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The delicate balance of our ecosystems is under threat from the unrelenting release of
contaminants into the environment. Among the most concerning are organic and inorganic
pollutants that infiltrate the soil and permeate into the groundwater, posing significant
risks to both environmental health and the wellbeing of humans who use groundwater as
drinking water. To address this pressing issue, we present our Special Issue on the topic of
“The Mobilization, Speciation, and Transformation of Organic and Inorganic Contaminants
in Soil–Groundwater Ecosystems”. This collection of research articles and studies seeks to
shed light on these critical processes and foster innovative solutions for safeguarding our
soil–groundwater ecosystems.

The common types of inorganic pollutants in soil and groundwater environments
include inorganic salts, toxic metals, radioactive substances, etc. [1–4]. The common types
of organic pollutants in soil and groundwater environments include polycyclic aromatic
hydrocarbons (PAHs), volatile organic compounds (VOCs), chlorinated solvents, polychlo-
rinated biphenyls (PCBs), pesticides, and other emerging contaminants [5–8]. Biological
contaminants have also raised significant concerns [9]. Both organic and inorganic pol-
lutants are propagated through soil–groundwater systems and eventually enter the food
chain, posing health risks to humans. Long-term rock–water interactions, different ground-
water recharge patterns, and intensive human activities have resulted in a complicated
enrichment of those pollutants [10,11]. The mobilization, speciation, and transformation
of these pollutants in the soil and groundwater ecosystem vary greatly depending on the
specific hydro-biogeochemical processes and environments.

Understanding the factors influencing the mobilization of contaminants is crucial
to implementing effective strategies to prevent their spread and mitigate their impacts.
Unforeseen climatic events, human activities, and land-use changes all contribute to the
release of harmful substances into subsurface environments. Climate change poses a
threat to groundwater by affecting various aspects of the physical, chemical, and biological
characteristics of soil and surface water bodies and aquifer recharge patterns. For instance,
when heavy precipitation causes flooding, soil erosion occurs, and pollutants such as heavy
metals, organic compounds, nutrients, and pathogens are transported from the soil into
surface water bodies [12]. In regions where geomorphic units facilitate frequent interactions
between surface water and groundwater, pollutants are carried into the groundwater
aquifers as surface water infiltrates in large quantities, subsequently deteriorating the
groundwater environment [13].

The hydraulic connections and frequent exchanges between surface water and ground-
water (SW–GW) constitute a widespread phenomenon [14]. The variations in the water
quality and quantity in these bodies of water are significantly influenced by their mu-
tual interactions on both the time and space scales [15–17]. Once one of them becomes
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polluted, the other is inevitably under serious threat. During the process of pollutants
infiltrating and recharging groundwater from surface water, the migration process and
flux of pollutants are notably influenced by the local hydrodynamic characteristics and
biogeochemical processes within the hyporheic zone [18,19]. Differences in flow pathways,
velocities, residence times, and the exchange between surface water and groundwater
control the reactive transport of, and affect the flux in, pollutants.

In the process of pollutants from the vadose soil environment entering the groundwa-
ter system, their adsorption, migration, and transformation within the geological media
are complex and take forms such as surface runoff, leaching, erosion, desorption, and
dissolution [19–21]. This complexity encompasses factors including the soil lithology,
porosity, moisture content, pollutant type and concentration, oxidation–reduction potential
(ORP), pH, organic matter, cation exchange capacity, microbial communities, etc. [22,23].
It is worth noting that certain elements (e.g., phosphorus, iron, fluoride, arsenic, iodine,
uranium, and molybdenum,) are naturally abundant in the form of minerals/rocks in soils
and groundwater sediments [3,24–26].

Although elevated levels of these inorganic constituents are often attributed to ge-
ogenic processes such as weathering, leaching, and water–rock interactions, anthropogenic
activities can be expected to introduce and further intensify the contaminations [27–29].
These contaminants are primarily derived from domestic, agricultural, and industrial
sources, including the application of fertilizers and pesticides in agricultural production,
irrigation with sewage (or reclaimed water), leakage from domestic sewage networks
and landfill site wastewater, waste residues generated during mining, or oil and gas field
exploitation. [1–8,18–20]. For instance, fluctuations in groundwater levels caused by either
natural or anthropogenic processes accelerate the leaching of organic matter, nitrogen, and
heavy metals from the soil into shallow groundwater [30] and affect the aquifer redox
cycling and microbial activity [31]. Intensive groundwater pumping can draw recently
recharged contaminated modern groundwater into deeper aquifer systems [32]. Petroleum
and natural gas exploitation causes petroleum hydrocarbon and salinity contamination in
the vadose zone [33] and shallow groundwater [34]. Furthermore, the role of metals (e.g.,
Hg, Zn, Cu, and Cd) in co-selecting antibiotic resistance might be important in the spread
of antibiotic resistance genes [20].

The speciation of contaminants adds another layer of complexity to the soil–groundwater
environment. As pollutants interact with the soil matrix and microbial communities, they
undergo chemical transformations, altering their properties and toxicity. Contaminants
can undergo different chemical transformations, resulting in various species with different
properties and toxicities. Metals can exist in different oxidation states, and organic contami-
nants can undergo degradation or transformation into metabolites and greenhouse gases.
The speciation of contaminants affects their mobility, bioavailability, and toxicity, and an
understanding of these forms is crucial to accurately assessing their environmental impact
and risk.

For instance, arsenic (As) primarily exists as As(V) and can transform into more mobile
As(III) under reducing conditions, affecting the groundwater quality [35]. Chromium (Cr)
exists as both the Cr(VI) and Cr(III) forms, with Cr(VI) becoming soluble and migrating
into groundwater under oxidizing conditions [36]. Uranium (U) in soil and sediments
is typically found as less mobile U(IV) compounds, while, in groundwater, it exists as
more mobile uranyl U(VI) and UO2

2+ complexes, which are strongly influenced by various
groundwater physicochemical factors [37]. Redox conditions and natural organic matter
play key roles in these transformations [24,29,38,39].

Fluoride often exists in nature in the form of F− and forms soluble salts with monova-
lent alkali metals in groundwater, such as fluoride salt (NaF) and fluoride potassium salt
(KF) [3]. Meanwhile, fluorite (CaF2), sellaite (MgF2), and fluoride-bearing silicate minerals
such as mica, amphibole, tourmaline, and fluorapatite are commonly found in soils or
rocks. Therefore, the weathering of fluoride minerals could be a natural source of fluoride
in water [3]. In the groundwater systems, I commonly exists in the form of iodide (I−),
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iodate (IO3
−), and organic iodine (OI), and I− is the dominant species in groundwater,

whereas IO3
− and OI are the common species in the soil/sediments [29].

Organic contaminants include a range of conventional pollutants such as petroleum
hydrocarbon, phenolic compounds, and pesticides, while concerns have also extended to
persistent organic pollutants, such as perfluoroalkyl and polyfluoroalkyl substances (PFAS),
pharmaceuticals and personal care products (PPCPs), antibiotics, and microplastics [2,5,8]).
Perfluorinated compounds (PFCs) including PFAS are persistent organic pollutants that
can linger in soil and impact groundwater long after their use [40]. They are highly
toxic and include chemicals such as PFOA and PFOS. The antibiotic pollution in soils
and groundwater is diverse, with substances such as ciprofloxacin and sulfamethoxazole
found in high concentrations [8,20]. Microplastics include small plastic particles including
polyethylene and polyvinyl chloride, etc., resulting from the breakdown of larger plastic
waste [41,42].

Pollutants in soil and groundwater pose significant risks to both ecosystems and
human health [39,43]. These pollutants enter the human body through pathways including
bioaccumulation, the food chain, and drinking water, leading to different types of toxicity,
including chemical toxicity, radiation toxicity, and carcinogenicity. Common pollutants,
such as nitrogen, when present in excess, can cause various cancers and other health
issues [21]. Heavy metals, such as arsenic, chromium, and lead, can lead to cancer, organ
damage, and nervous system disorders [29,36]. Radioactive isotopes in groundwater can
be highly toxic, affecting various bodily systems. Additionally, non-degradable organic
pollutants, such as antibiotics and microplastics, pose emerging health risks due to their
persistence and limited microbial degradation [20,42].

The transformation of contaminants within soil–groundwater ecosystems can lead to
either an exacerbation or attenuation of their effects. The processes of degradation, redox
reactions, and other chemical transformations can significantly impact the persistence
and fate of pollutants. An in-depth exploration of these mechanisms together is vital
to developing sustainable solutions for remediating contaminated sites. The range of
strategies for alleviating the impact of contaminants in soil–groundwater systems includes
the monitoring and assessment of pollutant levels, the implementation of containment
measures, the promotion of natural attenuation through bioremediation, the incorporation
of remediation materials, and the employment of engineered solutions such as permeable
reactive barriers or pump-and-treat systems to capture and treat contaminated groundwater,
as well as phytoremediation to treat contaminants before they seep into aquifers ([44–49]).
Before these techniques are used, their cost and resulting environmental impacts should
be considered.

Bioremediation emerges as a particularly promising, sustainable, environmentally
friendly, and cost-effective strategy. To start with, understanding the assembly of mi-
crobial communities, their driving forces (e.g., their pH, salinity, nutrients, and metals)
and their role in transforming pollutants in the vadose-zone–groundwater ecosystem is
instrumental to unlocking the full potential of bioremediation [22,50–52]. While advanced
techniques have been developed for characterizing microbes, significant gaps remain in
our understanding of dynamic subsurface microbial communities and the biogeochem-
ical processes in the environments they inhabit [53], which hinder the effective use of
biostimulation or bioaugmentation as an in situ remediation strategy. For example, the
complex coupled carbon and iron cycling at multiple redox interfaces across subsurface
environments can be expected to positively and negatively affect both microbial and ex-
tracellular enzyme activity [54]. Dissimilatory nitrate reduction to ammonia is enriched
in the downgradient along the groundwater flow path [55]. Sulfate reduction acceler-
ates groundwater arsenic contamination in aquifers with replete iron oxides [56]. The
intrusion of produced water enhances the salinity and petroleum hydrocarbon levels in
shallow groundwater, causing a transformation in the composition and functionality of
bacterial and archaeal communities [34]. Moreover, hydrodynamic disturbance is another
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possible driving force for microbial community assembly and biogeochemical processes in
sedimentary environments [57].

The mobilization, speciation, and transformation of contaminants in soil–groundwater
ecosystems represent an urgent call for action in the face of environmental degradation.
The task of preserving the integrity of our soil–groundwater ecosystems is a complex one
that requires a multidisciplinary approach. There is still a gap in our understanding of the
mechanisms that connect mobilization, speciation, health impacts, and microbial processes
related to groundwater contaminants. To effectively address soil pollution sources and
manage the risks of groundwater pollution, it is essential to comprehend how complex
geological and hydrogeological factors in soil–groundwater systems interplay with climate
change and human activities. This understanding can significantly inform the development
of remediation strategies.

As we present this Special Issue on “The Mobilization, Speciation, and Transformation
of Organic and Inorganic Contaminants in Soil–Groundwater Ecosystems”, we call upon re-
searchers to come together, share knowledge, and work toward a shared vision of a cleaner
and greener future. Through the insightful research and innovative solutions showcased in
this Special Issue, we are reminded of our collective responsibility to safeguard the delicate
balance of nature.
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