

	
   r 0  /  h m  = 10  ,    r 0  = 2   m,   β = 2  ,    φ 0  = π / 2  ,    φ 1  = π / 6  




	
0.6

	
4

	
213.8630

	
213.8719

	
282.1387

	
283.0775

	
348.9506

	
348.9506

	
465.8914

	
475.1184

	
479.0508

	
496.9698




	
16

	
213.7054

	
213.7054

	
278.8270

	
278.8270

	
348.8689

	
348.8689

	
428.3164

	
428.3294

	
478.9194

	
496.8319




	
25

	
213.6865

	
213.6865

	
278.8166

	
278.8166

	
348.8526

	
348.8526

	
428.2966

	
428.2966

	
478.8930

	
496.8067




	
36

	
213.6740

	
213.6740

	
278.8107

	
278.8107

	
348.8417

	
348.8417

	
428.2918

	
428.2918

	
478.8750

	
496.7901




	
1

	
4

	
212.2336

	
212.2425

	
280.1837

	
281.1138

	
346.3059

	
346.3059

	
462.5427

	
471.6680

	
474.5570

	
492.2946




	
16

	
212.0760

	
212.0760

	
276.8967

	
276.8967

	
346.2251

	
346.2251

	
425.2914

	
425.3042

	
474.4270

	
492.1577




	
25

	
212.0569

	
212.0569

	
276.8862

	
276.8862

	
346.2086

	
346.2086

	
425.2717

	
425.2717

	
474.4008

	
492.1327




	
36

	
212.0443

	
212.0443

	
276.8807

	
276.8807

	
346.1977

	
346.1977

	
425.2672

	
425.2672

	
474.3832

	
492.1162




	
5

	
4

	
213.8920

	
213.9015

	
287.5137

	
288.4290

	
340.3234

	
340.3234

	
471.6913

	
472.2575

	
480.9917

	
490.4160




	
16

	
213.7380

	
213.7380

	
284.2981

	
284.2981

	
340.2437

	
340.2437

	
435.4306

	
435.4425

	
471.5627

	
490.2747




	
25

	
213.7191

	
213.7191

	
284.2879

	
284.2879

	
340.2277

	
340.2277

	
435.4117

	
435.4117

	
471.5366

	
490.2486




	
36

	
213.7066

	
213.7066

	
284.2821

	
284.2821

	
340.2169

	
340.2169

	
435.4067

	
435.4067

	
471.5192

	
490.2313
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Figure 1. Mid-surface and spectral nodes of a shell element. 
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Figure 2. Flowchart for the overall finite element analysis process. 
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Figure 3. Solid model for a parabolic shell and a close-up image showing the materials through thickness direction. 






Figure 3. Solid model for a parabolic shell and a close-up image showing the materials through thickness direction.



[image: Applsci 13 11540 g003]







[image: Applsci 13 11540 g004] 





Figure 4. Geometrical parameters and revolution profile for a conical shell. 






Figure 4. Geometrical parameters and revolution profile for a conical shell.



[image: Applsci 13 11540 g004]







[image: Applsci 13 11540 g005] 





Figure 5. Geometrical parameters and revolution profile for a parabolic shell. 
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Figure 6. Geometrical parameters and revolution profile for a hemispherical shell. 
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Table 1. Comparison for a conical shell with UT and CF boundary conditions (FG-II).






Table 1. Comparison for a conical shell with UT and CF boundary conditions (FG-II).





	

	

	
Natural Frequency




	
  n  

	
Model

	
  f 1  –  f 2  

	
  f 3  –  f 4  

	
  f 5  –  f 6  

	
  f 7  –  f 8  

	
  f 9  –  f 10  

	
  f 11  –  f 12  

	
  f 13  –  f 14  

	
   f 15   






	
0.6

	
7-PL

	
206.20

	
225.98

	
279.08

	
318.23

	
348.99

	
355.98

	
398.53

	
444.36




	
3D *

	
205.93

	
226.02

	
279.55

	
318.32

	
348.57

	
356.80

	
397.36

	
444.55




	
FSDT [22]

	
205.96

	
225.52

	
277.93

	
318.18

	
349.48

	
-

	
-

	
-




	
1

	
7-PL

	
205.12

	
224.88

	
277.82

	
316.39

	
347.13

	
354.42

	
396.71

	
441.88




	
3D *

	
204.79

	
224.81

	
278.08

	
316.47

	
346.59

	
354.94

	
395.26

	
442.02




	
FSDT [22]

	
204.91

	
224.44

	
276.66

	
316.32

	
347.66

	
-

	
-

	
-




	
5

	
7-PL

	
204.19

	
228.16

	
285.59

	
309.64

	
346.64

	
366.47

	
404.55

	
434.38




	
3D *

	
203.69

	
227.75

	
285.14

	
309.65

	
345.64

	
365.74

	
402.10

	
434.30




	
FSDT [22]

	
203.93

	
227.67

	
284.26

	
309.57

	
347.08

	
-

	
-

	
-








* 1,188,000 SOLID185 elements.













 





Table 2. Comparison for a cylindrical shell with UT and CF boundary conditions (FG-II).






Table 2. Comparison for a cylindrical shell with UT and CF boundary conditions (FG-II).





	

	

	
Natural Frequency




	
  n  

	
Model

	
  f 1  –  f 2  

	
  f 3  –  f 4  

	
  f 5  –  f 6  

	
  f 7  –  f 8  

	
   f 9   

	
  f 10  –  f 11  

	
  f 12  –  f 13  

	
  f 14  –  f 15  






	
0.6

	
7-PL

	
148.95

	
213.76

	
250.23

	
375.14

	
414.34

	
418.82

	
454.43

	
523.52




	
3D *

	
148.68

	
212.79

	
250.17

	
372.70

	
414.69

	
417.01

	
453.73

	
519.60




	
FSDT [22]

	
150.03

	
212.94

	
250.74

	
370.63

	
415.47

	
420.39

	
-

	
-




	
1

	
7-PL

	
148.07

	
213.04

	
248.56

	
374.04

	
411.54

	
416.78

	
451.68

	
521.55




	
3D *

	
147.74

	
211.83

	
248.49

	
371.09

	
411.89

	
414.67

	
450.87

	
517.02




	
FSDT [22]

	
149.29

	
212.22

	
249.31

	
369.46

	
412.97

	
418.46

	
-

	
-




	
5

	
7-PL

	
147.51

	
220.44

	
242.75

	
388.72

	
401.19

	
422.08

	
446.11

	
537.48




	
3D *

	
147.04

	
218.65

	
242.64

	
384.31

	
401.56

	
418.91

	
444.89

	
530.75




	
FSDT [22]

	
148.75

	
219.49

	
243.43

	
383.71

	
402.56

	
423.57

	
-

	
-








* 990,000 SOLID185 elements.













 





Table 3. Comparison for a parabolic shell with UT and SF boundary conditions (FG-I).
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Natural Frequency




	
  n  

	
Model

	
  f 1  –  f 2  

	
  f 3  –  f 4  

	
  f 5  –  f 6  

	
   f 7   

	
   f 8   

	
   f 9   

	
  f 10  –  f 11  

	
  f 12  –  f 13  






	
0.6

	
7-PL

	
115.04

	
162.58

	
162.67

	
190.60

	
194.75

	
194.75

	
205.35

	
218.29




	
3D *

	
115.01

	
162.54

	
162.88

	
190.60

	
195.42

	
195.42

	
205.37

	
217.36




	
FSDT [23]

	
115.40

	
162.85

	
165.07

	
193.28

	
193.28

	
196.66

	
210.82

	
-




	
1

	
7-PL

	
114.15

	
161.55

	
161.83

	
189.18

	
193.88

	
193.88

	
203.94

	
217.37




	
3D *

	
114.10

	
161.52

	
161.98

	
189.16

	
194.43

	
194.43

	
203.95

	
216.39




	
FSDT [23]

	
114.49

	
161.95

	
164.01

	
192.32

	
192.32

	
195.22

	
209.38

	
-




	
5

	
7-PL

	
114.15

	
157.94

	
161.82

	
186.26

	
195.78

	
195.78

	
202.13

	
218.63




	
3D *

	
113.98

	
157.87

	
161.79

	
186.15

	
196.02

	
196.02

	
201.99

	
217.16




	
FSDT [23]

	
114.44

	
160.33

	
161.78

	
194.04

	
194.04

	
194.05

	
207.19

	
-








* 840,000 SOLID185 elements.













 





Table 4. Vibration mode comparison for a parabolic shell with UT and SF boundary conditions,   n = 5   (FG-I).
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Model

	
Vibration Mode




	
  f 1  –  f 2  

	
  f 3  –  f 4  

	
  f 5  –  f 6  

	
   f 7   

	
  f 8  –  f 9  

	
  f 10  –  f 11  






	
7-PL

	
  114.15   Hz

[image: Applsci 13 11540 i001]

	
  157.94   Hz

[image: Applsci 13 11540 i002]

	
  161.82   Hz

[image: Applsci 13 11540 i003]

	
  186.26   Hz

[image: Applsci 13 11540 i004]

	
  195.78   Hz

[image: Applsci 13 11540 i005]

	
  202.13   Hz

[image: Applsci 13 11540 i006]




	
3D

	
  113.98   Hz

[image: Applsci 13 11540 i007]

	
  157.87   Hz

[image: Applsci 13 11540 i008]

	
  161.79   Hz

[image: Applsci 13 11540 i009]

	
  186.15   Hz

[image: Applsci 13 11540 i010]

	
  196.02   Hz

[image: Applsci 13 11540 i011]

	
  201.99   Hz

[image: Applsci 13 11540 i012]











 





Table 5. Comparison for a hemispherical shell with UT and CF boundary conditions (FG-I).
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Natural Frequency




	
  n  

	
Model

	
  f 1  –  f 2  

	
  f 3  –  f 4  

	
  f 5  –  f 6  

	
  f 7  –  f 8  

	
   f 9   

	
  f 10  –  f 11  

	
  f 12  –  f 13  

	
  f 14  –  f 15  






	
0.6

	
7-PL

	
142.75

	
204.61

	
286.86

	
335.28

	
379.76

	
411.97

	
450.15

	
457.29




	
3D *

	
143.01

	
205.53

	
286.90

	
336.75

	
379.75

	
411.97

	
450.15

	
459.24




	
FSDT [23]

	
142.56

	
204.01

	
286.77

	
334.14

	
379.53

	
411.83

	
-

	
-




	
1

	
7-PL

	
141.76

	
203.20

	
284.87

	
332.97

	
377.05

	
409.05

	
446.97

	
454.12




	
3D *

	
142.01

	
204.09

	
284.89

	
334.38

	
377.04

	
409.05

	
446.96

	
456.00




	
FSDT [23]

	
141.59

	
202.64

	
284.78

	
331.87

	
376.84

	
408.93

	
-

	
-




	
5

	
7-PL

	
141.34

	
207.57

	
278.77

	
338.35

	
369.92

	
401.34

	
440.98

	
456.69




	
3D *

	
141.43

	
207.98

	
278.72

	
338.95

	
369.76

	
401.19

	
440.70

	
457.67




	
FSDT [23]

	
141.14

	
206.90

	
278.68

	
337.12

	
369.68

	
401.19

	
-

	
-








* 1,017,000 SOLID185 elements.













 





Table 6. Natural frequencies for conical shells with LVT and CF boundary conditions (FG-II,    r 0  /  h m  = 2.5  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).






Table 6. Natural frequencies for conical shells with LVT and CF boundary conditions (FG-II,    r 0  /  h m  = 2.5  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).





	

	
    α =  30 ∘     

	
    α =  60 ∘     






	

	
  n  

	
  n  




	

	
   0 . 6   

	
1

	
5

	
   0 . 6   

	
1

	
5




	

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D




	
  f 1  –  f 2  

	
101.96

	
99.10

	
101.58

	
98.62

	
103.00

	
99.57

	
88.96

	
86.55

	
88.61

	
86.12

	
90.34

	
87.46




	
  f 3  –  f 4  

	
125.12

	
124.75

	
124.38

	
124.02

	
121.97

	
121.50

	
93.71

	
92.40

	
93.41

	
91.98

	
92.86

	
91.27




	
   f 5   

	
160.29

	
155.02

	
159.92

	
154.34

	
164.31

	
157.48

	
106.33

	
105.18

	
106.04

	
104.73

	
104.82

	
103.43




	
   f 6   

	
160.29

	
155.02

	
159.92

	
154.34

	
164.31

	
157.48

	
120.96

	
117.73

	
120.49

	
117.11

	
124.14

	
119.97




	
   f 7   

	
181.57

	
177.36

	
180.78

	
176.37

	
182.29

	
176.86

	
120.96

	
117.73

	
120.49

	
117.11

	
124.14

	
119.97




	
   f 8   

	
181.57

	
177.36

	
180.78

	
176.37

	
182.29

	
176.86

	
154.15

	
151.57

	
153.71

	
150.91

	
153.15

	
149.78




	
   f 9   

	
205.72

	
204.42

	
204.22

	
203.21

	
198.99

	
199.79

	
159.58

	
156.52

	
159.04

	
155.78

	
159.71

	
155.72




	
   f 10   

	
205.91

	
204.42

	
204.77

	
203.21

	
201.79

	
199.86

	
159.58

	
156.52

	
159.04

	
155.78

	
159.71

	
155.72




	
   f 11   

	
205.91

	
206.41

	
204.77

	
205.02

	
201.79

	
199.87

	
164.50

	
160.34

	
163.86

	
159.44

	
168.87

	
163.06




	
   f 12   

	
207.73

	
206.85

	
207.01

	
205.99

	
202.72

	
201.65

	
164.50

	
160.34

	
163.86

	
159.44

	
168.87

	
163.06




	
Max. Error

	
   3.40 %   

	
-

	
   3.61 %   

	
-

	
   4.34 %   

	
-

	
   2.77 %   

	
-

	
   2.89 %   

	
-

	
   3.56 %   

	
-











 





Table 7. Natural frequencies for conical shells with LVT and CF boundary conditions (FG-II,    r 0  /  h m  = 5  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).






Table 7. Natural frequencies for conical shells with LVT and CF boundary conditions (FG-II,    r 0  /  h m  = 5  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).





	

	
    α =  30 ∘     

	
    α =  60 ∘     






	

	
  n  

	
  n  




	

	
   0 . 6   

	
1

	
5

	
   0 . 6   

	
1

	
5




	

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D




	
  f 1  –  f 2  

	
73.76

	
72.43

	
73.38

	
72.01

	
73.23

	
71.65

	
64.23

	
62.47

	
63.98

	
62.16

	
64.69

	
62.64




	
  f 3  –  f 4  

	
84.73

	
82.08

	
84.41

	
81.68

	
86.67

	
83.55

	
72.78

	
71.76

	
72.55

	
71.44

	
71.84

	
70.62




	
  f 5  –  f 6  

	
104.14

	
103.72

	
103.58

	
103.14

	
101.67

	
101.15

	
77.18

	
74.79

	
76.86

	
74.40

	
79.19

	
76.38




	
   f 7   

	
124.04

	
120.57

	
123.65

	
120.00

	
127.76

	
123.35

	
82.39

	
81.54

	
82.17

	
81.20

	
80.96

	
79.93




	
   f 8   

	
124.04

	
120.57

	
123.65

	
120.00

	
127.76

	
123.35

	
105.15

	
102.48

	
104.71

	
101.93

	
108.29

	
104.89




	
   f 9   

	
151.23

	
147.91

	
150.50

	
147.07

	
149.20

	
147.02

	
105.15

	
102.48

	
104.71

	
101.93

	
108.29

	
104.89




	
   f 10   

	
151.23

	
147.91

	
150.50

	
147.07

	
151.13

	
147.02

	
119.33

	
115.18

	
118.91

	
114.62

	
119.88

	
114.99




	
   f 11   

	
152.28

	
151.27

	
151.73

	
150.61

	
151.13

	
148.02

	
121.86

	
117.67

	
121.40

	
117.08

	
122.83

	
117.87




	
   f 12   

	
156.70

	
152.27

	
156.02

	
151.42

	
158.92

	
153.33

	
121.86

	
117.67

	
121.40

	
117.08

	
122.83

	
117.87




	
Max. Error

	
   3.22 %   

	
-

	
   3.34 %   

	
-

	
   3.74 %   

	
-

	
   3.61 %   

	
-

	
   3.74 %   

	
-

	
   4.25 %   

	
-











 





Table 8. Natural frequencies for conical shells with LVT and CF boundary conditions (FG-II,    r 0  /  h m  = 10  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).






Table 8. Natural frequencies for conical shells with LVT and CF boundary conditions (FG-II,    r 0  /  h m  = 10  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).





	

	
    α =  30 ∘     

	
    α =  60 ∘     






	

	
  n  

	
  n  




	

	
   0 . 6   

	
1

	
5

	
   0 . 6   

	
1

	
5




	

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D




	
  f 1  –  f 2  

	
52.69

	
51.04

	
52.43

	
50.75

	
52.89

	
51.00

	
45.53

	
43.84

	
45.36

	
43.63

	
45.57

	
43.66




	
  f 3  –  f 4  

	
58.04

	
55.90

	
57.78

	
55.60

	
58.52

	
56.87

	
46.64

	
44.56

	
46.44

	
44.33

	
47.45

	
45.13




	
  f 5  –  f 6  

	
59.39

	
58.42

	
59.08

	
58.08

	
59.31

	
57.38

	
50.32

	
48.99

	
50.15

	
48.77

	
49.73

	
48.21




	
   f 7   

	
72.78

	
70.51

	
72.48

	
70.14

	
74.97

	
72.28

	
54.03

	
52.76

	
53.87

	
52.48

	
53.19

	
51.78




	
   f 8   

	
72.78

	
70.51

	
72.48

	
70.14

	
74.98

	
72.28

	
54.96

	
52.76

	
54.71

	
52.48

	
56.50

	
54.00




	
   f 9   

	
77.08

	
76.52

	
76.69

	
76.11

	
75.30

	
74.63

	
54.96

	
52.81

	
54.71

	
52.58

	
56.50

	
54.00




	
   f 10   

	
77.08

	
76.52

	
76.69

	
76.11

	
75.30

	
74.63

	
68.97

	
66.86

	
68.65

	
66.49

	
71.16

	
68.65




	
   f 11   

	
92.91

	
91.54

	
92.51

	
91.07

	
90.61

	
89.98

	
68.97

	
66.86

	
68.65

	
66.49

	
71.16

	
68.65




	
   f 12   

	
93.83

	
91.54

	
93.45

	
91.07

	
96.85

	
93.97

	
87.13

	
85.17

	
86.73

	
84.70

	
89.95

	
87.44




	
Max. Error

	
   3.84 %   

	
-

	
   3.92 %   

	
-

	
   3.73 %   

	
-

	
   4.66 %   

	
-

	
   4.76 %   

	
-

	
   5.14 %   

	
-











 





Table 9. Vibration modes for a conical shell with LVT, CF boundary conditions and   α =  60 ∘   ,   n = 0.6   (FG-II,    r 0  /  h m  = 5  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).






Table 9. Vibration modes for a conical shell with LVT, CF boundary conditions and   α =  60 ∘   ,   n = 0.6   (FG-II,    r 0  /  h m  = 5  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).





	
Model

	
Vibration Mode




	
  f 1  –  f 2  

	
  f 3  –  f 4  

	
  f 5  –  f 6  

	
   f 7   

	
  f 8  –  f 9  

	
   f 10   

	
  f 11  –  f 12  






	
7-PL

	
  64.23   Hz

[image: Applsci 13 11540 i013]

	
  72.78   Hz

[image: Applsci 13 11540 i014]

	
  77.18   Hz

[image: Applsci 13 11540 i015]

	
  82.39   Hz

[image: Applsci 13 11540 i016]

	
  105.15   Hz

[image: Applsci 13 11540 i017]

	
  119.33   Hz

[image: Applsci 13 11540 i018]

	
  121.86   Hz

[image: Applsci 13 11540 i019]




	
3D

	
  62.47   Hz

[image: Applsci 13 11540 i020]

	
  71.76   Hz

[image: Applsci 13 11540 i021]

	
  74.79   Hz

[image: Applsci 13 11540 i022]

	
  81.54   Hz

[image: Applsci 13 11540 i023]

	
  102.48   Hz

[image: Applsci 13 11540 i024]

	
  115.18   Hz

[image: Applsci 13 11540 i025]

	
  117.67   Hz

[image: Applsci 13 11540 i026]











 





Table 10. Natural frequencies for a cylindrical shell with LVT and CF boundary conditions (FG-II,    r 0  /  h m  = 2.5  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).






Table 10. Natural frequencies for a cylindrical shell with LVT and CF boundary conditions (FG-II,    r 0  /  h m  = 2.5  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).





	

	
n






	

	
   0.6   

	
1

	
5




	

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D




	
  f 1  –  f 2  

	
64.07

	
63.72

	
63.28

	
62.98

	
62.17

	
61.75




	
   f 3   

	
123.97

	
121.23

	
122.50

	
120.98

	
119.37

	
121.87




	
   f 4   

	
129.65

	
121.23

	
129.78

	
120.98

	
134.06

	
124.17




	
   f 5   

	
129.65

	
126.14

	
129.78

	
124.89

	
134.06

	
124.17




	
  f 6  –  f 7  

	
191.89

	
191.01

	
190.34

	
189.49

	
186.81

	
185.65




	
   f 8   

	
203.99

	
203.77

	
202.46

	
202.23

	
197.49

	
197.18




	
  f 9  –  f 10  

	
217.19

	
204.85

	
217.00

	
204.04

	
220.95

	
205.82




	
   f 11   

	
313.85

	
294.01

	
314.23

	
293.37

	
320.46

	
299.19




	
   f 12   

	
313.85

	
294.01

	
314.23

	
293.37

	
323.41

	
299.19




	
Max. Error

	
   6.95 %   

	
-

	
   7.28 %   

	
-

	
   8.10 %   

	
-











 





Table 11. Natural frequencies for a cylindrical shell with LVT and CF boundary conditions (FG-II,    r 0  /  h m  = 5  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).






Table 11. Natural frequencies for a cylindrical shell with LVT and CF boundary conditions (FG-II,    r 0  /  h m  = 5  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).





	

	
n






	

	
   0.6   

	
1

	
5




	

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D




	
  f 1  –  f 2  

	
58.50

	
56.58

	
58.17

	
56.21

	
58.80

	
56.58




	
  f 3  –  f 4  

	
79.10

	
78.91

	
78.44

	
78.29

	
76.87

	
76.63




	
  f 5  –  f 6  

	
96.15

	
92.18

	
95.92

	
91.81

	
99.21

	
94.57




	
   f 7   

	
125.24

	
125.97

	
124.11

	
124.94

	
120.98

	
121.83




	
  f 8  –  f 9  

	
157.38

	
153.83

	
156.55

	
152.89

	
156.72

	
152.33




	
  f 10  –  f 11  

	
162.94

	
156.82

	
162.61

	
156.20

	
168.25

	
160.75




	
  f 12  –  f 13  

	
179.49

	
173.24

	
178.90

	
172.36

	
182.66

	
174.78




	
Max. Error

	
   4.31 %   

	
-

	
   4.48 %   

	
-

	
   4.91 %   

	
-











 





Table 12. Natural frequencies for a cylindrical shell with LVT and CF boundary conditions (FG-II,    r 0  /  h m  = 10  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).






Table 12. Natural frequencies for a cylindrical shell with LVT and CF boundary conditions (FG-II,    r 0  /  h m  = 10  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).





	

	
n






	

	
   0.6   

	
1

	
5




	

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D




	
  f 1  –  f 2  

	
48.37

	
46.58

	
48.11

	
46.30

	
48.72

	
46.67




	
  f 3  –  f 4  

	
54.00

	
53.11

	
53.65

	
52.75

	
53.14

	
52.09




	
  f 5  –  f 6  

	
58.00

	
55.57

	
57.75

	
55.28

	
59.51

	
56.76




	
  f 7  –  f 8  

	
76.64

	
75.27

	
76.13

	
74.90

	
74.61

	
74.25




	
  f 9  –  f 10  

	
78.00

	
76.34

	
77.70

	
75.84

	
80.52

	
77.33




	
  f 11  –  f 12  

	
104.59

	
101.58

	
104.20

	
101.09

	
108.05

	
104.37




	
Max. Error

	
   4.36 %   

	
-

	
   4.46 %   

	
-

	
   4.84 %   

	
-











 





Table 13. Vibration modes for a cylindrical shell with LVT and CF boundary conditions,   n = 5   (FG-II,    r 0  /  h m  = 5  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).






Table 13. Vibration modes for a cylindrical shell with LVT and CF boundary conditions,   n = 5   (FG-II,    r 0  /  h m  = 5  ,    h m  = 3 / 4  ,   L /  h m  = 10  ,    h 1  /  h 0  = 2  ).





	
Model

	
Vibration Mode




	
  f 1  –  f 2  

	
  f 3  –  f 4  

	
  f 5  –  f 6  

	
   f 7   

	
  f 8  –  f 9  

	
   f 10   






	
7-PL

	
  58.80   Hz

[image: Applsci 13 11540 i027]

	
  76.87   Hz

[image: Applsci 13 11540 i028]

	
  99.21   Hz

[image: Applsci 13 11540 i029]

	
  120.98   Hz

[image: Applsci 13 11540 i030]

	
  156.72   Hz

[image: Applsci 13 11540 i031]

	
  168.25   Hz

[image: Applsci 13 11540 i032]




	
3D

	
  56.58   Hz

[image: Applsci 13 11540 i033]

	
  76.63   Hz

[image: Applsci 13 11540 i034]

	
  94.57   Hz

[image: Applsci 13 11540 i035]

	
  121.83   Hz

[image: Applsci 13 11540 i036]

	
  152.33   Hz

[image: Applsci 13 11540 i037]

	
  160.75   Hz

[image: Applsci 13 11540 i038]











 





Table 14. Natural frequencies for a parabolic shell with LVT and SF boundary conditions (FG-I,   F /  h m  = 5  ,   F = 0.875   m,   β = 1.5  ,    φ 0  = π / 6  ,    φ 1  = π / 3  ).






Table 14. Natural frequencies for a parabolic shell with LVT and SF boundary conditions (FG-I,   F /  h m  = 5  ,   F = 0.875   m,   β = 1.5  ,    φ 0  = π / 6  ,    φ 1  = π / 3  ).





	

	
n






	

	
   0.6   

	
1

	
5




	

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D




	
  f 1  –  f 2  

	
138.98

	
133.61

	
137.35

	
132.00

	
136.85

	
130.85




	
  f 3  –  f 4  

	
181.80

	
177.58

	
180.53

	
176.21

	
183.46

	
179.06




	
  f 5  –  f 6  

	
232.68

	
232.88

	
230.73

	
230.96

	
225.53

	
225.64




	
  f 7  –  f 8  

	
252.57

	
252.06

	
251.06

	
250.34

	
255.86

	
254.68




	
  f 9  –  f 10  

	
302.11

	
298.29

	
300.57

	
296.72

	
299.31

	
294.62




	
  f 11  –  f 12  

	
306.54

	
300.91

	
305.01

	
299.20

	
309.83

	
303.04




	
Max. Error

	
   4.02 %   

	
-

	
   4.05 %   

	
-

	
   4.59 %   

	
-











 





Table 15. Natural frequencies for a parabolic shell with LVT and SF boundary conditions (FG-I,   F /  h m  = 10  ,   F = 0.875   m,   β = 1.5  ,    φ 0  = π / 6  ,    φ 1  = π / 3  ).






Table 15. Natural frequencies for a parabolic shell with LVT and SF boundary conditions (FG-I,   F /  h m  = 10  ,   F = 0.875   m,   β = 1.5  ,    φ 0  = π / 6  ,    φ 1  = π / 3  ).





	

	
n






	

	
   0.6   

	
1

	
5




	

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D




	
  f 1  –  f 2  

	
119.48

	
115.77

	
118.64

	
114.89

	
118.94

	
116.41




	
  f 3  –  f 4  

	
122.05

	
119.91

	
120.77

	
118.66

	
120.81

	
116.84




	
  f 5  –  f 6  

	
172.76

	
172.33

	
171.76

	
171.22

	
173.29

	
172.75




	
  f 7  –  f 8  

	
208.23

	
210.71

	
207.04

	
209.37

	
209.48

	
211.53




	
  f 9  –  f 10  

	
228.63

	
227.59

	
227.39

	
226.31

	
223.38

	
223.67




	
  f 11  –  f 12  

	
230.51

	
230.82

	
228.80

	
229.13

	
225.88

	
224.48




	
Max. Error

	
   3.21 %   

	
-

	
   3.26 %   

	
-

	
   3.40 %   

	
-











 





Table 16. Natural frequencies for a parabolic shell with LVT and SF boundary conditions (FG-I,   F /  h m  = 20  ,   F = 0.875   m,   β = 1.5  ,    φ 0  = π / 6  ,    φ 1  = π / 3  ).






Table 16. Natural frequencies for a parabolic shell with LVT and SF boundary conditions (FG-I,   F /  h m  = 20  ,   F = 0.875   m,   β = 1.5  ,    φ 0  = π / 6  ,    φ 1  = π / 3  ).





	

	
n






	

	
   0.6   

	
1

	
5




	

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D




	
  f 1  –  f 2  

	
78.31

	
78.03

	
77.70

	
77.41

	
78.79

	
78.05




	
  f 3  –  f 4  

	
112.95

	
114.96

	
112.32

	
114.26

	
112.91

	
112.39




	
  f 5  –  f 6  

	
116.41

	
116.08

	
115.36

	
115.04

	
115.13

	
116.39




	
  f 7  –  f 8  

	
155.52

	
159.99

	
154.62

	
158.99

	
154.93

	
158.71




	
  f 9  –  f 10  

	
170.88

	
176.93

	
169.87

	
175.80

	
170.10

	
175.69




	
  f 11  –  f 12  

	
182.82

	
184.09

	
181.73

	
182.96

	
179.73

	
180.76




	
Max. Error

	
   3.42 %   

	
-

	
   3.38 %   

	
-

	
   3.18 %   

	
-











 





Table 17. Vibration modes for a parabolic shell with LVT and SF boundary conditions,   n = 0.6   (FG-I,   F /  h m  = 5  ,   F = 0.875   m,   β = 1.5  ,    φ 0  = π / 6  ,    φ 1  = π / 3  ).






Table 17. Vibration modes for a parabolic shell with LVT and SF boundary conditions,   n = 0.6   (FG-I,   F /  h m  = 5  ,   F = 0.875   m,   β = 1.5  ,    φ 0  = π / 6  ,    φ 1  = π / 3  ).





	
Model

	
Vibration Mode




	
  f 1  –  f 2  

	
  f 3  –  f 4  

	
  f 5  –  f 6  

	
  f 7  –  f 8  

	
  f 9  –  f 10  

	
  f 11  –  f 12  






	
7-PL

	
  138.98   Hz

[image: Applsci 13 11540 i039]

	
  181.80   Hz

[image: Applsci 13 11540 i040]

	
  232.68   Hz

[image: Applsci 13 11540 i041]

	
  252.57   Hz

[image: Applsci 13 11540 i042]

	
  302.11   Hz

[image: Applsci 13 11540 i043]

	
  306.54   Hz

[image: Applsci 13 11540 i044]




	
3D

	
  133.61   Hz

[image: Applsci 13 11540 i045]

	
  177.58   Hz

[image: Applsci 13 11540 i046]

	
  232.88   Hz

[image: Applsci 13 11540 i047]

	
  252.06   Hz

[image: Applsci 13 11540 i048]

	
  298.29   Hz

[image: Applsci 13 11540 i049]

	
  300.91   Hz

[image: Applsci 13 11540 i050]











 





Table 18. Natural frequencies for a hemispherical shell with LVT and CF boundary conditions (FG-I,    r 0  /  h m  = 2.5  ,    r 0  = 2   m,   β = 2  ,    φ 0  = π / 2  ,    φ 1  = π / 6  ).






Table 18. Natural frequencies for a hemispherical shell with LVT and CF boundary conditions (FG-I,    r 0  /  h m  = 2.5  ,    r 0  = 2   m,   β = 2  ,    φ 0  = π / 2  ,    φ 1  = π / 6  ).





	

	
n






	

	
   0.6   

	
1

	
5




	

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D




	
  f 1  –  f 2  

	
442.59

	
423.35

	
437.86

	
418.65

	
434.18

	
413.44




	
  f 3  –  f 4  

	
458.16

	
425.35

	
453.14

	
420.03

	
456.14

	
419.90




	
   f 5   

	
619.59

	
598.02

	
615.52

	
589.93

	
598.59

	
583.48




	
   f 6   

	
634.79

	
626.47

	
625.45

	
621.43

	
620.69

	
605.34




	
  f 7  –  f 8  

	
687.08

	
643.50

	
679.83

	
635.00

	
683.42

	
632.22




	
   f 9   

	
756.26

	
718.08

	
747.01

	
708.77

	
738.23

	
693.93




	
  f 10  –  f 11  

	
774.88

	
721.68

	
763.24

	
711.05

	
757.58

	
699.82




	
   f 12   

	
906.26

	
881.70

	
899.18

	
868.81

	
874.43

	
854.77




	
Max. Error

	
   7.16 %   

	
-

	
   7.31 %   

	
-

	
   7.95 %   

	
-











 





Table 19. Natural frequencies for a hemispherical shell with LVT and CF boundary conditions (FG-I,    r 0  /  h m  = 5  ,    r 0  = 2   m,   β = 2  ,    φ 0  = π / 2  ,    φ 1  = π / 6  ).






Table 19. Natural frequencies for a hemispherical shell with LVT and CF boundary conditions (FG-I,    r 0  /  h m  = 5  ,    r 0  = 2   m,   β = 2  ,    φ 0  = π / 2  ,    φ 1  = π / 6  ).





	

	
n






	

	
   0.6   

	
1

	
5




	

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D




	
  f 1  –  f 2  

	
312.90

	
292.48

	
310.07

	
289.79

	
315.58

	
293.36




	
  f 3  –  f 4  

	
382.61

	
375.14

	
379.14

	
371.83

	
375.03

	
366.38




	
  f 5  –  f 6  

	
461.50

	
433.85

	
457.54

	
429.81

	
467.90

	
437.24




	
   f 7   

	
563.95

	
542.00

	
556.87

	
536.10

	
550.30

	
528.42




	
   f 8   

	
632.93

	
598.01

	
625.57

	
591.51

	
619.64

	
588.23




	
   f 9   

	
632.93

	
598.02

	
625.57

	
591.51

	
626.45

	
588.23




	
   f 10   

	
634.47

	
614.37

	
628.57

	
608.52

	
626.45

	
602.37




	
   f 11   

	
639.65

	
642.00

	
635.46

	
637.34

	
626.63

	
621.72




	
   f 12   

	
687.48

	
654.55

	
681.40

	
648.09

	
694.55

	
655.38




	
Max. Error

	
   6.53 %   

	
-

	
   6.54 %   

	
-

	
   7.04 %   

	
-











 





Table 20. Natural frequencies for a hemispherical shell with LVT and CF boundary conditions (FG-I,    r 0  /  h m  = 10  ,    r 0  = 2   m,   β = 2  ,    φ 0  = π / 2  ,    φ 1  = π / 6  ).






Table 20. Natural frequencies for a hemispherical shell with LVT and CF boundary conditions (FG-I,    r 0  /  h m  = 10  ,    r 0  = 2   m,   β = 2  ,    φ 0  = π / 2  ,    φ 1  = π / 6  ).





	

	
n






	

	
   0.6   

	
1

	
5




	

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D




	
  f 1  –  f 2  

	
213.69

	
204.60

	
212.06

	
203.05

	
213.72

	
203.73




	
  f 3  –  f 4  

	
278.82

	
261.85

	
276.89

	
259.97

	
284.29

	
266.47




	
  f 5  –  f 6  

	
348.85

	
347.55

	
346.21

	
344.94

	
340.23

	
338.50




	
  f 7  –  f 8  

	
428.30

	
410.50

	
425.27

	
407.47

	
435.41

	
416.22




	
   f 9   

	
478.89

	
465.83

	
474.40

	
461.85

	
471.54

	
457.11




	
  f 10  –  f 11  

	
496.81

	
482.31

	
492.13

	
478.18

	
490.25

	
474.15




	
   f 12   

	
541.01

	
522.79

	
536.21

	
518.42

	
538.24

	
517.91




	
Max. Error

	
   6.08 %   

	
-

	
   6.11 %   

	
-

	
   6.27 %   

	
-











 





Table 21. Natural frequencies for a hemispherical shell with LVT and CF boundary conditions (FG-I,    r 0  /  h m  = 20  ,    r 0  = 2   m,   β = 2  ,    φ 0  = π / 2  ,    φ 1  = π / 6  ).






Table 21. Natural frequencies for a hemispherical shell with LVT and CF boundary conditions (FG-I,    r 0  /  h m  = 20  ,    r 0  = 2   m,   β = 2  ,    φ 0  = π / 2  ,    φ 1  = π / 6  ).





	

	
n






	

	
   0.6   

	
1

	
5




	

	
7PL

	
3D

	
7PL

	
3D

	
7PL

	
3D




	
  f 1  –  f 2  

	
166.08

	
156.34

	
165.07

	
155.34

	
165.93

	
159.11




	
  f 3  –  f 4  

	
168.36

	
165.52

	
167.19

	
164.37

	
169.40

	
162.67




	
  f 5  –  f 6  

	
258.15

	
247.58

	
256.59

	
246.01

	
263.57

	
252.32




	
  f 7  –  f 8  

	
330.83

	
331.02

	
328.56

	
328.75

	
321.87

	
321.89




	
  f 9  –  f 10  

	
368.54

	
359.67

	
366.25

	
357.34

	
375.09

	
365.31




	
   f 11   

	
422.31

	
419.84

	
419.00

	
416.72

	
412.14

	
409.15




	
  f 12  –  f 13  

	
437.11

	
434.21

	
433.59

	
430.96

	
426.26

	
422.88




	
Max. Error

	
   5.87 %   

	
-

	
   5.89 %   

	
-

	
   4.27 %   

	
-











 





Table 22. Vibration modes for a hemispherical shell with LVT and CF boundary conditions,   n = 5   (FG-I,    r 0  /  h m  = 10  ,    r 0  = 2   m,   β = 2  ,    φ 0  = π / 2  ,    φ 1  = π / 6  ).






Table 22. Vibration modes for a hemispherical shell with LVT and CF boundary conditions,   n = 5   (FG-I,    r 0  /  h m  = 10  ,    r 0  = 2   m,   β = 2  ,    φ 0  = π / 2  ,    φ 1  = π / 6  ).





	
Model

	
Vibration Mode




	
  f 1  –  f 2  

	
  f 3  –  f 4  

	
  f 5  –  f 6  

	
  f 7  –  f 8  

	
   f 9   

	
  f 10  –  f 11  






	
7-PL

	
  213.72   Hz

[image: Applsci 13 11540 i051]

	
  284.29   Hz

[image: Applsci 13 11540 i052]

	
  340.23   Hz

[image: Applsci 13 11540 i053]

	
  435.41   Hz

[image: Applsci 13 11540 i054]

	
  471.54   Hz

[image: Applsci 13 11540 i055]

	
  490.25   Hz

[image: Applsci 13 11540 i056]




	
3D

	
  203.73   Hz

[image: Applsci 13 11540 i057]

	
  266.47   Hz

[image: Applsci 13 11540 i058]

	
  338.50   Hz

[image: Applsci 13 11540 i059]

	
  416.22   Hz

[image: Applsci 13 11540 i060]

	
  457.11   Hz

[image: Applsci 13 11540 i061]

	
  474.15   Hz

[image: Applsci 13 11540 i062]
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