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Abstract: In the paper, nonlinear vibration characteristics of a rotor system are investigated. Such a
nonlinear rotor system is subjected to brush seal forces, which are obtained by integrating the bristle
force along the entire ring. The nonlinear brush seal rotor system is constructed by merging a flexible
rotor with nonlinear seal forces. The research is aimed at studying the nonlinear vibration character-
istics and bifurcations of the motions under a variety of eccentricity circumstances. Different kinds of
bifurcations are successfully obtained by mathematical discretization and mapping manipulation.
Such a discrete mapping method successfully predicts the stable and unstable motions accurately.
The period-doubling bifurcations and saddle node bifurcations of the rotor system are obtained. The
sole unstable solutions are obtained, which are special, and a normal numerical integration method
cannot solve this problem, which provides advantages in rotor design and motion control. According
to the results, nonlinear resonances are found between the stable and unstable motions. The greater
the eccentricity of the rotor, the greater the number of bifurcation points that occur during the rotor’s
nonlinear motions, as well as the larger the ranges of speeds where the motions are unstable. Saddle
node bifurcations generate unstable nonlinear motions and non-smooth motions, which may bring
damage to the mechanical rotors. The period-doubling bifurcations produce the route from period-1
to period-2 motions in the nonlinear rotor system. The research provides a new perspective to study
the bifurcations and stability of the nonlinear rotor systems.

Keywords: bifurcations; nonlinear motions; semi-analytical method; nonlinear rotor

1. Introduction

Rotating machinery with brush seals is an effective and efficient equipment where
the brush seal can reduce leakage and improve the vibration performance. Brush seals
do not require the shaft and the seal rings to be centrally symmetrical, so the brush seals
not only increase the system’s thermal efficiency but also its steadiness and stability. It
is one of the most economic and practical seals, and has various applications [1–4]. To
continue to improve the design and efficiency of the brush seal, it is important to figure
out the impacts of nonlinear seal forces on the rotor dynamics. One determines the seal
force by a combination of experiments and theoretical analysis. Sun et al. [5–7] constructed
a brush seal rotor experimental bench to examine the bristle deformation and motions
of the brush seal. They found that the motion primarily occurred in the area where the
bristle density was increased when the pressure was increased, and the free end of the
bristle usually oscillated. A 3D heat transfer model of the brush seal was developed in
order to conduct the investigation of the thermodynamic properties of the brush seal rotor
system. It was difficult to produce an exact model of the seal force that could be used in
the test since the brush bristles had complex working phases [8]. Researchers suggested
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approximate theoretical models to determine the seal forces [9–12]. Due to nonlinearities,
the influence of the brush seals on the rotor system has to be studied. Chai et al. [13]
performed a study of the brush seal leakage rate and established a theoretical model of
the brush seal rotor system considering flow–thermal–structure coupling. Wei et al. [14,15]
constructed a multi-stage rotor system with radial offset of the disk. Nonlinear seal forces
were derived analytically. The Runge–Kutta method was employed to study the nonlinear
response of the brush seal rotor system. They optimized the parameters, and this resulted
in a more stable rotor system. Amer et al. [16] adopted the perturbation method of multiple
scales to deal with a nonlinear rotating system and obtained nonlinear solutions with good
accuracy. Ha et al. [17] applied numerical simulation to study the effects of the installation
position of the porous brush bristle model on the dynamics of the brush seal rotor system.
They found that the direct stiffness, cross-coupling stiffness, and damping of the brush seal
installed upstream were lower than those downstream. Zhang et al. [18] built a nonlinear
brush seal rotor system based on a nonlinear Darcian porous media. The rotor dynamics
with various pressure ratios and inlet spinning rates were evaluated.

In this paper, an analytical brush seal force model is established and the nonlinear
dynamic characteristics of brush seal rotor system are studied by a semi-analytical method
for accurate stability and bifurcations. This paper is structured as follows: the first section is
the introduction. The second section establishes the dynamic model of the brush seal rotor
system, which includes the nonlinear brush seal force of a single bristle. The resultant seal
force model of the full ring and the brush seal rotor system are built then. The nonlinear
motions and bifurcations are achieved in the third section by a semi-analytical technique.
Nonlinear motion illustrations of the brush seal rotor system are presented. Finally, the
stabilities are evaluated and discussed.

2. The Nonlinear Rotor System

A brush seal rotor system is established from a flexible rotor with nonlinear brush seal
forces. The discrete mapping method [19,20] is used to transform the governing equations
into a discretized nonlinear system. Consider the brush seal rotor system as

M
..
X + C

..
X + K

.
X =

~
Fs + Fω + G (1)

where M = diag(m, m) is the mass matrix of the nonlinear rotor system; C = diag(c, c)

is the damping coefficient matrix; K = diag(k, k) is the stiffness matrix;
~
Fs = [Fx, Fy]

T is
the nonlinear brush seal force; Fω = meω2[cos ωt, sin ωt]T is the centrifugal force of the
nonlinear rotor system; G = [0, mg]T is the weight vector. X = [X, Y]T represents the
displacements in x- and y-directions. e is the mass eccentricity and ω is the angular speed.

On the rotor system, nonlinear forces are introduced by the brush seal, which is
mounted on the frame around the rotor journal. Elasticity and beam theory are utilized to
determine the force that a single brush bristle exerts on the rotor. The contact force between
the bristle and the rotor can be derived in accordance with the following assumptions: (1) it
is assumed that the contact between the bristle and the rotor is always in a point-to-point
contact and the contact point is at the end point of the bristle; (2) the bristle is always in
elastic deformation. The contact diagram that depicts the interaction of a single brush
bristle and the rotor is illustrated in Figure 1, and the parameters are in Table 1.
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Figure 1. Contact diagram of the bristle and the rotor. 

Table 1. Brush seal parameter nomenclature. 

Name Symbols 
Brush bristle deformation coordinate system (η, ξ) 
Brush seal coordinate system (x, y) 
Bristle length after deformation s 
Actual radius clearance δ 
Bristle contact deflection angle φ 
The η-directional force of the bristle Fη 
The ξ-directional force of the bristle Fξ 
Maximum turning angle of the bristle θmax 
Sliding friction fN 
The projection of s on the radius direction α 
Shaft radius R 
Bristle pre-rotation angle θ0 
Maximum deflection η(s) 
Normal force on shaft journal N 
Normal force of a single brush bristle on the shaft journal N1 
Friction coefficient of the rotor µ 
Angle between normal force and sealing force ψ 
Eccentricity e 
Declination angle γ 
Minimum gap δmax 
The angle between the circumferential direction and the negative direction of the y-axis ρ 
Brush bristle diameter R0 
Moment of inertia of the bristle cross section I 

From Figure 1, consider the friction force between the bristle and the rotor as 
Nf Nμ= . Then, the contact forces Fη and Fξ in the η −  and ξ − directions are obtained 

as: 
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Figure 1. Contact diagram of the bristle and the rotor.

Table 1. Brush seal parameter nomenclature.

Name Symbols

Brush bristle deformation coordinate system (η, ξ)
Brush seal coordinate system (x, y)
Bristle length after deformation s
Actual radius clearance δ
Bristle contact deflection angle ϕ
The η-directional force of the bristle Fη

The ξ-directional force of the bristle Fξ

Maximum turning angle of the bristle θmax
Sliding friction f N
The projection of s on the radius direction α
Shaft radius R
Bristle pre-rotation angle θ0
Maximum deflection η(s)
Normal force on shaft journal N
Normal force of a single brush bristle on the shaft journal N1
Friction coefficient of the rotor µ
Angle between normal force and sealing force ψ
Eccentricity e
Declination angle γ
Minimum gap δmax
The angle between the circumferential direction and the negative direction of
the y-axis ρ

Brush bristle diameter R0
Moment of inertia of the bristle cross section I

From Figure 1, consider the friction force between the bristle and the rotor as fN = µN.
Then, the contact forces Fη and Fξ in the η- and ξ-directions are obtained as:

Fη = N cos ψ + fN sin ψ =
√

1 + µ2N sin(θ0 + ϕ + arctanµ),

Fξ = N sin ψ− fN cos ψ =
√

1 + µ2N cos(θ0 + ϕ + arctanµ)
(2)

In Equation (2), Fξ is much smaller than Fη, so Fξ is neglected.
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Consider the bristle in the bending diagram in Figure 2. Based on elasticity and beam
theory, we have:

θ(ξ) = −Fη
ξ2

2EI +
Fηs
EI ξ,

w(ξ) = −Fη
ξ3

6EI +
Fη s
EI

ξ2

2 .
(3)

where I = πR4
0/4. Considering the small deformation of the bristle, the relationship

between the force on the bristle and the deformation can be obtained as.

L =

s∫
0

1
cos θ

dξ =

s∫
0

1 +
θ2(ξ)

2
dξ = s +

Fη
2

2E2 I2

s∫
0

(
− ξ2

2
+ sξ

)2

dξ = s +
Fη

2

15E2 I2 s5 (4)

Appl. Sci. 2023, 13, 11539 4 of 17 
 

In Equation (2), Fξ is much smaller than Fη, so Fξ is neglected. 
Consider the bristle in the bending diagram in Figure 2. Based on elasticity and beam 

theory, we have: 

 
Figure 2. Bending diagram of the bristle. 

( )

( )

2

3 2

,
2

.
6 2

F s
F

EI EI
F s

w F
EI EI

η
η

η
η

ξθ ξ ξ

ξ ξξ

= − +

= − +
 (3)

where 4
0 4I Rπ= . Considering the small deformation of the bristle, the relationship be-

tween the force on the bristle and the deformation can be obtained as. 

( ) 22 22 2
5

2 2 2 2
0 0 0

1 d 1 d d
cos 2 22 15

s s sF F
L s s s s

E I E I
η ηθ ξ ξξ ξ ξ ξ

θ
 

= = + = + − + = + 
 

    (4)

Then, Fη can be obtained as 515 ( )F EI L s sη = − . The relationship between the nor-
mal force and the bristle length can be obtained based on Equations (2) and (4) as 

( )2 2
0

15( )
sin arctan (1 )

EI L sN
s sθ ϕ μ μ

−=
+ + +

 (5)

Substituting 0 0( ) sin cos sins Rη ϕ θ α θ= −  into Equation (5) yields 

( )
3

215 .
3 3
F s

s Ls s
EI
ηη = = −  (6)

Thus, 

( )( ) ( )
( ) ( ) ( )

2 2
0 0

2 22 2 2
0 0 0

6 sin 30 cos 15 sin 18 sin cos

9 sin 15 cos 15 cos 9

R R R LR R R

R L R R R

ψ δ θ ψ δ θ ψ

δ θ δ θ δ θ

− + + − − + =

+ − + − + −
 (7)

The angle ψ can be obtained by solving the above equation. The deflection angle of 
the bristle can be obtained from Equation (3). Then, normal force N corresponding to any 
radius gap δ can be obtained. 

The entire forces of the bristle around the brush seal ring can be obtained by integrat-
ing the normal force of a single bristle around the brush seal ring [21]. The consequent 
nonlinear brush seal forces of the bristles on the rotor are 

Figure 2. Bending diagram of the bristle.

Then, Fη can be obtained as Fη =
√

15EI
√
(L− s)/s5. The relationship between the

normal force and the bristle length can be obtained based on Equations (2) and (4) as

N =
EI

s2 sin(θ0 + ϕ + arctanµ)

√
15(L− s)
(1 + µ2)s

(5)

Substituting η(s) = R sin ϕ cos θ0 − α sin θ0 into Equation (5) yields

η(s) =
Fηs3

3EI
=

√
15
3

√
Ls− s2. (6)

Thus,

−6R2 sin2 ψ + (30R(R + δ) cos θ0 − 15LR) sin ψ− 18R(R + δ) sin θ0 cos ψ =

9(R + δ)2 sin2 θ0 − 15L(R + δ) cos θ0 − 15(R + δ)2 cos2 θ0 − 9R2 (7)

The angle ψ can be obtained by solving the above equation. The deflection angle of
the bristle can be obtained from Equation (3). Then, normal force N corresponding to any
radius gap δ can be obtained.
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The entire forces of the bristle around the brush seal ring can be obtained by integrating
the normal force of a single bristle around the brush seal ring [21]. The consequent nonlinear
brush seal forces of the bristles on the rotor are

Fx = A∗σ2[(µ1 + 2µ2σ3 + 3µ3σ2
3 + 4µ4σ3

3 )e + (0.75µ3σ2
2 + µ4σ2

2 σ3)e3]

×(sin ϕ + cos ϕ)(sin γ + µ cos γ),

Fy = A∗σ2[(µ1 + 2µ2σ3 + 3µ3σ2
3 + 4µ4σ3

3 )e + (0.75µ3σ2
2 + µ4σ2

2 σ3)e3]

×(sin ϕ + cos ϕ)(cos γ− µ sin γ)

(8)

where
µ0 = −2.11271× 103, µ1 = 9.08387× 103, µ2 = −1.46323× 104,

µ3 = 1.04705× 104, µ4 = 2.80927× 103;

A∗ = n
2L2

√
15EI√

1+µ2 sin(θ0+ϕ+arctanµ)
,

σ1 = R cos2 θ0 − R cos(ϕ + θ0) cos θ0, e =
√

x2 + y2,

σ2 = cos θ0/L, σ3 = (c cos θ0 + σ1)/L.

(9)

3. Nonlinear Motions of the Brush Seal Rotor System

In this research, we explore the nonlinear motions and bifurcations of a brush seal rotor
system. We consider the nondimensional variables as x = X/Ys, y = Y/Ys, t =τ/

√
m/k,

α = Ci/
√

Mk, Ω = ω
√

M/k and illustrate the results in semi-analytical Poincare maps to
provide a good understanding of the nonlinear motions and the bifurcations of the brush
seal rotor systems.

3.1. Bifurcation Characteristics

We apply a discrete mapping method [19,20] to the brush seal rotor system for the
bifurcations and nonlinear motions. The discrete mapping method employs implicit
mapping structures for nonlinear motion solutions, which are so called semi-analytical
solutions. The Jacobian matrix for the bifurcation analysis can be obtained as follows.

DP =
[

∂xN
∂x0

]
(z∗0 ,z∗0 ,··· ,z∗N)

= DPN · DPN−1 · . . . · DP2 · DP1

=
1

∏
k=N

DPk

(10)

where

DPk =

[
∂xk

∂xk−1

]
(x∗k ,x∗k−1)

=



∂x1,k
∂x1,k−1

∂x1,k
∂x2,k−1

∂x1,k
∂y1,k−1

∂x1,k
∂y2,k−1

∂x2,k
∂x1,k−1

∂x2,k
∂x2,k−1

∂x2,k
∂y1,k−1

∂x2,k
∂y2,k−1

∂y1,k
∂x1,k−1

∂y1,k
∂x2,k−1

∂y1,k
∂y1,k−1

∂y1,k
∂y2,k−1

∂y2,k
∂x1,k−1

∂y2,k
∂x2,k−1

∂y2,k
∂y1,k−1

∂y2,k
∂y2,k−1


(x∗k ,x∗k−1)

(11)

x1,k and x2,k(k = 0, 1, 2, · · · ,+∞) are the discrete node points of the displacement and
velocity in the x-direction. And y1,k and y2,k(k = 0, 1, 2, · · · ,+∞) are the node points of the
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displacement and velocity in the y-direction. The detailed components of the above Jacobian
matrix have the following expressions. The initial derivation is put in the Appendix A.

∂x1,k
∂x1,k−1

= 1 + 1
2 h ∂x2,k

∂x1,k−1
, ∂x2,k

∂x1,k−1
=

(∆11+∆13)∆41+
1
2 h(∆22+∆23)∆12

∆31∆41− 1
4 h2∆12∆22

,

∂x1,k
∂x2,k−1

= 1
2 h( ∂x2,k

∂x2,k−1
+ 1), ∂x2,k

∂x2,k−1
=

( 1
h−

1
2 α+ 1

2 h∆11)∆41+
1
4 h2∆12∆22

∆31∆41− 1
4 h2∆12∆22

,

∂x1,k
∂y1,k−1

= 1
2 h ∂x2,k

∂y1,k−1
, ∂x2,k

∂y1,k−1
=

(∆12+∆14)∆41+
1
2 h∆12(∆21+∆22)

∆31∆41− 1
4 h2∆12∆22

,

∂x1,k
∂y2,k−1

= 1
2 h ∂x2,k

∂y2,k−1
, ∂x2,k

∂y2,k−1
=

1
2 h∆12∆41+

1
2 h∆12(

1
h−

1
2 α+ 1

2 h∆21)

∆31∆41− 1
4 h2∆12∆22

, a

∂y1,k
∂x1,k−1

= 1
2 h ∂y2,k

∂x1,k−1
, ∂y2,k

∂x1,k−1
=

(∆22+∆23)∆31+
1
2 h(∆11+∆13)∆22

∆31∆41− 1
4 h2∆12∆22

,

∂y1,k
∂x2,k−1

= 1
2 h ∂y2,k

∂x2,k−1
, ∂y2,k

∂x2,k−1
=

1
2 h∆22∆31+

1
2 h∆22(

1
h−

1
2 α+ 1

2 h∆11)

∆31∆41− 1
4 h2∆12∆22

,

∂y1,k
∂y1,k−1

= 1 + 1
2 h ∂y2,k

∂y1,k−1
, ∂y2,k

∂y1,k−1
=

(∆21+∆24)∆31+
1
2 h∆22(∆12+∆14)

∆31∆41− 1
4 h2∆12∆22

,

∂y2,k
∂y2,k−1

= 1
2 h( ∂y2,k

∂y2,k−1
+ 1), ∂y2,k

∂y2,k−1
=

( 1
h−

1
2 α+ 1

2 h∆21)∆31+
1
4 h2∆12∆22

∆31∆41− 1
4 h2∆12∆22

.

(12)

with

∆11 = − 1
2 β1 +

3
2 ηx2

1km − µηx1kmy1km + 1
2 ηy2

1km,

∆12 = − 1
2 γ− 1

2 µηx2
1km + ηx1kmy1km − 3

2 µηy2
1km,

∆13 = − 1
2 β1 +

3
2 ηx1km − µηx1kmy1km + 1

2 ηy2
1km,

∆14 = − 1
2 γ− 1

2 µηx2
1km + ηx1kmy1km − 3

2 µηy2
1km

∆21 = − 1
2 β2 +

3
2 ηy2

1km + µηx1kmy1km + 1
2 ηx2

1km,

∆22 = − 1
2 γ + 1

2 µηy2
1km + ηx1kmy1km + 3

2 µηx2
1km,

∆23 = − 1
2 γ + 1

2 µηy2
1km + ηx1kmy1km + 3

2 µηx2
1km

∆24 = − 1
2 β2 +

3
2 ηy2

1km + µηx1kmy1km + 1
2 ηx2

1km,

∆31 = [ 1
h + 1

2 α− 1
2 h(− 1

2 β1 +
3
2 ηx2

1km − µηx1kmy1km + 1
2 ηy2

1km)],

∆41 = [ 1
h + 1

2 α− 1
2 h(− 1

2 β2 +
3
2 ηy2

1km + µηx1kmy1km + 1
2 ηx2

1km)].

(13)

where x1km, x2km, y1km, and y2km are the middle points of the corresponding discrete nodes
on the displacement and velocity orbits, whose expressions can be given as

x1km = 1
2 (x1,k + x1,k−1), y1km = 1

2 (y1,k + y1,k−1),
x2km = 1

2 (x2,k + x2,k−1), y2km = 1
2 (y2,k + y2,k−1).

The detailed discretization procedures can be found in [19,20] so they are skipped
in this part. In the following parts, “SN”, “NB”, and “PD” represent the saddle node,
Neimark, and period-doubling bifurcations. Solid lines represent stable nonlinear motions
and dashed lines represent unstable nonlinear motions. “U” means unstable bifurcations
or motions.

3.2. Numerical Simulation

For comparison of the nonlinear motions, numerical simulation is performed to com-
pare the semi-analytical and the numerical results. The numerical results can be obtained
by some numerical integration method such as the Runge–Kutta method or Euler method.
This paper adopts an implicit mid-point method [20] for numerical results. The solid lines
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represent the numerical results, while the circles represent the semi-analytical motions. I.C.
means the initial conditions.

Figure 3 shows the semi-analytical motions and numerical results of the stable period-1
motion. It can be seen from Figure 3a,b that the displacements are simple sinusoidal curves.
The phase diagrams are simple ellipses in Figure 3c,d. The semi-analytical motions of
the period-1 motion are compared with complete agreement with the numerical results.
The nonlinear rotor system needs two more harmonic terms to meet the engineering
requirements if the accuracy required is ε < 10−3 in Figure 3e,f. For the accuracy of ε < 10−9,
three harmonic terms are required to meet the theoretical design or control requirements.
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j = 0, 1, 2, · · · , 5).

Figure 4 shows the comparison of the unstable period-1 motion of the brush seal
rotor system. In Figure 4a,b, if the semi-analytical motions and the numerical results are
set at the same initial conditions, the numerical motions are consistent with the analytic
results in t = [0, 1.5]. But when t > 1.5, the numerical results gradually move away from
the semi-analytical results and the dangerous motion happens. This confirms the unstable
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motions. Figure 4c,d present the same unstable phenomenon. From Figure 4e,f, if the
accuracy required is set for ε < 10−3, the brush seal rotor system needs two harmonic terms
to meet the engineering requirements. For accuracy ε < 10−10, five harmonic terms are
required to meet the theoretical design or control requirements.
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placement, x1; (b) displacement, y1; (c) phase diagram, (x1, x2); (d) phase diagram, (y1, y2); (e) har-
monic spectrum, Ai,j; (f) harmonic phases, ϕi,j. (i = 1 and 2 for x- and y-directions, respectively;
j = 0, 1, 2, · · · , 4).

Figure 5 presents the stable period-2 motion of the brush seal rotor system at Ω = 10.2.
In Figure 5a,b, the numerical motions in solid lines match with the semi-analytical so-
lutions in circles. This confirms stable period-2 motion solutions. Figure 5c,d present
the displacement orbit and velocity orbit. The exact match of the numerical motions
with the semi-analytical solutions validates the correctness of the obtained semi analytical
motions. Figure 5e,f present the harmonic amplitudes and phases of the stable period-2
motion. For displacement x1, the most contributed harmonic amplitudes are A1,0 = 0.1027,
A1,0.5 = 0.1774, A1,1 = 0.4730, and A1,1.5 = 0.0136. For displacement y1, the most contributed
harmonic amplitudes are A2,0 = 0.2007, A2,0.5 = 0.8378, A2,1 = 0.5680, A2,1.5 = 0.0367, and



Appl. Sci. 2023, 13, 11539 9 of 17

A2,2 = 0.0129. The brush seal rotor system needs twenty harmonic terms to meet the engi-
neering requirements of the accuracy required, set for ε < 10−12.
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Figure 5. Numerical comparison of the stable period-2 motion of the brush seal rotor system:
(a) displacement, x1; (b) displacement, y1; (c) displacement plane, (x1, y1); (d) velocity plane, (x2, y2);
(e) harmonic spectrum, Ai,j; (f) harmonic phases, ϕi,j. (i = 1 and 2 for x- and y-directions, respectively;
j = 0, 1, 2, · · · , 10).

Figure 6 presents the unstable period-2 motion of the brush seal rotor system at
Ω = 7.38. In Figure 6a,b, the numerical solutions in solid lines almost move along with
the semi-analytical motions in circles. Even the period-2 motion is unstable. The actual
nonlinear motion does not cause a dangerous motion in short time. Figure 6c,d present
the displacement orbit and velocity orbit. The unstable period-2 motions all follow the
unstable semi-analytical solutions, and the unstable motion turns very steady. Figure 6e,f
present the harmonic amplitudes and phases of the unstable period-2 motion. The most con-
tributed harmonic amplitudes for unstable semi-analytical displacement x1 are A1,0= 0.0609,
A1,0.5 = 0.3276, A1,1= 0.5478, and A1,1.5 = 0.0153. The most contributed harmonic amplitudes
for unstable semi-analytical displacement y1 are A2,0 = 0.4913, A2,0.5 = 0.2155, A2,1 = 0.6592,
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A2,1.5 = 0.0148 and A2,2 = 0.0160. The most contributed harmonics can be used for control
of such unstable period-2 motion to keep the original nonlinearity of the motions, while
less harmonics are needed to reach the engineering requirements.
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Figure 6. Numerical comparison of unstable period-2 motion of brush seal rotor system: (a) dis-
placement, x1; (b) displacement, y1; (c) displacement plane, (x1, y1); (d) velocity plane, (x2, y2);
(e) harmonic spectrum, Ai,j; (f) harmonic phases, ϕi,j. (i = 1 and 2 for x- and y-directions, respectively;
j = 0, 1, 2, · · · , 10).

3.3. Bifurcation Diagrams

For a better understanding of stable and unstable motion switching, the nonlinear
motions and bifurcations are projected in 2D planes in Figure 7. The solid lines mean stable
motions and the dashed lines mean unstable motions. Between stable and unstable motions,
bifurcations happen. The stable and unstable displacement x1 is depicted by Figure 7a.
When the mass eccentricity is set to be e = 0.0005, the stable displacement experiences a
jumping at Ω = 1.0955 because of a saddle node bifurcation where a nonlinear resonance
happens. The resonance is more obvious at the y-direction in Figure 7c. The dimensionless
rotor system is characterized with a linear resonance frequency of Ω′ = 1. For the original
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system, the linear resonance frequency is around 1027 r/min. Because of the nonlinearity of
the brush seal forces, the resonance frequency will shift. The nonlinear resonance of the rotor
system increases with the increase in the mass eccentricity. So do the resonance frequencies.
The motion jumps at speed Ω = 1.1787 when the eccentricity grows to e = 0.0015 where a
saddle node bifurcation occurs. Because of saddle node bifurcations, the nonlinear rotor
system may experience chatter and non-smooth vibration during running. When the rotor
runs to Ω = 2.0500, the stable period-1 motion changes to stable period-2 motion because
of a period-doubling bifurcation. When the rotational speed increases to Ω = 2.0600, a
period-doubling bifurcation occurs and the stable period-2 motion disappears.

Appl. Sci. 2023, 13, 11539 11 of 17 
 

experiences a jumping at Ω = 1.0955 because of a saddle node bifurcation where a nonlin-
ear resonance happens. The resonance is more obvious at the y-direction in Figure 7c. The 
dimensionless rotor system is characterized with a linear resonance frequency of Ω′ = 1. 
For the original system, the linear resonance frequency is around 1027 r/min. Because of 
the nonlinearity of the brush seal forces, the resonance frequency will shift. The nonlinear 
resonance of the rotor system increases with the increase in the mass eccentricity. So do 
the resonance frequencies. The motion jumps at speed Ω = 1.1787 when the eccentricity 
grows to e = 0.0015 where a saddle node bifurcation occurs. Because of saddle node bifur-
cations, the nonlinear rotor system may experience chatter and non-smooth vibration dur-
ing running. When the rotor runs to Ω = 2.0500, the stable period-1 motion changes to 
stable period-2 motion because of a period-doubling bifurcation. When the rotational 
speed increases to Ω = 2.0600, a period-doubling bifurcation occurs and the stable period-
2 motion disappears. 

(a) (b) 

  
(c) (d) 

Figure 7. Semi-analytical Poincare map of the nonlinear period-1 motions in the rotor system with 
various eccentricities: (a) Poincare displacement, 1,kx ; (b) Poincare velocity, 2,kx ; (c) Poincare dis-
placement, 1,ky ; (d) Poincare velocity, 2, .ky ( 0,1,2, , )k = +∞ . 

The bifurcations on the velocity in the x-direction of the nonlinear rotor system are 
illustrated in Figure 7b. On the stable motion, there is an increase in the magnitude of the 
velocity along the x-direction. It is important to note that the velocity and the displacement 
in the x-direction have the same stable and unstable speed ranges, as well as the bifurca-
tions. When the speed is operated to much lower than the critical speed, the nonlinear 
motion of the rotor remains steady regardless of the mass eccentricities. The vibration ve-
locities approach almost zeros. The period-doubling bifurcations are Ω = {1.98, 2.05, 2.06} 
for e = 0.0005, Ω = {1.96,1.97, 2.04, 2.1} for e = 0.0015; Ω = {1.93,1.96, 2.04, 2.14} for e = 0.0025; 
Ω = {1.87, 1.93, 2.05, 2.18} for e = 0.0035; Ω = {1.66, 1.8, 2.12, 2.29} for e = 0.0055; Ω = {1.56, 
1.64, 2.17, 2.35} for e = 0.0065. 

Excitation Frequency, Ω

1.0 1.5 2.0 2.5 3.0

Pe
rio

di
c 

N
od

e 
D

isp
la

ce
m

en
t, 

x 1,
k 
(m

od
(k

,N
)=

0)

-0.005

0.095

0.195

0.295

e=0.0025

e=0.0005

e=0.0015

e=0.0035

e=0.0055

e=0.0065

M
ot

io
n 

Ju
m

pi
ng

SN

PDPD

PDPD

PDPD

PDPD
PDPD

PD

PD

Excitation Frequency, Ω

1.0 1.5 2.0 2.5 3.0

Pe
rio

di
c 

N
od

e 
V

el
oc

ity
, x

2,
k(m

od
( k

, N
)=

0)

-0.01

0.03

0.07

0.11

e=
0.

00
05

e=
0.

00
25

e=
0.

00
15

e=
0.

00
35

e=
0.

00
55

e=
0.

00
65

Excitation Frequency, Ω

1.0 1.5 2.0 2.5 3.0

Pe
rio

di
c 

N
od

e 
di

sp
la

ce
m

en
t, 

y 1,
k(m

od
( k

, N
)=

0)

0.05

0.06

0.07

0.08

0.09

0.10

e=0.0025

e=0.0005
e=0.0015

e=0.0035

e=0.0055

e=0.0065

M
otion Jum

ping

SN

PD

PD

PD

PDPD

PD

PD

Excitation Frequency, Ω

1.0 1.5 2.0 2.5 3.0

Pe
rio

di
c 

N
od

e 
ve

lo
ci

ty
, y

2,
k(m

od
( k

, N
)=

0)

0.0

0.4

0.8

1.2

1.6

e=0.0025

e=0.0005
e=0.0015

e=0.0035

e=0.0055
e=0.0065

PDPD PDPD

PDPD

Figure 7. Semi-analytical Poincare map of the nonlinear period-1 motions in the rotor system
with various eccentricities: (a) Poincare displacement, x1,k; (b) Poincare velocity, x2,k; (c) Poincare
displacement, y1,k; (d) Poincare velocity, y2,k.(k = 0, 1, 2, · · · ,+∞).

The bifurcations on the velocity in the x-direction of the nonlinear rotor system are
illustrated in Figure 7b. On the stable motion, there is an increase in the magnitude of the
velocity along the x-direction. It is important to note that the velocity and the displacement
in the x-direction have the same stable and unstable speed ranges, as well as the bifurcations.
When the speed is operated to much lower than the critical speed, the nonlinear motion
of the rotor remains steady regardless of the mass eccentricities. The vibration velocities
approach almost zeros. The period-doubling bifurcations are Ω = {1.98, 2.05, 2.06} for
e = 0.0005, Ω = {1.96,1.97, 2.04, 2.1} for e = 0.0015; Ω = {1.93,1.96, 2.04, 2.14} for e = 0.0025;
Ω = {1.87, 1.93, 2.05, 2.18} for e = 0.0035; Ω = {1.66, 1.8, 2.12, 2.29} for e = 0.0055; Ω = {1.56,
1.64, 2.17, 2.35} for e = 0.0065.

The displacement y1,k of the nonlinear motions in the brush seal rotor system is
presented in Figure 7c. At the location where the saddle node bifurcation is located, the
displacement chatters in the y-direction. Figure 7d illustrates the velocity y2,k varying with
the rotational speed in the y-direction. The nonlinear phenomenon of y2,k is similar to that
in the x-direction.

For obtaining the period-2 motions, the eigenvalue analysis of the brush seal rotor
system is performed in Figure 8. The solid lines mean the stable motions and the dashed
lines mean unstable motions. The nonlinear motion interacts with stable and unstable
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branches. For clear observation, the eigenvalue analysis and the bifurcations are illustrated
in two separate speed ranges. The eigenvalue analysis within Ω ∈ (5.6, 10.1) is plotted
in Figure 8a,c,e. Because the nonlinear motions within Ω ∈ (0.0, 5.6) are all stable, the
eigenvalues within this speed range are all with magnitudes less than one, so this part
is skipped. During the increasing speed process, a period-doubling bifurcation occurs at
Ω = 9.23 with one eigenvalue greater than one, one eigenvalue crossing the negative-one
line, and the others smaller than one so that unstable period-2 motions may occur with
small perturbation. Such unstable period-2 motions come from unstable period-1 motions.
The nonlinear rotor usually accompanies dangerous motions with large displacement. A
stable period-doubling bifurcation happens at Ω = 7.85, where period-4 motions will
happen. The eigenvalue analysis and bifurcations within Ω ∈ (10.0, 15.0) are presented in
Figure 8b,d,f. Two period-doubling bifurcations are discovered at Ω = 11.47 and Ω = 12.32
where period-2 and 4 motions will be produced during running. The real, imaginary, and
magnitude parts of the eigenvalues provide a quantitative understanding of the bifurcations
in the brush seal rotor system.
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Figure 8. Bifurcation analysis by eigenvalues. I. Ω ∈ (5.6, 10.1): (a) real parts, Re(λi); (c) imaginary
parts, Im(λi); (e) magnitudes, Mag(λi); II. Ω ∈ (10.0, 15.0): (b) real parts, Re(λi); (d) imaginary parts,
Im(λi); (f) magnitudes, Mag(λi).
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In Figures 9 and 10, the semi-analytical Poincare maps of period-2 motions are pre-
sented to illustrate the bifurcations and nonlinear motions. The solid lines mean stable
motions and the dashed lines mean unstable motions. When the speed is increasing, the
period-1 motion is stable. A saddle node bifurcation happens at Ω = 5.917 to generate chat-
ting during the speed-increasing process. A Neimark bifurcation happens at Ω = 6.53 and
an unstable quasi-period-1 motion happens. The period-doubling bifurcation at Ω = 9.23
causes a period-2 motion, and half-frequency components in the nonlinear motions emerge.
Another period-doubling bifurcation at Ω = 7.85 causes a period-4 motion, and quarter-
frequency components in the nonlinear motions emerge. Moreover, quasi-periodic period-2
motions are produced at Neimark bifurcations on Ω = 10.37 and Ω = 11.08. Nonlinear
chattering and jumping motions are produced at saddle node bifurcations at Ω = 10.197
and Ω = 14.307. Period-2 and period-4 motions are produced at period-doubling bifurca-
tions on Ω = 11.47 and Ω = 12.32 in the brush seal rotor system. The nonlinear motions
behave stably and unstably as well as at complex bifurcations. Attention should be paid to
the practical rotor design to put the working speed range smaller than these stability shifts.
Care must be taken in operation to avoid unstable and dangerous nonlinear motions.
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Figure 9. Semi-analytical Poincare map of the nonlinear period-2 motions in the rotor system within
Ω ∈ (5.6, 10.1): (a) Poincare displacement, x1,k; (b) Poincare velocity, x2,k; (c) Poincare displacement,
y1,k; (d) Poincare velocity, y2,k.(k = 0, 1, 2, · · · , ).
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Figure 10. Semi-analytical Poincare map of the nonlinear period-2 motions in the rotor system within
Ω ∈ (10.1, 12.6): (a) Poincare displacement, x1,k; (b) Poincare velocity, x2,k; (c) Poincare displacement,
y1,k; (d) Poincare velocity, y2,k.(k = 0, 1, 2, · · · , ).

3.4. Parameter Maps of SN and PD

Since the saddle node and period-doubling bifurcation have the most influence in the
nonlinear motions of the brush seal rotor system, Figure 11 depicts parameter maps for
stable and unstable domains of saddle node and period-doubling bifurcations. Figure 11a
displays the parameter maps of the period-doubling bifurcations of nonlinear motions. The
maps for unstable nonlinear motions are depicted by the blue and black, while the stable
motion domain is depicted by green. The boundaries are period-doubling bifurcations
for producing period-2 motions. On the boundaries, the period-1 motions are turned
to period-2 motions. Under such parameters, the left unstable domain disappears at
Ω = 2.0520 with e = 0.0024. The lower left period-doubling bifurcation domain disappears
at Ω = 1.9809 with e = 0.00494. For the right side, the unstable domain increases as the
rotational speed increases.

The parameter map for the saddle node bifurcations is shown in Figure 11b. The
purple represents the unstable map while the green represents the stable map. The saddle
node bifurcations are located on the boundaries between the stable and unstable maps.
On such boundaries, the nonlinear motions of the brush seal rotor are characterized with
a chattering phenomenon. Safe operation should be considered to avoid damage to the
rotor system.
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4. Conclusions

In this research, the elasto-dynamic theory was utilized to model brush seal forces. A
nonlinear brush seal rotor system was constructed by combination of a flexible rotor system
with nonlinear brush seal forces. The nonlinear motions were obtained by a semi-analytical
approach as well as stability and bifurcations. The system chattered nonlinearly at specific
speeds near saddle node bifurcations. Parameter maps of bifurcations and stability domains
of the brush seal rotor system were also achieved. Complicated vibrations and bifurcations
were successfully obtained by eigenvalues and exhibited in semi-analytical Poincare maps.
Period-doubling bifurcations were obtained to lead the route from period-1 motion to
period-2 motion. Numerical comparisons were performed to verify the theoretical results.
The period-doubling bifurcations caused motion switch and subharmonic-1/2 vibrations
in the brush seal rotor system. The saddle node bifurcations on the parameter map make
it possible for the system to prevent nonlinear motion jumping and reduce the harmful
motions if optimal parameters are considered. Nonlinearity is an avoidable effect in
rotor system design and production. With the increase in the complexity of the practical
rotor system, this research provides a method to solve nonlinear resonance, stability, and
bifurcations, which will be helpful in future designs to avoid dangerous vibrations.
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Appendix A

The initial derivation of the components in the Jacobian matrix has the following forms.
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− 1

2 β2
∂y1,k

∂x2,k−1
+ η[( 3

2 y2
1km + µx1kmy1km + 1

2 x2
1km)

∂y1,k
∂x2,k−1

+( 1
2 µy2

1km + x1kmy1km + 3
2 µx2

1km)(
∂x1,k

∂x2,k−1
+ 1)]− 1

2 γ
∂x1,k

∂x2,k−1

}
,
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,
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