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Abstract: Phaeocystis globose (P. glo) are the most frequent harmful algae responsible for red tides in
Qinzhou Bay, Guangxi. They pose a significant threat to the coastal marine ecosystem, making it
essential to develop an efficient indicator method tailored to P. glo outbreaks. In remote sensing water
quality monitoring, there is a strong correlation between P. glo and cyanobacteria, with phycocyanin
(PC) serving as an indicator of cyanobacterial biomass. Consequently, existing research has predomi-
nantly focused on remote sensing monitoring of medium to high PC concentrations. However, it is
still challenging to monitor low PC concentrations. This paper introduced the BP neural network
(BPNN) and particle swarm optimization algorithm (PSO). It selects spectral bands and indices
sensitive to PC concentrations and constructs a PC concentration retrieval model, in combination
with meteorological factors, offering a comprehensive exploration of the indicative role of low PC
concentrations in predicting P. glo red tide outbreaks in Qinzhou Bay. The results demonstrated that
the PC concentration retrieval model, based on the backpropagation neural network optimized by the
particle swarm optimization algorithm (PSO-BPNN), demonstrated better performance (MAE = 0.469,
RMSE = 0.615). In Qinzhou Bay, PC concentrations were mainly concentrated around 2~5 µg/L.
During the P. glo red tide event, the area with undetectable PC concentrations (PC < 0.04 µg/L)
increased by 4.97 km2, with regions below 0.9 µg/L experiencing exponential growth. Considering
the variations in PC concentrations along with meteorological factors, we proposed a straightforward
early warning threshold for P. glo red tides: PC < 0.9 µg/L and T < 20 ◦C. This method, from a remote
sensing perspective, analyzes the process of P. glo outbreaks, simplifies PC concentration monitoring,
and provides a reasonably accurate prediction of the risk of P. glo red tide disasters.

Keywords: PC retrieval; BPNN; Phaeocystis globosa; Qinzhou Bay; Sentinel-2

1. Introduction

Phaeocystis globose [1] (P. glo) is a photosynthetic autotrophic planktonic alga belonging
to the phylum Chrysophyceae and the order Flagellates. It exists in two forms of life:
unicellular and colonial gelatinous cysts. During mass reproduction, it transforms from
unicellular to more dominant cysts and produces harmful substances, such as haemolytic
toxins, capable of killing fish and shellfish [2]. This leads to damage in the environment of
marine water bodies, potentially resulting in the severe degradation of marine ecosystems
in both structure and function [3]. Since 2015, P. glo red tides have frequently occurred
in Qinzhou Bay, Guangxi, China (Table 1). A red tide not only affects marine fisheries
and the ecological environment, but also leads to the blockage of cooling water intake
systems in nuclear power plants [4]. As a result, many scholars have investigated the
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morphology [5,6], growth history [7,8], and genome sequence [9] of P. glo. They found that,
compared to other algae, P. glo is more adaptable to low temperatures and can survive in
low-light environments. Consequently, P. glo tends to aggregate in deep water and remains
suspended in seawater after forming cysts. It only floats to the sea surface when its density
is high. This phenomenon leads to the detection of P. glo in surface seawater, indicating that
the P. glo red tide has already reached a high blooming stage, causing potentially irreversible
harm to marine organisms and the ecological environment. Therefore, the development of
effective early warning methods for P. glo red tides is of paramount importance. In a study
of Zhao et al. [10], it was pointed out that there exists a significant negative correlation
between the concentration changes in Synechococcus and Prochlorococcus and P. glo. This
finding offers a potential early warning indicator for P. glo red tides. Synechococcus and
Prochlorococcus belong to the same group of cyanobacteria, which are algae with a high
phytoplankton abundance in the ocean [11,12], whereas cyanobacteria are prokaryotic
organisms with intracellular phycobilisomes. The phycobilisomes contain phycocyanin
(PC), distinguishing them from other algae [13]. PC concentrations are usually utilized as
markers for monitoring the concentration of cyanobacteria.

Table 1. Statistical table of P. glo red tide events in Qinzhou Bay, Guangxi.

No. Time Descriptions

1 January 2015~March 2015 Wide-ranging and long-lasting impacts
2 November 2015~December 2015 Area not available
3 December 2016 Area not available
4 January 2017~March 2017 Dull water color and unknown size
5 November 2017~December 2017 Area not available
6 January 2018 Concentrations reach high levels
7 January 2019~February 2019 Area not available

Based on information from the Marine Disaster Bulletin, the Guangxi Marine Environmental Quality Bulletin and
publicly available literature from both domestic and international sources.

Because PC has a strong absorption property at 620 nm, most water quality sensors
use 620 nm fluorescence photometry to monitor the PC concentration [14]. The traditional
manual monitoring methods are not only time-consuming and labor-intensive, but the
monitored points are also difficult to represent the changes in PC concentration in the entire
sea surface. Remote sensing monitoring can make up for the shortcomings of manual
monitoring. It does so by analyzing the correlation between PC concentration and spectral
characteristics of the water body. This involves the use of empirical, semi-empirical, and
analytical methods to establish a mapping relationship between PC concentration and
spectral features of water bodies. For example, Simis et al. [15] developed a semi-analytical,
nested band ratio-based algorithm and verified the feasibility of the method for PC retrieval
in turbid water bodies dominated by cyanobacteria. Qi et al. [16] proposed the band-
subtraction algorithm for cyanobacterial bloom in Lake Taihu, China, where the remote
sensing reflectivity at 620 nm was deduced from the baseline height between 560 nm
and 665 nm, and then the obtained value was used to estimate the PC concentration. In
addition to using the band ratio as independent variables for the input of the model,
researchers have also proposed an enhanced three-band empirical model based on a
three-band algorithm [17,18] framework to detect high PC concentrations (PC ∈ [68.13,
3032.47] µg/L) in inland water bodies. This algorithm experienced a significant decrease
in predictive accuracy when the PC concentrations are below 300 µg/L, with the model’s
coefficient of determination (R2) dropping from 0.99 to 0.65 [19]. These empirical algorithms
or semi-analytical algorithms showed high errors in predicting PC concentration, such
as the model proposed by Mishra [19], which had a relative error of up to 30.7% for PC
concentration prediction. Recent comparative studies between empirical statistical models
and machine learning models indicated that machine learning algorithms achieve higher
prediction accuracy for PC concentration [20,21]. Moreover, these algorithms demonstrate
improved capability in capturing the mapping relationship between PC concentrations



Appl. Sci. 2023, 13, 11449 3 of 17

and spectral characteristics. It is worth considering whether the accuracy of the model
is higher when using high spatial resolution and high spectral resolution images for PC
concentration retrieval [22–24].

It is well known that many inland lakes are severely affected by cyanobacterial blooms.
Previous studies on PC concentration retrieval have mainly focused on areas with high PC
concentrations in inland waters bodies, leading to the poor performance of these models in
the low PC concentration range. In the absence of exogenous input, PC concentration in
nearshore waters is usually low ([0, 20] µg/L), resulting in limited investigation of PC con-
centration retrieval in these nearshore areas. Combining machine learning algorithms has
the potential to fill the research gap in remote sensing monitoring of low PC concentrations
in nearshore regions.

To address the issue of low PC concentration in Qinzhou Bay, Guangxi, we attempted
to construct a series of spectral indices based on the bands after image preprocessing.
Subsequently, we comprehensively analyzed the correlation between these spectral indices
and PC concentrations. Ultimately, we identified the optimal spectral bands/indices to
be used as independent variables for input into the Particle Swarm Optimization-based
Backpropagation Neural Network model (PSO-BPNN). This model utilized high spatial
resolution data from Sentinel-2 MSI for accurate prediction of PC concentrations. Based
on these findings, the paper proposed an early warning threshold for predicting P. glo red
tide outbreaks in Qinzhou Bay. This method can roughly infer the risk of P. glo red tide
outbreak based on the distribution of PC concentration, providing a scientific basis for
water environmental management in coastal areas.

2. Materials and Methods
2.1. Study Area

Qinzhou Bay is located on the southern coast of Guangxi, China. It consists of three
parts: the inner bay, the neck of the bay, and the outer bay, forming a typical gourd-shaped
bay (Figure 1). The bay’s formation could be attributed to the rise in sea level during the
late Quaternary ice age and the submergence of ancient river valleys by seawater [25,26].
The Bay has a subtropical monsoon climate characterized by high annual rainfall, with
an average annual temperature of about 23 ◦C. Factors such as runoff from the Qin and
Maoling rivers, as well as the region’s topography, limit water exchange capacity. These
conditions facilitate the accumulation of nutrients, resulting in the frequent occurrence of
red tide phenomena in Qinzhou Bay.
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2.2. Dataset
2.2.1. PC Concentration Monitoring Data

PC concentration monitoring data were obtained from three automatic monitoring
stations located in the waters of Qinzhou Bay (Figure 1). The latitudes and longitudes of
each monitoring point are provided in Table 2. The water quality sensors at each point
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were positioned at depths approximately 0.5 to 1 m below the water surface to capture
surface seawater conditions. The concentration of PC was determined using the phyco-
cyanin fluorescence spectrophotometric method. This method involves measuring the
fluorescence intensity of phycocyanin under optimal excitation and emission wavelengths,
with a detection limit of 0.04 µg/L. Based on daily water quality data collected by the
automatic monitoring stations from 2015 to 2019, PC concentration data corresponding to
the imaging time of Sentinel-2 images were selected and the statistical data of the measured
PC concentration are presented in Table 3.

Table 2. Latitude and longitude of automatic monitoring stations.

Monitor Point Longitude Latitude

S1 108.5483 21.7992
S2 108.5667 21.7312
S3 108.6128 21.6737

Table 3. Statistical analysis of PC concentration.

Water Quality
Parameters Maximum Minimum Mean Median Standard

Deviation N

S1-PC (µg/L) 4.855 0.799 2.131 1.672 1.208 20
S2-PC (µg/L) 4.450 1.050 2.169 2.163 0.891 18
S3-PC (µg/L) 4.695 1.190 2.573 2.170 1.119 17

Total-PC (µg/L) 4.855 0.799 2.280 2.125 1.083 55
The 55 sample data points have been filtered and matched with Sentinel-2 imagery from the years 2015 to 2019.

2.2.2. Remote Sensing Image Data

The Sentinel-2 MSI satellite image data are part of the Copernicus Program, operated
by the European Space Agency (ESA). These satellite images offer a wealth of spectral
information, as depicted in Table A1. The imaging resolution of Sentinel-2 MSI is excep-
tionally high, reaching up to 10 m. Its applications span a wide range, including natural
disaster monitoring, land cover surveys, and nearshore environmental monitoring. The
first Sentinel-2 satellite (S2A) was successfully launched in June 2015, and the second one
(S2B) in March 2017, forming a double-star network. The synergistic effect of these two
satellites has shortened the revisit period of the satellites to 2~5 days. This high frequency
observation capability provides a stable data source for water quality retrieval. Detailed
information regarding the matched images and monitoring times for PC concentration can
be found in Table A2.

2.2.3. Other Data

The study collected meteorological data, including total rainfall and sea surface tem-
perature, from ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-single-levels?tab=form (accessed on 19 July 2023)) hourly reanalysis data with a reso-
lution of 0.25◦ × 0.25◦. Furthermore, the inorganic salt data were collected on-site along
with the PC concentration as part of the automatic monitoring data. It was measured using
an in situ nutrient analyzer, which employs the method of diethylene triamine pentaacetic
acid (DTPA) reduction colorimetry.

2.3. Methods

To evaluate the performance of the PSO-BPNN model, we compared it with the tradi-
tional backpropagation neural network (BPNN) and the support vector machine regression
model (SVR). After confirming the high retrieval accuracy of the PSO-BPNN model, we
applied it to analyze the changes in PC concentration using Sentinel-2 MSI images taken
before and after the 2017 red tide outbreak of P. glo in Qinzhou Bay. For a comprehensive
understanding, the analysis incorporated additional environmental variables such as sea

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
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surface temperature, precipitation, and inorganic salt concentration. Finally, the indicators
for the P. glo red tide outbreak in Qinzhou Bay were established. The technical route of the
study is shown in Figure 2.
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2.3.1. Image Preprocessing

The latest version of Sen2Cor V2.11, provided by ESA, allows for radiometric calibra-
tion and atmospheric correction of collected Sentinel-2 L1C class images. It adopts higher
precision Digital Elevation Model (DEM) data (30 m), enhancing support for the improved
radiometric calibration and atmospheric correction of Sentinel-2 images. The Sentinel-2 MSI
images encompass 13 effective bands, each containing rich spectral information. Resample
images from a total of 13 bands, B1 to B12, into images with a 10-m resolution. To accurately
extract the water body boundaries, the Normalized Difference Water Index (NDWI) was
applied within the study area [27,28]. NDWI is a normalized ratio index based on the green
and near-infrared spectral bands. It is used to highlight water bodies within images. The
formula for calculating NDWI is as follows:

NDWI =(RrsGreen − RrsNIR)/(RrsGreen + RrsNIR) (1)

where RrsGreen represents the reflectance values in the green spectral band; RrsNIR repre-
sents the reflectance values in the near-infrared spectral band; NDWI values typically range
from −1 to 1, with higher values indicating a higher likelihood of water presence.

2.3.2. Feature Preference

Feature optimization is the process of screening feature factors that respond well to
water quality parameters (PC) for modeling. Cross-validation was employed on the chosen
feature factors, with data randomly divided into 60% for model training and 40% for
validation. Keeping the independent validation results separate from the model’s training
provided a more objective assessment of the model’s performance.

2.3.3. Model Building

BPNN is a feed-forward neural network composed of an input layer, hidden layers,
and an output layer. It iteratively adjusts network weights and thresholds to approximate
the target function, thereby achieving the intended model output. The structure of a single
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hidden layer is shown in Figure 3. Feature variables are input into the left side of the
input layer, passed through Equation (1) to enter the hidden layer, where they undergo
activation through Equations (2) and (3) before being transmitted to the output layer.
After passing through another activation function (Equation (4)), the predicted values are
generated. Model predictive capabilities are optimized based on the Mean Squared Error
(MSE) between predicted and actual values. The BPNN possesses strong self-learning and
self-adjustment capabilities, enabling it to exhibit robust fitting and adaptability when
dealing with complex data [29,30]. In cases where predicted values deviate from expected
values, the error is backpropagated using the gradient descent method to update weights
and thresholds. This process influences the final prediction result of BPNN and can be one
of the reasons why BPNN is prone to getting stuck in local minima [31].

Ii =
n

∑
j=1
ωij × xj + β1

(
0 ≤ β1, ωij ≤ 1

)
(2)

yj = f1
(
Ij
)

(3)

Ik =
h

∑
k=1

ωjk × yj + β2

(
0 ≤ β2, ωjk ≤ 1

)
(4)

yt= f2(Ik) (5)

where Ij and Ik represent the input values of the hidden layer and output layer, respectively;
yj and yt stand for the output values of the hidden layer and output layer, respectively;
ω correspond to the weights; β is the thresholds; f is the activation functions, with each
neuron in the same layer sharing the same activation function; n and h refer to the number
of nodes in the input layer and hidden layer, respectively.
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To address the issue of BPNN being susceptible to local minima, many scholars have
developed intelligent optimization algorithms such as the Genetic Algorithm (GA) [32],
Ant Colony Optimization Algorithm (ACO) [33], and the Particle Swarm Optimization
Algorithm (PSO) [34]. These optimization algorithms aim to transition the initial weights
and thresholds of BPNN from a random state to a well-established state. Compared with
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other intelligent optimization algorithms, the position of each particle in PSO is updated
based on the historical experience of both individual particles and entire group, and the
introduction of the inertia weightω of the speed as in Equation (6). The speed of movement
of the particle decreases with an increasing number of iterations. This ensures that particles
explore a broader range of possibilities during the early optimization stages while accurately
converging to the optimal position in the later stages. At this point, the particle’s position
represents the optimally initialized weights and thresholds for BPNN [35,36]. This process
can be expressed by Equations (7) and (8).

ω = ωmax − (ωmax − ωmin) ∗ t/tmax (6)

Vt+1
i = ωVt

i + c1r1
(
Pt

i − Xt
i
)
+ c2r2

(
Gt

i − Xt
i
)

(7)

Xt+1
i = Xt

i + Vt+1
i (8)

whereω is the inertia weight;ωmax,ωmin represent the maximum and minimum inertia
weight; t is the number of current iterations; tmax is the total number of iterations; Vi is the
velocity of the particle; r1 and r2 are random numbers distributed in the interval [0, 1]; c1
and c2 are the acceleration factors, which are non-negative constants; Pi is the current local
optimal position of the ith particle; Gi is the global optimal position of the particle swarm;
and xt

i represents the position of the ith particle in the tth iteration.
In this study, a PSO-optimized BPNN was constructed using 30 particles, with a

maximum of 100 iterations at a speed of 1, and using inertia weights in the range of
[0.4, 0.9]. The optimization process is shown in Figure 4. Simultaneously, both a BPNN and
an SVR model were constructed. Model accuracy validation was conducted, followed by a
comparative analysis to assess the performance of the PSO-optimized BPNN and evaluate
its capacity for PC concentration retrieval. Detailed information regarding the code and
hyperparameter settings for constructing PSO-BPNN can be found in Table A3.
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2.3.4. Model Validation and Evaluation

The coefficient of determination (R2), mean absolute error (MAE), and root mean
square error (RMSE) were used to evaluate the performance of the PC concentration
retrieval model, and the formulas for each evaluation metric are as follows:

R2= 1 −
∑n

i=1

(
yi − yi,pre

)2

∑n
i=1
(
yi − ymean

)2 (9)

MAE =
1
n
·∑n

i=1

∣∣∣yi − yi,pre

∣∣∣ (10)

RMSE =

√√√√∑n
i=1

(
yi − yi,pre

)2

n
(11)

where yi is the measured PC concentration; yi,pre is the predicted PC concentration; and
ymean is the average of the measured PC concentrations.

3. Results
3.1. Results of Correlation Analysis

The acquired bands and spectral indices were subjected to a Pearson correlation anal-
ysis with measured PC concentrations. A strong correlation between two variables is
indicated by a Pearson correlation coefficient closer to 1 in absolute value. The statistical
results are presented in Table 4. Among the single bands, B4 had the highest correlation of
0.646. Following closely were B1 and B3 with correlations of 0.633 and 0.640, respectively.
This differs from previous researchers [37–39], who based their monitoring of PC concen-
tration on the prominent absorption valley of PC in the spectral curve at 620 nm. At very
low PC concentrations, the spectral characteristics of PC appear at 665 nm. This precisely
demonstrates that the spectral feature position of PC changes with variations in the PC
concentration [17], rather than consistently residing at 620 nm. Among the spectral indices,
the correlation was strongest for (B2 + B8)/B4, measuring −0.651. Notably, the spectral
indices with strong correlations to measured PC concentrations were associated with the
B1, B3, and B4 bands. Therefore, the retrieval model was constructed using B1, B3, and B4
bands as input feature vectors.

Table 4. Statistical analysis of band and spectral index correlations with PC concentrations. NDVI
stands for Normalized Difference Vegetation Index; NDWI stands for Normalized Difference Water
Index; MNDWI refers to Modified Normalized Difference Water Index.

Band/Spectral Index R Band/Spectral Index R Band/Spectral Index R

B1 0.633 ** B2/B1 −0.222 NDVI −0.400 **
B2 0.500 ** B2/B3 −0.422 NDWI 0.071
B3 0.640 ** B2/B4 −0.538 MNDWI 0.146
B4 0.646 ** B2/B5 −0.346 (B2 + B8)/B4 −0.651 **
B5 0.482 ** B4/B3 0.500 (B3 + B8)/B4 −0.644 **
B6 0.206 B4/B8 0.401 B6/B1 + B3/B4 −0.615 **
B7 0.140 B5/B6 0.423 B6/B1 + B2/B4 −0.630 **
B8 0.221 B5/B7 0.503 B7/B1 + B3/B4 −0.615 **

Where ** correlation is significant at the 0.1 level.

3.2. PC Retrieval Results and Validation

Selecting automatically monitored data with good weather conditions and the corre-
sponding satellite overpass times reduced systematic errors caused by data mismatches.
The samples were randomly divided into a 6:4 ratio using cross-validation, with 60% uti-
lized for model training and the remaining data used to assess the generalization ability of
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each PC concentration retrieval model. The retrieval results for each model are presented
in Table 5, while the scatter plot depicting the retrieval values against the measured values
for model validation is shown in Figure 5.

Table 5. Retrieval results of PC concentration model.

Model
Train Test

MAE RMSE R2 MAE RMSE R2

SVR 0.383 0.580 0.686 0.600 0.728 0.505
BPNN 0.408 0.603 0.730 0.469 0.587 0.601

PSO-BPNN 0.376 0.582 0.782 0.469 0.615 0.703
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The results indicate that both PSO-BPNN and BPNN outperformed SVR in terms
of retrieval performance. This could be attributed to SVR’s heightened sensitivity to
noise in the data [40]. The objective of SVR regression is to maximize the margin while
maintaining the predicted values within a certain range. However, noisy data can have a
greater impact, leading to overfitting and insufficient generalization during model training.
Compared to all the machine learning models, BPNN showed better performance in terms
of RMSE. However, the model displayed underestimation when the PC concentration
exceeded 2.5 µg/L, resulting in suboptimal fitting. PSO-BPNN improved the model’s
fitting capability by 17% compared to BPNN and outperformed SVR by 36.5%. The
predicted values closely matched the measured values, predominantly distributed around
the 45-degree line, showing a better fit as well as stronger generalization capabilities
(R2 = 0.703, MAE = 0.469, RMSE = 0.615). This illustrates that PSO can optimize BPNN,
mitigating the problem of getting stuck in local minima and providing a distinct advantage
for low PC concentration remote sensing retrieval in complex coastal optical environments.
Consequently, PSO-BPNN was chosen as the optimal PC retrieval model.

3.3. Characteristics of Spatial and Temporal Distribution of PC Concentration

Based on the 2017 Qinzhou Municipal State of the Marine Environment Bulletin, the
PSO-BPNN inversion model was employed to track the PC concentration during the P. glo
red tide event in Qinzhou Bay from November to December 2017. The distribution of PC
concentrations is shown in Figures 6 and 7.
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According to Figures 6 and 7, it is evident that the maximum PC concentration in
Qinzhou Bay was 14.81 µg/L. PC concentrations below 1 µg/L were more prevalent in
the outer bay, especially near coastal ports. The majority of the water areas maintained PC
concentrations between 2 and 5 µg/L. Generally, the PC concentration was higher in the
inner bay, gradually decreasing from the inner bay towards the outer bay. However, the
PC concentration is influenced by external environmental factors, such as rainfall, oyster
culture, hydrodynamic changes, and the outbreak of P. glo red tides, amongst others. As
shown in Figure 8, on 2 December 2017, there was a generally low PC concentration around
the oyster raft culture area. This phenomenon may be attributed to oysters competing
for nutrient resources with cyanobacteria during the growth process and even feeding on
cyanobacteria [41,42], thereby limiting the survival space of cyanobacteria. During the
outbreak of P. glo red tide, it can be clearly seen that the undetected area of PC concentration
significantly expanded by 4.97 km2, particularly concentrated around the Sandun Harbor
Pier in the southeast area of Qinzhou Bay (coinciding with the location of the outbreak
of P. glo). This indicates that the P. glo outbreak can suppress the growth of blue-green
algae. Due to the obstructive nature of the reclaimed land in the enclosed sea area, tidal
currents are notably weaker. Local tidal currents change direction due to the alteration
of the flow direction intersecting with the tidal current in the fairway. The area of the P.
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glo outbreak resembles a rotating eddy current, suggesting that the formation of this eddy
current morphology is likely related to the hydrodynamic environment of Qinzhou Bay.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 18 
 

 
Figure 8. Retrieval map of PC concentration in Qinzhou Bay on 2 December 2017. 

4. Discussion 
4.1. Effect of Total Precipitation and Temperature on PC Concentration 

The hourly reanalysis data collected from the official website of ERA5 were collated 
into daily mean meteorological data. Meteorological data for the retrieval image day and 
the preceding seven days were obtained, as shown in Figure 9. 

 
Figure 9. Daily mean sea surface temperature and total precipitation. 

Combined with the PC concentration retrieval results, it can be found that the PC 
concentration is affected by temperature to a certain extent, as temperature affects the ac-
tivity of algal cell reproduction and metabolism. When the temperature dropped to 20 °C, 
the undetected area of PC concentration increased significantly. But in general, the corre-
lation between PC concentration and temperature is not significant. This can potentially 
be a ributed to continuous rainy weather, causing water bodies with high cyanobacterial 

Figure 8. Retrieval map of PC concentration in Qinzhou Bay on 2 December 2017.

4. Discussion
4.1. Effect of Total Precipitation and Temperature on PC Concentration

The hourly reanalysis data collected from the official website of ERA5 were collated
into daily mean meteorological data. Meteorological data for the retrieval image day and
the preceding seven days were obtained, as shown in Figure 9.
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Combined with the PC concentration retrieval results, it can be found that the PC
concentration is affected by temperature to a certain extent, as temperature affects the
activity of algal cell reproduction and metabolism. When the temperature dropped to
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20 ◦C, the undetected area of PC concentration increased significantly. But in general,
the correlation between PC concentration and temperature is not significant. This can
potentially be attributed to continuous rainy weather, causing water bodies with high
cyanobacterial abundance from inland areas to converge with the river and flow into
Qinzhou Bay. This phenomenon is especially obvious on October 13. Before the outbreak
of P. glo red tide, the surface PC concentrations in the bay are relatively low. The influence
of rainfall relieves the phosphorus limitation for cyanobacterial growth in the inner bay,
leading to a rapid increase in PC concentration within the inner bay. As the water flows
towards the neck of the bay and the outer bay, PC concentrations gradually decreased.
This resulted in a bimodal pattern in PC concentration statistics (Figure 7a). Over time,
due to the constraints of low temperatures and the competition succession of P. glo, the
undetected area of PC concentration continued to expand in the outbreak area of P. glo. So,
low temperatures lead to a decrease in PC concentration, while precipitation causes an
increase in PC concentration.

4.2. Effect of Nitrate on PC Concentration

Relevant studies have shown that during P. glo outbreaks, a substantial consumption
of nitrates occurs to form cysts [43]. P. glo outbreaks not only compete for the living space
of cyanobacteria, but also in the presence of a large number of cysts, float on the surface
of the seawater, blocking the sunlight required by cyanobacteria for photosynthesis and
leading to a decline in their abundance. This observation aligns with Figure 10, where the
best correlation between PC and nitrate is the strongest, reaching 0.71. Compared with
2 December, on 17 December, the continuous rainfall had an impact. It caused inland
waters with low inorganic phosphorus and high inorganic nitrogen from the Qin River and
Maoling River to flow into Qinzhou Bay [44]. This influx resulted in an overall increase
in PC concentration throughout Qinzhou Bay. Near Sandun Harbor (Figure 11), the semi-
exchange period of water significantly decreases due to the effects of land reclamation
before the rainfall. PC concentrations stay below 1 µg/L, consistent with the findings of Lv
et al.’s dye diffusion study [45]. After the rainfall, influenced by surface runoff, the water’s
exchange capacity increases, allowing for the replenishment of nutrients in the water. As a
result, PC concentrations near the runoff areas significantly increase.
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4.3. Early Warning of P. glo Red Tide Outbreaks in Qinzhou Bay

In summary, there is a close correlation between P. glo red tides and the spatial distri-
bution pattern of PC concentration. According to the PC statistical results in Figure 7, it is
revealed that during the occurrence of P. glo red tide, the area with PC < 0.9 µg/L increased
exponentially, the area with undetected PC concentration (PC < 0.04 µg/L) increased by
4.97 km2, and the area with undetected PC concentration aligns with the outbreak area
of P. glo red tide. This result indicates that the variation in PC concentration serves as an
indicator for P. glo red tide outbreaks. In the P. glo red tide event, rainfall and temperature
also play a contributing role, but rainfall is not a necessary condition for P. glo outbreaks, as
direct discharge of industrial wastewater can provide the necessary nutrients for P. glo out-
breaks. Based on these characteristics, with PC concentration variations as the main factor,
and sea surface temperature as the secondary factor, a simple early warning threshold can
be proposed for the P. glo red tide outbreak in Qinzhou Bay: PC < 0.9 µg/L and temperature
T < 20 ◦C. Such an early warning system could play a crucial role in mitigating the impact
of harmful algal blooms on marine ecosystems, fisheries, and coastal areas.

Building a system capable of directly forecasting P. glo red tide outbreaks is a long-term
vision for marine management. To enhance the accuracy of such forecasting, consideration
still needs to be given to other factors that influence P. glo outbreaks. For instance, heavy
metals in seawater contribute to the synthesis of complexes that accelerate the formation of
the cyst outer wall in P. glo. In a study conducted by Xu et al. [46], the concentrations of six
heavy metals (Zn, Cd, Cr, Hg, As, Cu) in surface seawater and phytoplankton bodies in
Qinzhou Bay were investigated. The results indicated that Cd levels exceeded standards at
monitoring points near Sandu Harbor, which could also be one of the factors contributing
to P. glo outbreaks.

In areas with low PC concentrations, optical substances like suspended matter and
chlorophyll-a have a significant impact on PC concentration inversion. Future research
should focus on eliminating the influence of other substances on PC spectral characteristics
and developing inversion models better suited for lower PC concentrations. Further explo-
ration is needed for P. glo red tide warning methods, and future studies could investigate
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seawater salinity, dissolved oxygen levels, and heavy metal concentrations to enhance P.
glo red tide forecasting capabilities.

5. Conclusions

(1) Compared with the performance of different models, the BPNN model optimized
through PSO significantly enhanced the accuracy of PC concentration retrieval. In the
validation set, the mean absolute error (MAE) and the root mean square error (RMSE)
were 0.469 and 0.615, respectively, demonstrating that its retrieval accuracy meets the
requirements for the remote sensing of low PC concentrations.

(2) The PC concentration is primarily concentrated around 2~5 µg/L, exhibiting a
distribution pattern where the inner bay > neck of bay > outer bay in Qinzhou Bay. However,
the PC concentration is also affected by the P. glo outbreaks. Therefore, based on algal
competition relationships, we propose a simple red alert threshold for predicting P. glo red
tide. This approach enables a rapid preliminary assessment of the P. glo red tide risk in
Qinzhou Bay and enhances our ability to manage coastal areas effectively.

Author Contributions: Conceptualization, H.Y.; methodology, Y.L.; software, H.C.; validation, M.W.;
formal analysis, Z.H.; writing—original draft preparation, Y.L.; writing—review and editing, W.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by scientific research capacity building project for Beibu Gulf
Marine Ecological Environment Field Observation and Research Station of Guangxi under Grant No.
23-026-271.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Sentinel-2 MSI Image data sets are available from https://scihub.
copernicus.eu/ (accessed on 8 March 2023); the ERA5 data are available from https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 19 July
2023); the codes for building the machine learning regression model are available from the authors;
water quality data from automated monitoring stations are not publicly available due to the inclusion
of sensitive information.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The spectral information for Sentinel-2 bands can be found in Table A1.

Table A1. Sentinel-2 satellite image band information.

Bands Resolution (m) S2A Central
Wavelength (nm)

S2B Central
Wavelength (nm)

B1-Aerosols 60 443.9 442.3
B2-Blue 10 496.6 492.1

B3-Green 10 560 559
B4-Red 10 664.5 665

B5-Red Edge 1 20 703.9 703.8
B6-Red Edge 2 20 740.2 739.1
B7-Red Edge 3 20 782.5 779.7

B8-NIR 10 835.1 833
B8A-Red Edge 4 20 864.8 864
B9-Water vapor 60 945 943.2

B10-SWIR/Cirrus 60 1375.5 1376.9
B11-SWIR 1 20 1613.7 1610.4
B12-SWIR 2 20 2202.4 2185.7

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
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The selected images and the corresponding water quality monitoring times are shown
in Table A2.

Table A2. Data source information on remote sensing images.

Monitoring Date Image Date Image Quality

18 December 2015 18 December 2015 No cloud
2 November 2016 2 November 2016 Less than 10% cloud
13 October 2017 13 October 2017 No cloud

27 November 2017 27 November 2017 Less than 10% cloud
2 December 2017 2 December 2017 No cloud

17 December 2017 17 December 2017 No cloud
22 March 2018 22 March 2018 No cloud
3 October 2018 3 October 2018 Less than 10% cloud

2 November 2018 2 November 2018 No cloud
22 November 2018 22 November 2018 No cloud
17 December 2018 17 December 2018 No cloud

9 August 2019 9 August 2019 No cloud
23 September 2019 23 September 2019 No cloud
28 September 2019 28 September 2019 No cloud

13 October 2019 13 October 2019 No cloud
18 October 2019 18 October 2019 No cloud

7 November 2019 7 November 2019 No cloud
22 November 2019 22 November 2019 No cloud
2 December 2019 2 December 2019 No cloud
7 December 2019 7 December 2019 No cloud

12 December 2019 12 December 2019 No cloud
18 December 2015 18 December 2015 No cloud
2 November 2016 2 November 2016 Less than 10% cloud
13 October 2017 13 October 2017 No cloud

Please refer to Table A3 for detailed parameter settings of the BPNN model.

Table A3. BPNN parameter configuration.

Parameter Value

Hidden layer 1
Neurons in hidden layer 10

Training epochs 1000
Training goal 1 × 10−6

Learning rate 0.01
Activation function tansig and purelin
Training algorithm Levenberg–Marquardt

Loss function mse
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