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Abstract: Images acquired in low-light conditions often have poor visibility. These images con-
siderably degrade the performance of algorithms when used in computer vision and multi-media
systems. Several methods for low-light image enhancement have been proposed to address these
issues; furthermore, various techniques have been used to restore close-to-normal light conditions
or improve visibility. However, there are problems with the enhanced image, such as saturation
of local light sources, color distortion, and amplified noise. In this study, we propose a low-light
image enhancement technique using illumination component estimation and a local steering kernel
to address this problem. The proposed method estimates the illumination components in low-light
images and obtains the images with illumination enhancement based on Retinex theory. The resulting
image is then color-corrected and denoised using a local steering kernel. To evaluate the performance
of the proposed method, low-light images taken under various conditions are simulated using the
proposed method, and it demonstrates visual and quantitative superiority to the existing methods.

Keywords: low-light image; enhancement; Retinex; steering kernel; image processing

1. Introduction

As artificial intelligence advances in modern society, automation and unmanned
technologies are being introduced in various fields. In particular, intelligent CCTV systems,
autonomous driving, and remote monitoring are composed of various computer vision
algorithms. These systems require excellent visibility in the acquired images for high
accuracy. However, objects may not be clearly identified under insufficient contrast in
images acquired at night or due to environmental factors such as ambient light sources.
Various low-light image enhancement algorithms have been proposed to address these
issues.

A common approach for improving low-light images has been to enhance dark areas
by expanding the dynamic range of the histogram in the image. However, in images
with non-uniform lighting, this can lead to over-enhancement of bright areas, thereby
corrupting data in bright areas [1,2]. Chiu et al. proposed an adaptive gamma correction
method using a weight distribution to compensate low-light images, but it resulted in the
over-enhancement of bright areas in the image [3].

Low-light image enhancement using the Retinex model divides an image into illumi-
nation and reflection components and uses these components to estimate or generate an
illuminated image using various techniques [4,5]. For low-light footage enhancement to
produce the best quality results, the lighting and reflections must be in ideal conditions [6].
Wang et al. applied a joint edge-preserving filter to the illumination to obtain improved im-
ages [7]. Guo et al. used a structure-aware smoothing technique to predict the illumination
component in an image based on the Retinex model [8].

Traditional methods often fail to produce visually natural results. Some methods over-
emphasize low-light areas, resulting in unnatural outcomes or even ruining the overall
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tonality of the input image. Moreover, incorrect estimates of illumination can lead to color
mismatch issues in the resulting images, which can sometimes reduce visibility [9,10].

To address these issues, an algorithm has been proposed in this paper using illumina-
tion component estimation and a local steering kernel for low-light image enhancement. To
maintain the naturalness of the image even when there are bright areas in the low-light
image, the proposed algorithm estimates the illumination component by calculating the
gamma value using the mean and distribution constant obtained from the histogram of
the image. Then, the image with improved illumination is obtained using Retinex theory,
and color correction is performed by comparing the pixel values of the RGB channels of
the pixel to each other to emphasize the colors of the improved image. Finally, a local
steering kernel is used for filtering to remove the co-amplified noise components during
the low-light image enhancement process.

The paper is structured as follows. Section 2 introduces related research on low-light
image enhancement, and Section 3 explains the process by which our proposed algorithm
improves low-light images. Section 4 discusses the performance of our proposed low-light
image enhancement algorithm based on simulation results, and finally, Section 5 presents
the conclusions.

2. Related Research
2.1. Low-Light Image Enhancement Based on Deep Learning Technology

Recently, research utilizing deep learning has been taking place actively across various
fields, with methods employing CNN (convolutional neural network) training gaining
attention for improving low-light images. MSR-net [11] is a CNN-based learning model
proposed to enhance low-light images and Retinex theory. MSR-net performs well com-
pared with other traditional methods, but, due to the limited acceptance area of the network
architecture, it can produce visually unnatural parts in the resulting images.

While these deep learning-based learning methods outperform classic manual low-
light enhancement approaches, there are still some issues. Since most deep learning-
based learning methods are based on supervised learning, they require large-scale training
datasets consisting of low-light images and regular images captured under normal light
conditions as input. The performance of a deep learning network is closely related to the
dataset used to train it, but building large-scale training datasets that take into account
real-world conditions is challenging. For example, while obtaining a pair of images with
different exposures and generating an HDR (high dynamic range) image from them is
relatively straightforward [12], this is feasible only when capturing still scenes under well-
lit conditions during the daytime. Acquiring a large amount of clear normal light images
in extremely low-light environments is difficult.

2.2. Low-Illumination Color Image Enhancement Based on Retinex Theory

Retinex theory is a model used to explain how the human visual system perceives
brightness. The fundamental principle of Retinex theory is that an image can be separated
into its illumination and reflection components. The original image I(x, y) acquired by a
camera or sensor can be represented using the following formula [13].

I(x, y) = S(x, y)L(x, y) (1)

In the above formula, S(x, y) and L(x, y) represent the reflection and illumination
components, respectively, and x, y is the pixel coordinates of the image. In Retinex theory,
S(x, y) has a greater impact on I(x, y) than L(x, y) because it determines the unique char-
acteristics of the image [14]. This reduces the effect of the illumination component on the
reflection component, thus restoring clear image information [4]. Unlike traditional linear
and non-linear methods that can only enhance certain types of image features, Retinex
achieves a balance between dynamic range compression, edge enhancement, and color
constancy, making it suitable for enhancing various types of images.

The process of improving low-light images using Retinex is as follows:
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1. The low-light image you want to improve is represented by Equation (1).
2. To separate the illumination and reflection components, we take the logarithm as in

the following formula [15].

logI(x, y) = log(S(x, y)L(x, y)) (2)

3. The illumination-enhanced image Ŝ(x, y) can be obtained by subtracting the illumi-
nation estimate from the original image and taking the inverse logarithm, as shown
below.

logŜ(x, y) = logI(x, y)− logL̂(x, y) (3)

The methods based on Retinex theory such as SSR (single scale Retinex) [16] and
MSRCR (multi-scale Retinex with color restoration) [17] estimate the illumination and
reflectance of an image and adjust the dynamic range of illuminated pixels to improve
the image. Wang et al. [18] improve upon existing Retinex-based image enhancement
algorithms by incorporating Gabor filters and the Retinex theory. Wang et al.’s technique
extracts the luminance component I in the HSI color space and applies the MSRCR tech-
nique to enhance the luminance component of low-light images. Additionally, they utilize
the SSR algorithm based on Gabor filters in the RGB color space of low-light images to
obtain images with improved texture and detail.

Ma et al. [19] propose an MSRCR image enhancement algorithm based on Gaussian
filtering and guided filtering, using multiscale Gaussian filtering and guided filtering to
estimate accurate illumination components in low-light images.

2.3. Low-Light Image Enhancement Based on RetinexNet

RetinexNet was proposed based on the Retinex theory to perform image enhancement
by decomposing low-light images into reflection and illumination components. RetinexNet
uses Decom-Net to decompose the input image into reflectance and illumination compo-
nents in the decomposition stage, and trains by using pairs of low-light and normal images
in the training stage. However, while RetinexNet’s results significantly enhance image
brightness, they may introduce color distortion, and issues such as blurriness or noise
amplification occur during the process of decomposing and combining images [20]. The
improved network model proposed by Li et al. [21] uses the HSV color space model to
address the color distortion and noise problems in RetinexNet. Advanced RetinxeNet [22]
uses two subnets, DecomNet and EnhanceNet, to appropriately enhance the contrast and
suppress noise in the resulting image.

However, existing low-light image enhancement methods can result in insufficient
illumination improvement or color imbalance, and the process of amplifying low-light
areas can also amplify noise components. Due to these issues, enhanced images may exhibit
distortion and blurriness.

3. Proposed Method

Our proposed method aims to address the issues that arise during the enhancement of
low-light images through the following approaches:

- Estimating illumination components in low-light images using histogram smoothing
and Retinex theory.

- Color correction by selecting a correction channel among the RGB channels in an
image with enhanced illumination.

- Removal of noise from the resulting image with a non-local mean based on a local
steering kernel.

The proposed method is specifically categorized into three parts based on the methods
presented above. First, there is the illumination improvement part, which improves the
illumination of low-light images. Secondly, there is the color correction part, which corrects
distorted colors during the illumination improvement process. Finally, there is the noise
removal part, which removes the noise amplified during the illumination improvement
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and color correction. Figure 1 shows a block diagram of the processing of the proposed
algorithm.
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Figure 1. Block diagram of proposed method.

3.1. Illumination Estimate

Low-light footage may show areas in the image that are poorly lit or have an uneven
brightness distribution. To accurately estimate the illumination components in these
environments, we need information to determine the illumination environment of the
low-light images. To determine the illumination environment, the proposed algorithm
calculates the mean and distribution constants by obtaining the histogram of each channel
in the RGB channel region of the low-light image. Here, the mean constant refers to the
basis for judging the overall light level of the image, and the distribution constant refers to
the frequency of local bright areas. In this case, a histogram smoothing technique is used to
obtain a more natural result than the existing method. The smoothed histogram

.
H(p) can

be obtained as follows. .
H(p) = G ∗ Hm(p) (4)

G =
1√

2πσi
exp

(
− (p− q)2

σ2
i

)
(5)

Hm(p) = {H(q) | p− n ≤ q ≤ p + n} (6)

Here, G refers to the Gaussian weight for histogram equalization, Hm(p) represents
the bin of the histogram H(p) of the low-light image, p represents pixel values, and q
represents pixel values that belong to a histogram bin, the range of which is determined by
a constant n that determines the width of the bin. If q exceeds the range that can represent
the pixel values in the image, the histogram H(q) does not exist. Therefore, histogram
smoothing is performed using the minimum histogram value. The mean constant m of the
image can be calculated from the smoothed histogram

.
H(p) as follows.

m =
1
N

[
N

∑
p=0

p
.

H(p)

/
N

∑
p=0

.
H(p)

]
(7)

Here, N refers to the maximum number of pixel values that can be represented in an
image. The proposed algorithm uses the following conversion formula to convert m to a
gamma value.

γ1 =
1

1 + exp(−2m)
(8)
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γ1 is given by Equation (8) as a range of [0.5, 1], with darker images being closer to
γ1 = 0.5, indicating a lower illumination estimate.

The distribution constant is obtained from the smoothed histogram just like the mean
constant, but the calculation is performed on only the low-light areas to emphasize the
information about the values in the low-light areas. The proposed algorithm considers
low-light areas as those with less than half of the pixel values that can be represented in the
image, and obtains the distribution constant γ2 as follows.

γ2 =
1

RC

N/2

∑
p=0

.
H(p) (9)

Here, R, C represents the horizontal and vertical dimensions of the video, respectively.
Higher values of the distribution constant indicate images with more dark areas. The
gamma value γ for lighting estimation is calculated by weighting the mean and distribution
constants as shown in the following formula.

γ =
τ

1 + exp(−2m)
+

(1− τ)

RC

N/2

∑
p=0

.
H(p) (10)

Here, τ is the weighting constant to obtain the gamma value. τ is set to a range of
[0, 1], with lower values improving low-light images more brightly. Conversely, a high
value of τ will result in a more pronounced color contrast in the resulting image. The
estimated illumination component L̂(x, y) is obtained by applying the gamma value to
the input image as follows, and then L̂(x, y) is substituted into Equation (3) to obtain the
enhanced image Ŝ(x, y) as follows.

L̂(x, y) = I(x, y)γ (11)

Ŝ(x, y) = exp
(
logI(x, y)− logL̂(x, y)

)
(12)

Images with enhanced brightness may appear to have less contrast in the enhanced
image because the pixel values in the low-light areas have been improved by a larger
amount, concentrating them in the range of bright levels. To address these issues, we
further extend the dynamic range for pixel values in low-light areas to naturally disperse
concentrated pixel values in bright levels. The proposed algorithm extends the dynamic
range by classifying the cases where the pixel values in the enhanced image are smaller
than the median of the maximum pixel values that the image can represent as low-light
regions, as shown in Equation (13).

Sp(x, y) =


Ŝ(x, y), i f 0.5 < Ŝ(x, y)

2Ŝ(x, y)2, otherwise
(13)

3.2. Color Compensation

For images with enhanced illumination, the rate at which pixel values are amplified
may vary depending on differences in the mean and variance constants of the RGB channels.
This can lead to color distortion or reduced contrast, which reduces the visibility of the
resulting footage. The proposed algorithm uses color correction to make the contrast of
colors more pronounced after image enhancement. The color correction step compares the
pixel values of the RGB channels in the x, y coordinates of the enhanced image Sp(x, y) to
each other, and the channel with the highest value is selected as the correction channel.
Color correction applies different correction values to the correction channel and the
remaining channels based on the difference between the pixel values of the correction
channel and the pixel values of the other two channels. Here, if the pixel value of the
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RGB channel selected as the calibration channel is t(x, y) and the pixel values of the other
two channels are d1(x, y) and d2(x, y), respectively, the color correction values t̂1(x, y) and
t̂2(x, y) for the two channels are obtained as follows.

t̂1(x, y) = t(x, y) + α(t(x, y)− d1(x, y))(1− t(x, y))d1(x, y) (14)

t̂2(x, y) = t(x, y) + α(t(x, y)− d2(x, y))(1− t(x, y))d2(x, y) (15)

Here, α refers to the color correction weight. The color correction value is calculated
proportionally to the difference between d1(x, y) and d2(x, y), and the pixel value of the
correction channel. In this case, if the pixel values of only one channel of d1(x, y) and
d2(x, y) are significantly different, the color correction value may show a large value, so
we set the weights for the color correction values t̂1(x, y) and t̂2(x, y) to minimize color
distortion, maintain the naturalness of the image, and emphasize the color contrast. Taking
this into account, the combined weights β1(x, y) and β2(x, y) can be calculated as follows.

β1(x, y) =
d1(x, y)

d1(x, y) + d2(x, y)
(16)

β2(x, y) =
d2(x, y)

d1(x, y) + d2(x, y)
(17)

The proposed algorithm sets t(x, y) as the largest pixel value in the RGB channel for
color correction, so the smaller s1(x, y) and s2(x, y) are calculated, the larger t̂1(x, y) and
t̂2(x, y) are calculated. The sum of the two color correction values is obtained by applying
the sum weight obtained in Equations (16) and (17) to the respective corrections t̂1(x, y)
and t̂2(x, y). The combined color correction value tp(x, y) is calculated using the following
formula.

tp(x, y) = β1(x, y)t̂1(x, y) + β2(x, y)t̂2(x, y) (18)

3.3. Noise Removal Process

The proposed algorithm uses a non-local mean technique to remove the co-amplified
noise during the enhancement process of low-light images. Unlike a typical local mean
filter, the non-local mean technique uses an average of the pixels around the filter center
to remove noise, weighted by how similar the surrounding pixels are to the center. This
results in much better sharpness after filtering and less loss of detail in the image compared
with the local mean filter. However, non-local mean techniques rely on similarity to set
weights, which means that the structural features of the filtering region are not taken into
account. To address these issues, this paper proposes a modified non-local mean algorithm
based on a local steering kernel. Steering kernels are characterized by considering gradients
and analyzing the radiosity of pixels in the local region, and typically take the following
form [13].

Kx,y(i, j) =

√
det(Cx,y)
2πh2 exp

(
− [i j]TC [i j]

2h2

)
, −k ≤ i, j ≤ k (19)

Here, Cx,y refers to the covariance matrix of size 2× 2 computed on a square local
region centered at pixel x, y [17]. i, j refers to the relative coordinates away from the center
of the steering kernel. [i j] represents a matrix representation of the coordinates, and k is
a constant that determines the size of the steering kernel. h is a smoothing constant to
control the scope of the steering kernel [18]. The weights for denoising are calculated by
comparing the similarity of the center and periphery regions to the steering kernel. The
similarity comparison is calculated using Euclidean distance, and to convert this result to
weights ux,y(i, j), we use the following formula.

ux,y(i, j) =
1

zx,y
exp

(
−‖w(x, y)− w(x + i, y + j)‖2

2
h2

)
(20)
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zx,y = ∑
i, j∈Kx,y

exp

(
−‖w(x, y)− w(x + i, y + j)‖2

2
h2

)
(21)

Here, w(x, y) means the center window centered at x, y, and w(x + i, y + j) means the
comparison window set at a distance of i, j from the center window. zx,y is the normalization
constant used to convert the results of the similarity comparison into weights. The denoising
result out(x, y) is calculated by convolving the pixel value with the steering kernel Kx,y(i, j)
and the weight ux,y(i, j), as shown in the following equation.

out(x, y) = Mx,y(i, j) ∗ Kx,y(i, j) ∗ ux,y(i, j) (22)

Here, ∗ refers to the convolution operator and Mx,y(i, j) is the pixel value in the same
region as the local steering kernel.

4. Simulation and Results
4.1. Experimental Setting

To evaluate the visual performance, the simulation compares the results of the existing
low-light image enhancement technique and the low-light image processed by the proposed
algorithm. The image used in the evaluation is a 600× 400-sized image from the LOL
dataset, which is widely used in low-light image enhancement research [3]. To analyze the
influence of the parameters of the proposed method on the resulting images, experiments
are conducted under different conditions.

First, τ, which is used in the low-light image enhancement process, is set to the range
of [0, 1], and the closer the value is to 0, the brighter the illumination enhancement image is.
Conversely, the closer τ is to 1, the more contrasting the colors in the resulting image. The
proposed technique performs reasonably well for τ = 0.45 when the value of τ is varied in
0.05 increments from 0 to 1 in the simulation.

The color correction weight α used for color correction is the color correction weight,
and the higher the value, the stronger the color correction effect. If the color correction
weight is 0, an uncorrected image is output, and if it exceeds α = 2, the color distortion
becomes severe. When the proposed algorithm is simulated by varying the value of the
color correction weight α in increments of 0.1, the most natural color correction is achieved
when the value is α = 1.

Since the steering kernel used in the denoising process is used to remove noise am-
plified during the enhancement of low-light images, it does not require strong denoising
performance, so the small size of 15× 15 is sufficient. Also, due to the importance of
preserving details such as edges and text, the best performance is achieved using a small
window of 3× 3 for the similarity comparison.

For the other parameters, we select the values that show the best overall performance
when running experiments under various conditions, and the results are shown in Table 1.

Table 1. Parameter set of proposed image enhancement method.

Parameter Variable Value

Gamma weight parameter τ 0.45
Color compensation weight α 1

Smoothing parameter h 1.5
Steering kernel size Kx,y 15× 15

Window size w 3× 3

4.2. Experimental Result and Visual Compare

Figures 2–5 show the low-light image and the enhanced and enlarged images, where
(a) is the low-light image, (b–e) are the results of processing with existing techniques,
namely, dark light [23], LIME [8], RBMP [24], and LIIEN [4], respectively, and (f) shows the
result of processing with the proposed technique.
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Figure 4. Enhancement result and enlarged image of low-light image (LOL665). (a) Low-light image, 
(b) dark light, (c) LIME, (d) RBMP, (e) LIIEN, and (f) proposed methods. 

Figure 4. Enhancement result and enlarged image of low-light image (LOL665). (a) Low-light image,
(b) dark light, (c) LIME, (d) RBMP, (e) LIIEN, and (f) proposed methods.
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Figure 5. Enhancement result and enlarged image of low-light image (LOL780). (a) Low-light image,
(b) dark light, (c) LIME, (d) RBMP, (e) LIIEN, and (f) proposed method.

In Figure 2, we compare object detection performance of very dark images. As a result,
the detection performance of the images processed with dark light and LIME is insufficient.
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The RBMP-processed footage greatly improves the illumination of the footage, but when
the dark areas are zoomed in, a significant presence of green light is noticed. The proposed
technique sufficiently improves the illumination of the image, and the visibility of the dark
areas is naturally enhanced.

In Figure 3, the dark light and LIME treatments do not improve the illumination of
the background areas. RBMP’s enlargements are less visible due to the lack of contrast
in the color tones, and LIIEN’s enlargements show relatively much noise. The proposed
algorithm performs well in improving the overall illumination, and the color contrast of
the enlarged image is clearly visible.

In Figure 4, the images processed with dark light and RBMP have low color contrast,
resulting in blurry enlargements. The results of LIME and LIIEN show good overall
visibility with sharp color contrast, but not enough illumination enhancement in dark areas.
Overall, the proposed algorithm shows good visibility of objects in dark areas and clear
color contrast.

In Figure 5, we zoom in on the areas where dark and light areas appear together, and
the images processed with LIME and LIIEN appear darker in low-light areas and distorted
in bright areas. The images processed with dark light and RBMP show a significant
improvement in the dark areas, but the resulting images have a dull color contrast. The
images processed by the proposed algorithm do not show any color distortion, and the
overall result has vivid tones and good visibility.

Visual evaluation shows that the resulting images from existing methods have inad-
equate illumination enhancement or color distortion. On the other hand, the resulting
image of the proposed algorithm exhibits sufficiently improved brightness, sharp contrast
of colors, and natural texture of the image.

4.3. Objective Evaluation

To objectively evaluate the performance of the proposed method, a quantitative evalu-
ation is conducted on the resulting images. The methods used for quantitative evaluation
are LOE (lightness order error), peak signal-to-noise ratio (PSNR), and structural similarity
(SSIM) [25]. LOE is proposed to objectively evaluate the naturalness of an image and
evaluate the change in illumination of an image by assessing the sequential change in
brightness of the image. Smaller LOE values indicate a more natural brightness transition
in the resulting images. PSNR is the most commonly used video quality metric and is
measured in (dB). PSNR evaluates the difference between two images, with higher values
indicating greater similarity and less distortion between the images. SSIM compares the
brightness, contrast, and structural similarity between two images, with values ranging
from 0 to 1; values closer to 1 signify greater structural similarity. Tables 2–4 show the LOE,
PSNR, and SSIM results for the processed videos in Section 4.2.

Table 2. LOE score comparison of test image.

Image Dark Light LIME RBMP LIIEN PM

LOL493 162.072 94.739 88.600 80.840 72.030
LOL665 150.877 111.682 77.145 69.061 49.115
LOL669 194.140 143.954 61.474 86.141 123.681
LOL778 192.890 123.611 112.848 80.802 83.162
LOL780 248.520 133.832 190.140 121.238 124.381

Average 189.700 121.564 106.041 87.616 90.474
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Table 3. PSNR comparison of test image.

Image Dark Light LIME RBMP LIIEN PM

LOL493 17.019 16.434 16.366 15.744 20.030
LOL665 11.027 9.832 13.550 9.874 12.680
LOL669 11.606 11.437 24.817 11.980 18.750
LOL778 13.859 13.046 15.305 13.083 16.410
LOL780 20.725 20.086 24.305 20.227 23.820

Average 14.847 14.167 18.869 14.182 18.338

Table 4. SSIM comparison of test image.

Image Dark Light LIME RBMP LIIEN PM

LOL493 0.504 0.408 0.541 0.409 0.576
LOL665 0.321 0.265 0.393 0.255 0.378
LOL669 0.445 0.489 0.621 0.457 0.613
LOL778 0.464 0.406 0.513 0.400 0.570
LOL780 0.708 0.645 0.786 0.611 0.742

Average 0.488 0.443 0.571 0.426 0.576

In the quantitative evaluation, dark light shows a poor performance overall, with
a mean value of 189.700 for LOE and a mean of 14.847 and 0.488 for PSNR and SSIM,
respectively. Overall, the quantitative evaluation is inadequate for the resulting videos
from LIME; in particular, the PSNR average shows the lowest value at 14.167. While
RBMP has superior PSNR and SSIM, the average LOE value is 106.041, which is slightly
insufficient for the proposed algorithm. LIIEN has superior average LOE values, but PSNR
and SSIM values show low average values. The quantitative evaluation of the proposed
method shows that the average LOE value is 90.474, the average PSNR is 18.338 (dB), and
the average SSIM is 0.576, which are generally superior to the existing methods. Tables 5–7
show the quantitative evaluation using 485 images from the LOL dataset, 100 images from
the VE-LOL-L dataset, and 360 images from the SICE dataset for objective evaluation.
Tables 5–7 show the average LOE, average PSNR, and average SSIM for each dataset.

Table 5. Comparison of average LOE score.

Datasets Dark Light LIME RBMP LIIEN PM

LOL 226.942 138.152 75.430 91.237 110.961
VE-LOL-L 235.419 145.717 93.062 106.850 121.055

SICE 209.528 207.543 102.662 77.526 143.723

Table 6. Comparison of average PSNR score.

Datasets Dark Light LIME RBMP LIIEN PM

LOL 12.472 12.464 16.957 12.085 15.986
VE-LOL-L 16.333 16.148 18.249 15.232 18.666

SICE 11.044 12.821 15.664 12.589 16.030

Table 7. Comparison of average SSIM score.

Datasets Dark Light LIME RBMP LIIEN PM

LOL 0.437 0.393 0.487 0.318 0.472
VE-LOL-L 0.553 0.500 0.547 0.394 0.542

SICE 0.419 0.459 0.505 0.460 0.529

When comparing the LOE values for each datasheet in Table 5, the proposed algorithm
has superior results compared with those of dark light and LIME, and it shows natural
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luminance changes in the resulting images. However, the results are similar to or slightly
higher than the results of processing with RBMP and LIIEN.

The PSNR comparison results in Table 6 show that the best results are processed by the
proposed algorithm. In particular, the VE-LOL-L dataset shows improvements of 2.333 (dB),
2.518 (dB), 0.417 (dB), and 3.434 (dB) over the existing method, respectively, and the most
similar results are shown for the control image.

SSIM, the proposed method in Table 7, shows the highest value of 0.529 on the SICE
dataset, with improvements of 0.100, 0.070, 0.024, and 0.069 over the existing methods,
respectively. The SSIM results of the proposed method are superior to the existing methods
in most cases, and they produce the most structurally similar results to the control image.

4.4. Discussion

The proposed method uses histogram smoothing and Retinex theory for natural
illumination enhancement. It estimates the illumination component of low-light images
based on mean and distribution constants. Color correction using compensating channel
selection in the RGB channel reduces color distortion and sharpens contrast, and non-
local averaging based on a local steering kernel minimizes noise in the resulting image.
The resulting images of the proposed method show clear and natural images, unlike the
existing methods in the visual evaluation, and the best results are achieved in quantitative
evaluations.

5. Conclusions

In this paper, we propose a technique based on Retinex theory and local steering kernel
to improve low-light images. To effectively improve the low-light images and address the
color mismatch problem, the proposed technique estimates the illumination component
of the low-light images by using the mean and distribution constants, and the improved
images are obtained by using the Retinex theory. Then, color correction is used to highlight
the hue of the improved image, and a denoising algorithm based on the local steering
kernel is used to obtain the final image.

To evaluate the performance of the proposed algorithm, low-light images from the
LOL dataset are used to compare it to existing methods. In terms of visual assessment, the
existing method improves the overall illumination of the resulting image and amplifies the
pixel values in dark areas, revealing hidden objects. The results are superior to those of
existing methods, exhibiting sharper color contrast and less distortion. Additionally, during
the process of enhancing low-light areas, the proposed method effectively suppresses the
amplified noise signals. For quantitative evaluation, the LOE method is used to compare
the naturalness of the resulting images, and the proposed method shows improved results
with lower LOE values compared with existing techniques.
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