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Abstract: This study compares the performance of machine learning models for selecting COVID-19 and
influenza tests during coexisting outbreaks in Brazil, avoiding the waste of resources in healthcare units. We
used COVID-19 and influenza datasets from Brazil to train the Decision Tree (DT), Multilayer Perceptron
(MLP), Gradient Boosting Machine (GBM), Random Forest (RF), eXtreme Gradient Boosting (XGBoost),
K-Nearest Neighbors, Support Vector Machine (SVM), and Logistic Regression algorithms. Moreover, we
tested the models using the 10-fold cross-validation method to increase confidence in the results. During
the experiments, the GBM, DT, RF, XGBoost, and SVM models showed the best performances, with
similar results. The high performance of tree-based models is relevant for the classification of COVID-19
and influenza because they are usually easier to interpret, positively impacting the decision-making of
health professionals.

Keywords: COVID-19; influenza; machine learning

1. Introduction

The control of outbreaks of viral infectious diseases in Brazil presents a pertinent chal-
lenge, given the size of the population, population density, social habits, and constrained
testing strategies with limited test availability [1]. This challenge is further amplified when
simultaneous outbreaks of diseases occur, such as COVID-19 and influenza [2]. Therefore,
studies are needed to assist in mitigating issues associated with concurrent outbreaks of
such diseases. Due to their constrained testing resources, test prioritization is a pertinent
public health strategy for low- and middle-income countries.

Machine Learning (ML) models can be a foundation for developing eHealth and
mHealth systems [3–5]. These systems can support healthcare professionals and policymak-
ers in test prioritization. To facilitate real-world clinical application and integration into
the current clinical workflow, classification models can be made accessible, and attribute
relevance information can be leveraged through web services for consumption by a health-
care system. These eHealth and mHealth systems should provide classification results
to healthcare professionals through clear and concise graphical user interfaces. Thus, the
direct interpretability of the ML models is crucial to enhance the confidence of healthcare
professionals in the classification results [6]. For instance, healthcare systems of Brazilian
public healthcare units can reuse models deployed by web services to prioritize scarce
testing resources.

Amidst the COVID-19 pandemic, the challenge of testing resource scarcity became
evident in numerous countries, such as Brazil [7]. Brazil’s first COVID-19 case occurred
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in March 2020, and over an extended period, the Ministry of Health reported a consis-
tent increase in confirmed cases and fatalities. The Brazilian government reported over
30 million COVID-19 cases and over 664,000 fatalities. Considering Brazil’s most recent
data from the Ministry of Health, from January to September 2023, the unfortunate toll of
COVID-19 resulted in over 12,000 individuals (https://covid.saude.gov.br/, accessed on
10 October 2023 ).

The limited number of tests becomes even more critical when concurrent outbreaks
of viral infectious diseases (concomitant outbreaks) occur. During the most challenging
pandemic phases, the Brazilian population faced at least two coexisting outbreaks of
viral infectious diseases: COVID-19 and influenza. Therefore, it is pertinent to assist
policymakers in formulating solutions to address concurrent outbreaks of viral infectious
diseases (present and future).

This article extends our previous research [8] by presenting ML models to assist in test
prioritization based on symptoms during concurrent outbreaks of COVID-19 and influenza
in Brazil. To our knowledge, no prior studies are experimenting with Brazilian datasets for
COVID-19 and influenza classification in this context. In the clinical scenario we envision,
symptomatic patients present themselves at the hospital’s testing site during a coexisting
outbreak of COVID-19 and influenza. Before conducting tests for COVID-19 or influenza,
which can be limited resources in certain countries, healthcare professionals can gather
patient information as input data for an ML model. This approach can empower healthcare
providers to make more informed decisions about which test to administer to specific
patients, optimizing resource allocation and patient care.

We implemented ML models that rely on supervised learning, employing the following
algorithms: Decision Tree (DT), Multilayer Perceptron (MLP), Gradient Boosting Machine
(GBM), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), and Logistic Regression (LR). To address our
multi-class problem, which involves distinguishing between COVID-19, non-COVID-19,
influenza, and non-influenza cases, we conducted training and testing of algorithms using
datasets containing demographic attributes and symptom information. This approach
reduces the necessity for expensive exams (e.g., computed tomography scans).

The remainder of this article is structured as follows. Section 2 discusses the materials
and methods, encompassing data collection, preprocessing, attribute selection, validation
procedures, and details about the algorithms employed. Section 3 presents and discusses
our results. Section 4 concludes from our findings and presents future research directions.

2. Related Works

Studies on viral infection outbreaks are relevant for public administration (for instance, in
the context of surveillance systems) from a diagnostic standpoint. For instance, Son et al. [9]
used a South Korean time series of influenza incidence to detect initial outbreaks, aiming to
assist in policy formulation for control. Indeed, a pandemic presents a challenging scenario.
In another study, Kumar [10] analyzed and enhanced the monitoring of COVID-19 in India
by cluster analysis, offering insights into how the disease affected Indian states. The authors
considered a total of twenty-eight states and eight Indian territories.

The existing literature also offers studies that explore the concurrent outbreaks of
COVID-19 and influenza. For instance, Aftab et al. [11] experimented with deep-learning
models for COVID-19 and influenza classification during coexisting outbreaks based on
chest X-ray images. Li et al. [12] applied an XGBoost model to detect patients with both
COVID-19 and influenza. The authors used clinical data, including laboratory test results,
to train the XGBoost and baseline algorithms.

In another study, Zhou et al. [13] used data from patients at Zhongnan Hospital of
Wuhan University to implement an XGBoost model. The authors also considered symptoms
and laboratory test results when training the algorithm.

Furthermore, Elbasi et al. [14] addressed the classification of influenza and COVID-19
by employing the Bayes network, naive Bayes, locally weighted learning, MLP, and RF
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algorithms. Like the studies above, the authors used demographic data, symptoms, risk
factors, and laboratory test results for training the ML models.

Phu et al. [15] compared the XGBoost and RF algorithms for classifying influenza and
COVID-19, considering symptoms and laboratory test results. Their findings indicated that
the XGBoost model outperformed RF.

Nevertheless, the need for expensive laboratory test results could limit the practical
application of the previously proposed models, particularly when considering low- and
middle-income populations. Thus, using Brazilian datasets, our study investigates the
performance of ML models with different characteristics (e.g., tree-based and distance-
based approaches) by only considering demographic data and reported symptoms.

3. Materials and Methods

This study considers data preprocessing, creation of new datasets, attribute selection,
10-fold cross-validation, statistical comparisons, and attribute importance. The following
sections present an overview of these steps.

3.1. Data Collection and Preprocessing

Data collection is not considered a contribution of this study. The raw data used
in this study was collected by the public health agency of Campina Grande, located in
the Paraíba State of Northeast Brazil. This public agency receives information from all
COVID-19 tests conducted in Campina Grande [8]. To ensure patient privacy, the agency’s
staff removed patient identification details, and the de-identified data were then made
available for reuse in this study. The raw dataset contains various categorical features,
including information about health professionals, security professionals, ethnicity, test
types, symptoms (e.g., fever, sore throat, dyspnea, olfactory disorders, cough, coryza, taste
disorders, and headache), additional symptoms, test results, comorbidities, test status,
and symptom descriptions. Therefore, raw data from 55,676 Brazilian individuals were
preprocessed to establish new datasets containing information on symptomatic patients
tested for COVID-19.

Additionally, we gathered data from a sample of 14,570 Brazilian individuals, which
included information about symptomatic patients who underwent testing for influenza.
As for COVID-19, the tests encompassed Reverse Transcription Polymerase Chain Re-
action (RT-PCR) and rapid tests (antibody and antigen). We sourced information from
the OpenDatasus platform (https://opendatasus.saude.gov.br/dataset/srag-2021-a-2023,
accessed on 10 October 2023) the Brazilian Ministry of Health provided for this dataset.

We performed data preprocessing using the Python programming language. During
this preprocessing stage, we applied string-matching algorithms to address inconsistencies
in the raw dataset. One notable inconsistency we addressed was the presence of empty
columns related to symptoms, as the same symptoms were available within a column
designated for general symptom descriptions. We also excluded certain instances from the
initial samples based on our predefined exclusion criteria.

For the COVID-19 dataset, these criteria encompassed patients with incomplete tests
or undefined final classifications (12,929 instances), duplicated instances (12,929 instances),
outliers resulting from input errors (10,408 instances), test types that were not RT-PCR or
rapid (771 instances), individuals with undefined gender (27 instances), and asymptomatic
patients (11,269 instances). The exclusion of asymptomatic patients was necessary because
the algorithms relied on demographic characteristics and symptom data for accurate
processing. We applied the same criteria to the influenza dataset. For example, the raw
dataset, which was unbalanced, contained 5954 instances. After filtering and removal, the
dataset was reduced to 4212 instances.

We filtered the data to generate new datasets, including patients tested for COVID-19
and influenza. This process ensures that a patient tested positive for COVID-19 also tested
negative for influenza. However, we acknowledge that a patient can be infected with both
diseases simultaneously, even though this scenario is more uncommon. We did not consider
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this scenario in our study. The following attributes were considered: respiratory distress,
vomiting, saturation, fatigue, diarrhea, abdominal pain, gender, healthcare professional
status, fever, sore throat, dyspnea, olfactory disorder, cough, runny nose, taste disorder,
and headache.

We formulated six preprocessed datasets by combining COVID-19 and influenza data:
unbalanced RT-PCR, balanced RT-PCR, unbalanced rapid, balanced rapid, both unbalanced,
and both balanced. Thus, during the preprocessing, we oversampled the data by applying
the near-miss technique [16]. In the datasets, the numbers 0 and 1 denote positive and
negative results for COVID-19, while 2 and 3 represent positive and negative outcomes for
influenza. In the balanced RT-PCR datasets, each class contains 916 samples, the rapid test
datasets have 646 samples for each class, and the combined datasets of both tests contain
1564 samples. For the unbalanced sets, the RT-PCR dataset consists of 0 (916 samples),
1 (1863 samples), 2 (1502 samples), and 3 (1423 samples). The rapid test dataset includes
class 0 (648 samples), 1 (16,594 samples), 2 (691 samples), and 3 (646 samples). In the
combined dataset of both tests, class 0 has 1564 samples, class 1 has 18,457 samples, class
2 has 2106 samples, and class 3 has 2148 samples.

3.2. Attribute Selection

We applied the chi-squared test to the new datasets to assist in attribute selection
with a p < 0.01 threshold, examining attribute relevance for classification tasks through
dependence and independence relationships [17]. The chi-squared test for independence
was employed to compare four variables within a contingency table, determining whether
they are related.

3.3. Validation Method and Algorithms

We used the 10-fold cross-validation method with five repetitions to validate the ML
models MLP, GBM, DT, RF, XGBoost, KNN, SVM, and LR (weak/strong regularization).
An MLP is a feedforward neural network, meaning data travels in a single direction [18].
This model comprises one (or more) hidden neurons between the layers related to inputs
and outputs.

In contrast, the GBM is a decision tree with a fixed size that uses a boosting strategy [19].
This algorithm features integrated attribute selection, producing an estimation, approx-
imation, or the function denoted as F∗(x), which maps the input x to the output y
while minimizing the expected value by using a loss function L(y, F(x)) across the joint
distribution [20].

A DT algorithm commonly applies a divide-and-conquer strategy to construct a
directed acyclic graph, where rule splitting is determined by maximizing information
gain [21]. DT algorithms such as C4.5 include internal attribute selection, and the infor-
mation gain is influenced by the concept of entropy, which quantifies the uncertainty
or randomness associated with a discrete random variable. DT offers the advantage of
straightforward result interpretation by following the decision rules of a single tree [22–24].

Similarly, the RF relies on classification and regression tree principles while following
specific guidelines for tree growth, combination, self-testing, and post-processing [25]. The
algorithm includes an embedded attribute selection mechanism, evaluated using the Gini
impurity criterion index. RF also facilitates a straightforward interpretation of results from
the individual trees within the ensemble.

Relying on a different approach, KNN is a distance-based algorithm that classifies
new instances using the distance from neighbor instances [26]. Given an instance as a point
in space, KNN computes the distance between two points.

SVM is an algorithm designed to handle binary data using a linear separator to
maximize the distance between data points. The algorithm considers concepts such as the
separation hyperplane, maximum margin hyperplane, and soft margin [18].

Lastly, LR extends linear regression, assessing the connections between variables in
probabilistic classifications. The algorithm employs a sigmoid function to model these
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relationships and predict the probability of class membership [27]. Regularization can also
be employed to prevent overfitting. We used the LR algorithm as a baseline to compare the
linear model with the above ML approaches.

Moreover, we calculated the mean results for classification metrics, including precision,
accuracy, recall, Brier score, Receiver Operating Characteristic Curve (ROC), and Area
Under the Precision-Recall (PR) curve. We used the random search method to fine-tune the
hyperparameters of the algorithms, aiming to enhance their performance. Furthermore,
we analyzed recall-related outcomes using the Friedman and Nemenyi statistical tests to
improve the comparisons among the ML models [28]. The Friedman test is a valuable statis-
tical method for identifying differences between models. The Nemenyi test is pertinent for
grouping classification models based on assessing differences through many comparisons.
We determined the Critical Difference (CD) between the ML models by employing the
Nemenyi test, with a significance level set at α = 0.1. If the performance differences among
models are within an interval more minor than the CD, it suggests that the models are
indistinguishable from each other [8].

3.4. Attribute Importance

Finally, we performed attribute ranking for each ML model with the best performance
through the permutation-based attribute importance method, which provided mean impor-
tance and Standard Deviation (SD) as the evaluation criteria. The attribute ranking relied
on the permutation feature importance method to gauge the importance of an attribute
by evaluating the decrease in the model’s score, thereby assessing the degree of reliance
of the model on that particular attribute [29]. Our discussions center around the top five
attributes with the highest importance.

4. Results and Discussion

The COVID-19 and influenza datasets were merged to form a unified dataset for
implementing the models. As mentioned in Section 2, the numbers 0 and 1 indicated
positive and negative cases of COVID-19, while 2 and 3 indicated positive and negative
cases of influenza. The balanced RT-PCR datasets contained 916 instances for each class, the
rapid test datasets contained 646 instances for each class, and both tests combined included
1564 instances for each class. The unbalanced RT-PCR datasets contained class 1 (1863),
2 (1502), 3 (1423), and 0 (916); the rapid test datasets contained class 1 (16,594), 2 (691),
0 (648), and 3 (646); and both tests combined included class 1 (18,457), 3 (2148), 2 (2106),
and 0 (1564).

The tree-based models, considering the combination of COVID-19 and influenza, are
among those that exhibited superior outcomes. Table 1 presents the results of the 10-fold
cross-validation. We computed precision, recall, accuracy, and Brier score. LR and LRR
denote weak and strong regularization models, respectively.

Tables 2 and 3 present the mean importance and SD for attributes considering the
tree-based models and MLP and SVM, respectively. Table 4 displays the top five most
significant attributes for test prioritization. Such analyses consider the imbalanced datasets.

Throughout the experiments, attributes were not removed based on the chi-squared
test results, as all attributes exhibited dependence. To provide a more detailed illustration
of the outcomes, for instance, in Figures 1 and 2, the average results for the ROC and PR
curves using cross-validation for the decision tree model are depicted, employing both the
balanced and unbalanced datasets of both tests, respectively. As mentioned, we conducted
a 10-fold cross-validation five times to enhance our confidence in the results. We presented
the results for each of the four classes of our multi-class problem.
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Table 1. Performance of the classification models.

Database Model Precision Recall Accuracy Brier Score

MLP 82.44 (82.72) 82.72 (82.26) 82.37 (82.25) 0.088 (0.088)
GBM 82.59 (82.48) 82.92 (82.14) 82.54 (82.14) 0.08 (0.089)
RF 83.04 (82.96) 83.12 (82.47) 82.84 (82.47) 0.085 (0.087)

PCR DT 82.46 (82.37) 82.60 (81.76) 82.27 (81.76) 0.088 (0.091)
Imbalanced XGBoost 82.73 (82.67) 82.99 (82.27) 82.65 (82.27) 0.086 (0.088)
(Balanced) KNN 82.16 (82.35) 82.22 (81.51) 82.07 (81.61) 0.089 (0.092)

SVM 82.23 (81.93) 82.55 (81.57) 82.27 (81.57) 0.088 (0.092)
LRR 71.76 (71.65) 70.13 (70.78) 71.37 (70.78) 0.143 (0.145)
LR 72.29 (72.29) 70.85 (71.38) 72.02 (71.38) 0.139 (0.143)

MLP 85.30 (81.40) 79.41 (81.40) 96.44 (81.40) 0.171 (0.092)
GBM 85.61 (81.14) 79.40 (81.15) 96.46 (81.15) 0.017 (0.094)
RF 86.38 (81.50) 79.25 (81.56) 96.53 (81.56) 0.017 (0.092)

Rapid DT 85.42 (80.99) 79.61 (80.93) 96.53 (80.93) 0.017 (0.095)
Imbalanced XGBoost 85.76 (80.89) 79.32 (80.96) 96.47 (80.96) 0.017 (0.095)
(Balanced) KNN 87.81 (80.52) 78.93 (79.90) 96.56 (79.90) 0.017 (0.100)

SVM 86.12 (80.97) 79.11 (81.11) 96.49 (81.11) 0.017 (0.094)
LRR 73.32 (68.78) 55.60 (68.98) 93.24 (68.98) 0.033 (0.155)
LR 72.42 (70.70) 58.37 (70.24) 93.50 (70.24) 0.032 (0.148)

MLP 85.93 (80.95) 71.11 (80.47) 90.73 (80.95) 0.046 (0.097)
GBM 85.89 (81.14) 71.16 (80.64) 90.70 (80.64) 0.046 (0.096)
RF 86.85 (81.50) 71.63 (80.95) 90.96 (80.95) 0.045 (0.095)

Both DT 85.60 (80.74) 71.66 (80.13) 90.76 (80.13) 0.046 (0.099)
imbalanced XGBoost 86.07 (81.28) 71.39 (80.77) 90.79 (80.77) 0.046 (0.096)
(Balanced) KNN 82.23 (80.33) 66.15 (79.58) 88.98 (79.58) 0.055 (0.102)

SVM 86.43 (80.54) 70.95 (80.11) 90.77 (80.11) 0.046 (0.099)
LRR 68.87 (70.16) 52.82 (70.10) 85.54 (70.10) 0.072 (0.149)
LR 71.16 (71.24) 55.39 (71.22) 86.29 (71.22) 0.068 (0.143)

Figure 1. Average ROC curve for each class of the DT model using both balanced tests.
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Table 2. Mean importance and SD for attributes in tree-based classification models using the imbal-
anced datasets.

Dataset Feature GBM DT RF XGBoost

Respiratory distress 0.141 (0.008) 0.155 (0.008) 0.156 (0.008) 0.144 (0.008)
Vomit 0.037 (0.004) 0.036 (0.004) 0.035 (0.004) 0.037 (0.004)
Saturation 0.149 (0.007) 0.166 (0.008) 0.161 (0.007) 0.154 (0.008)
Fatigue 0.055 (0.006) 0.047 (0.005) 0.057 (0.006) 0.058 (0.006)
Diarrhea 0.028 (0.003) 0.024 (0.003) 0.027 (0.003) 0.028 (0.003)
Abdominal pain 0.013 (0.003) 0.006 (0.002) 0.011 (0.002) 0.013 (0.002)
Gender 0.138 (0.007) 0.133 (0.007) 0.137 (0.007) 0.137 (0.007)

PCR Health professional 0.029 (0.003) 0.026 (0.002) 0.029 (0.003) 0.031 (0.003)
Fever 0.235 (0.009) 0.230 (0.008) 0.234 (0.008) 0.230 (0.008)
Sore throat 0.077 (0.006) 0.073 (0.005) 0.075 (0.005) 0.079 (0.005)
Dyspnoea 0.098 (0.007) 0.095 (0.006) 0.093 (0.007) 0.092 (0.007)
Smell disorder 0.009 (0.002) 0.017 (0.002) 0.004 (0.002) 0.010 (0.002)
Cough 0.105 (0.007) 0.101 (0.007) 0.102 (0.007) 0.102 (0.007)
Runny nose 0.007 (0.002) 0.006 (0.002) 0.007 (0.002) 0.005 (0.002)
Taste disorder 0.019 (0.002) 0.014 (0.002) 0.009 (0.002) 0.010 (0.002)
Headache 0.012 (0.002) 0.012 (0.002) 0.013 (0.002) 0.008 (0.002)

Respiratory distress 0.109 (0.007) 0.113 (0.007) 0.156 (0.008) 0.121 (0.008)
Vomit 0.019 (0.004) 0.017 (0.003) 0.015 (0.004) 0.020 (0.004)
Saturation 0.140 (0.008) 0.194 (0.008) 0.165 (0.008) 0.154 (0.007)
Fatigue 0.056 (0.005) 0.072 (0.006) 0.055 (0.005) 0.055 (0.005)
Diarrhea 0.013 (0.003) 0.012 (0.003) 0.009 (0.002) 0.015 (0.004)
Abdominal pain 0.004 (0.002) 0.008 (0.002) 0.003 (0.001) 0.007 (0.002)
Gender 0.096 (0.009) 0.096 (0.010) 0.100 (0.009) 0.095 (0.008)

Rapid Health professional 0.013 (0.003) 0.014 (0.002) 0.015 (0.002) 0.018 (0.003)
Fever 0.148 (0.008) 0.158 (0.009) 0.148 (0.007) 0.152 (0.007)
Sore throat 0.080 (0.006) 0.073 (0.006) 0.072 (0.006) 0.075 (0.006)
Dyspnoea 0.130 (0.008) 0.144 (0.009) 0.136 (0.008) 0.136 (0.008)
Smell disorder 0.083 (0.005) 0.096 (0.006) 0.087 (0.006) 0.084 (0.005)
Cough 0.075 (0.007) 0.086 (0.008) 0.072 (0.007) 0.067 (0.008)
Runny nose 0.054 (0.004) 0.046 (0.003) 0.039 (0.003) 0.048 (0.003)
Taste disorder 0.042 (0.004) 0.036 (0.004) 0.023 (0.004) 0.039 (0.004)
Headache 0.047 (0.004) 0.053 (0.004) 0.045 (0.004) 0.055 (0.004)

Respiratory distress 0.140 (0.004) 0.148 (0.004) 0.147 (0.004) 0.143 (0.005)
Vomit 0.035 (0.003) 0.041 (0.004) 0.039 (0.004) 0.038 (0.003)
Saturation 0.171 (0.006) 0.191 (0.005) 0.190 (0.006) 0.184 (0.006)
Fatigue 0.053 (0.003) 0.062 (0.003) 0.057 (0.003) 0.055 (0.003)
Diarrhea 0.017 (0.002) 0.017 (0.002) 0.015 (0.002) 0.018 (0.002)
Abdominal pain 0.018 (0.002) 0.010 (0.002) 0.010 (0.002) 0.018 (0.002)
Gender 0.123 (0.005) 0.126 (0.006) 0.121 (0.005) 0.119 (0.005)

Both Health professional 0.020 (0.002) 0.016 (0.002) 0.019 (0.002) 0.020 (0.002)
Fever 0.182 (0.006) 0.187 (0.006) 0.183 (0.007) 0.179 (0.007)
Sore throat 0.084 (0.004) 0.087 ( 0.004) 0.082 (0.004) 0.083 (0.004)
Dyspnoea 0.103 (0.005) 0.108 (0.005) 0.103 (0.005) 0.107 (0.005)
Smell disorder 0.047 (0.003) 0.053 (0.003) 0.039 (0.003) 0.048 (0.003)
Cough 0.086 (0.004) 0.088 (0.004) 0.087 (0.005) 0.084 (0.004)
Runny nose 0.017 (0.001) 0.016 (0.001) 0.017 (0.002) 0.016 (0.001)
Taste disorder 0.024 (0.003) 0.027 (0.003) 0.019 (0.003) 0.024 (0.003)
Headache 0.035 (0.003) 0.033 (0.002) 0.028 (0.003) 0.031 (0.003)
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Table 3. Mean importance and SD for attributes in MLP and SVM models using the imbalanced datasets.

Dataset Feature MLP SVM

Respiratory distress 0.139 (0.009) 0.135 (0.008)
Vomit 0.041 (0.005) 0.039 (0.004)
Saturation 0.146 (0.008) 0.152 (0.007)
Fatigue 0.056 (0.005) 0.059 (0.005)
Diarrhea 0.025 (0.003) 0.028 (0.003)
Abdominal pain 0.015 (0.003) 0.015 (0.003)
Gender 0.137 (0.007) 0.125 (0.006)

RT-PCR Health professional 0.043 (0.003) 0.021 (0.002)
Fever 0.230 (0.008) 0.219 (0.008)
Sore throat 0.081 (0.007) 0.069 (0.006)
Dyspnoea 0.100 (0.006) 0.080 (0.006)
Smell disorder 0.013 (0.003) 0.010 (0.002)
Cough 0.105 (0.007) 0.098 (0.007)
Runny nose 0.010 (0.002) 0.003 (0.002)
Taste disorder 0.018 (0.002) 0.014 (0.002)
Headache 0.020 (0.002) 0.007 (0.002)

Respiratory distress 0.090 (0.007) 0.092 (0.007)
Vomit 0.019 (0.004) 0.019 (0.004)
Saturation 0.132 (0.007) 0.125 (0.007)
Fatigue 0.067 (0.005) 0.061 (0.006)
Diarrhea 0.018 (0.003) 0.017 (0.004)
Abdominal pain 0.011 (0.003) 0.007 (0.002)
Gender 0.090 (0.009) 0.076 (0.007)

Rapid Health professional 0.017 (0.003) 0.016 (0.003)
Fever 0.141 (0.007) 0.143 (0.007)
Sore throat 0.064 (0.006) 0.062 (0.006)
Dyspnoea 0.129 (0.008) 0.118 (0.007)
Smell disorder 0.074 (0.005) 0.075 (0.005)
Cough 0.071 (0.007) 0.068 (0.008)
Runny nose 0.041 (0.003) 0.047 (0.003)
Taste disorder 0.032 (0.004) 0.034 (0.003)
Headache 0.049 (0.005) 0.044 (0.004)

Respiratory distress 0.123 (0.005) 0.123 (0.005)
Vomit 0.038 (0.003) 0.035 (0.004)
Saturation 0.146 (0.005) 0.157 (0.006)
Fatigue 0.052 (0.003) 0.047 (0.003)
Diarrhea 0.017 (0.002) 0.016 (0.002)
Abdominal pain 0.020 (0.002) 0.018 (0.002)
Gender 0.122 (0.005) 0.109 (0.005)

Both Health professional 0.025 (0.002) 0.018 (0.002)
Fever 0.180 (0.006) 0.173 (0.006)
Sore throat 0.083 (0.004) 0.083 (0.004)
Dyspnoea 0.108 (0.005) 0.092 (0.005)
Smell disorder 0.058 (0.003) 0.040 (0.002)
Cough 0.089 (0.005) 0.079 (0.005)
Runny nose 0.023 (0.02) 0.017 (0.001)
Taste disorder 0.030 (0.003) 0.022 (0.003)
Headache 0.048 (0.003) 0.028 (0.003)
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Table 4. The five most relevant attributes for test prioritization when dealing with imbalanced datasets.

Dataset Model Top 1 Top 2 Top 3 Top 4 Top 5

MLP Fever Saturation Respiratory distress Gender Cough
GBM Fever Saturation Respiratory distress Gender Cough

PCR RF Fever Saturation Gender Respiratory distress Cough
DT Saturation Fever Gender Cough Respiratory distress
XGBoost Saturation Health professional Respiratory distress Fever Fatigue
SVM Fever Saturation Respiratory distress Gender Cough

MLP Fever Saturation Dyspnoea Respiratory distress Gender
GBM Saturation Dyspnoea Fever Smell disorder Respiratory distress

Rapid RF Saturation Fever Dyspnoea Fatigue Gender
DT Fever Saturation Gender Respiratory distress Smell disorder
XGBoost Saturation Smell disorder Runny nose Headache Respiratory distress
SVM Fever Saturation Dyspnoea Respiratory distress Gender

MLP Fever Saturation Respiratory distress Gender Dyspnoea
GBM Diarrhea Abdominal pain Taste disorder Headache Runny nose

Both RF Abdominal pain Diarrhea Runny nose Headache Health professional
DT Health professional Abdominal pain Headache Taste disorder Runny nose
XGBoost Taste disorder Cough Gender Dyspnoea Sore throat
SVM Fever Saturation Respiratory distress Gender Dyspnoea

Figure 2. Average precision-recall curve for each class of the DT model using both unbalanced tests.

The ROC and PR curves were computed using five random folds for each class. The
tree-based models exhibited the highest Average Precision (AP) values, ranging from
58% to 86%, using the balanced dataset with both tests. Additionally, AP values ranged
from 30% to 92% using the unbalanced dataset with both types of tests.

Afterward, using the Friedman and Nemenyi tests increased confidence in validating
the ML models. They were compared using the six COVID-19 and influenza datasets. The
comparison predominantly concentrates on recall outcomes due to the significant adverse
effects of false negatives in COVID-19 and influenza applications. Figure 3 depicts the
recall results for the employed datasets.
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Figure 3. (A) Mean recall for the models using unbalanced datasets for RT-PCR, rapid, and both
types. (B) Mean recall for the models using balanced datasets for RT-PCR, rapid, and both types.

The null hypothesis and the results were as follows: for unbalanced RT-PCR (t = 217.363),
balanced RT-PCR (t = 231.788), unbalanced rapid (t = 234.098), balanced rapid (t = 188.243),
unbalanced both datasets (t = 221.810), and balanced both datasets (t = 253.074). The
results suggest that the difference in mean recall was likely statistically significant (p < 0.05).
Additionally, depending on the dataset, MLP and GBM appeared to be statistically indistin-
guishable, as were DT, RF, XGBoost, KNN, and SVM.

Using the permutation-based attribute importance method across the six datasets,
we ranked the most significant five attributes for the ML models, demonstrating the
highest performance. Fever and oxygen saturation symptoms displayed higher mean
importance values in the case of the balanced datasets for RT-PCR and rapid tests. However,
the symptoms with mean importance values appeared more diverse when both tests
were balanced.

As a result, the preprocessing of raw datasets facilitated the implementation, valida-
tion, and comparison of classification models with diverse characteristics, including using
neural layers, tree ensembles, and data distance computation. This preprocessing also led
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to the public availability of patient data, including individuals tested as symptomatic using
RT-PCR and rapid tests, as referenced in [8].

We conducted training and testing of the algorithms using both unbalanced and bal-
anced datasets to improve data representativeness. When considering test-type grouping,
the best classification metric results were achieved in both unbalanced and balanced scenar-
ios for RT-PCR and rapid tests. While the classification model performances were similar
for RT-PCR and rapid test scenarios, the RT-PCR testing scenario holds greater clinical
relevance due to the high confidence associated with RT-PCR testing. The accuracy of
RT-PCR testing enhances diagnostic confidence even if the patient has been tested in the
early days after the onset of symptoms.

The recall metric is relevant in our context because of the adverse consequences of
false negatives in clinical practice. We improved the quality of comparisons between ML
models using the Friedman and Nemenyi tests, which relied on the recall performance
across the six datasets.

The tree-based classification models examined in this study demonstrated superior
performance and were grouped based on their classification metric outcomes and statistical
test results. This observation is of particular importance because tree-based models are
highly interpretable, which can positively influence the decision-making process of health-
care professionals. In clinical practice, the acceptance of ML-based systems increases when
healthcare practitioners can easily comprehend and interpret the outputs of classification
models to understand the decision-making logic, as referenced in [30].

Additionally, it is important to acknowledge that in a real-world scenario, the pres-
ence of asymptomatic patients may be seen as a limitation in the applicability of ML
models [31]. However, in the context of this study, its relevance persists due to the presence
of symptomatic cases that demand the attention of healthcare professionals and govern-
ment authorities. Evaluating symptomatic patients remains crucial to avoid the inadvertent
overuse of testing resources, especially in the face of concurrent disease outbreaks in Brazil
caused by other viral infections (e.g., COVID-19 and influenza). Certain viral infections
can present with similar symptoms, making it challenging for healthcare professionals to
decide the appropriate type of testing needed.

A symptomatic patient with limited symptoms can pose challenges for ML models.
However, attribute ranking and additional information, such as whether the patient has
had contact with infected individuals, are valuable factors to supplement ML models. They
provide additional context and data that can aid healthcare professionals and policymakers
in making informed decisions.

Another limitation of this study is the number of ML models experimented with.
However, we addressed this limitation by considering a set of well-established algorithms
that cover various approaches, including tree-based models, linear regression, statistical
learning, distance-based methods, and neural concepts.

5. Conclusions

The results emphasize the importance of employing ML models for test prioritization
in Brazil during coexisting COVID-19 and influenza outbreaks, mainly focusing on non-
expensive input data. The elevated performance of tree-based ML models holds significance
for the healthcare domain due to their high interpretability reported in recent literature,
which positively influences the final decision-making process of healthcare professionals.

Therefore, tree-based models have been identified as the most suitable ML models
when considering the ease of interpretation and performance criterion. They can effectively
aid in prioritizing the testing of symptomatic patients. The relevance of utilizing symptoms
that do not require costly tests is evident, for instance, in underserved and hard-to-reach
communities. These communities usually depend on public services to conduct expensive
exams, which may only sometimes be promptly available.

Our experiments have demonstrated the viability of employing ML models to aid in
prioritizing testing when concurrent outbreaks of COVID-19 and influenza occur. These
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ML models can be seamlessly integrated into the clinical practice workflow at testing sites,
enhancing the efficiency and effectiveness of the testing process. However, it is important
to note that one limitation of our model is that it does not account for the scenario where a
patient could be simultaneously infected with both COVID-19 and influenza. We recognize
this as a significant aspect for future research and further development of our model.

Moreover, the solution proposed in this study holds the potential for scalability to
decision support systems, considering the high number of existing viral infectious diseases.
As a future endeavor, the intention is to develop a clinical decision support system based
on the proposed approach, utilizing web technologies. Additionally, usability tests are
planned, adhering to established standards in the literature, for the developed system to
assess user-friendliness and perception, considering the potential diverse target audience
for this type of system.
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