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Abstract: Most of the arm lifts used in today’s industry are designed and manufactured based on
the scissor mechanism. Such schemes have one drawback: when the mechanism is raised, their
connection points with the base and the movable platform narrow, which leads to a let-down in
its stability. This article proposes a new scheme for the lifting device, which eliminates the above
disadvantage of scissor schemes. In the scheme developed by the authors, the joints connecting the
mechanism to the moving platform and the base are fixed, which means that the distance between
the connection points does not change, leading to its stable operation. The mechanism consists of one
group of links of the second class and two groups of links of the fourth class. The article focuses on
the stability of an automotive lift’s design when moving with a load. The article presents the results
of a kinematic and kinetostatic analysis, a study of the stability of the lift and the results of studies
of an experimental sample of the developed lift. The methods presented in this article allow for
the design of automotive lifts with new lever mechanisms, as demonstrated by computer modeling
and experiments.

Keywords: lever mechanism; automotive lift; kinetostatics; link; stability

1. Introduction

In many industrial production areas, automotive lifts are widely used at present.
Among them are the construction industry, large-scale trade (malls), agro-industry, logistics
of terminals and transport warehouses (airports, railway transport, road and sea transport),
military equipment, etc. The Automotive Scissor Arm Lift is used for stacking, lifting or
lowering, transporting and/or moving material [1].

The lever scissor mechanism is efficient in lifting loads [2–5]. Raising or lowering of
the lever scissor mechanism is carried out by moving hydraulic drives or a linear actuator,
which acts on the scissor mechanism and causes the vertical movement of the working
platform. The design of the scissor mechanism causes the automotive lift with a scissor
arm mechanism to have poor stability. When lifting the load, the distance between the
attachment points of the scissor mechanism to the base and the movable platform decreases;
therefore, the base of the scissor mechanism decreases (Figure 1) and, accordingly, it
becomes possible to overturn the automotive lift [6,7]. There were 78 accidents while using
a scissor lift between 1992 and 2003, according to the Census of Fatal Occupational Injuries
(CFOI) [8]. The finite element method was used to design a scissor mechanism in [9,10].
The method of bond graphs was used to study the dynamics of a scissor mechanism in [11].
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The modeling of a scissor mechanism that utilizes curvilinear and pneumatic drives to
implement the curvilinear movement of a moving platform is discussed in [12–19].
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Figure 1. Positions of the base of the scissor mechanism (a) in the folded state and (b) in the 
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This article considers the scheme of a new lever mechanism [20,21], where the joints 
of the connection of the mechanism to the movable platform and the base are fixed 
motionless, i.e., the distance between the connection joints does not change. The stability 
of this lifting mechanism scheme is improved compared to the scissor mechanism. 
Developing and researching a lifting lever mechanism with a fixed base is a pressing 
matter. The subject of this article is the study of the proposed lift. 

The novelty of the research lies in the new design of the lever mechanism of the lift, 
where the joints of the connection of the mechanism to the movable platform and the base 
are fixed and motionless, which increases stability compared to the scissor mechanism; 
the development of methods for kinematic and kinetostatic analysis of the mechanism; 
the study of the stability of an automotive lift with a load on a moving platform and de-
termination the boundaries of the stability area; the experimental measurement of stresses 
in mechanism links and the comparison with the results of numerical calculations. 

This article has the following structure. 
Section 1 provides an overview of the research methods of the scissor mechanism 

used in the moving platforms and the disadvantages of such a mechanism. The design of 
a new lever mechanism that has improved stability compared to the scissor mechanism 
and the methods required are discussed. 

Section 2 concentrates on the design of a new lifting lever mechanism. The new lifting 
lever mechanism’s design was examined, and it was found that it consists of two main 
modules. The analysis of the kinematics of the spatial mechanism was conducted based 
on a study of its flat scheme. 

Section 3 describes the equations for finding reactions in cylindrical pairs of link 
connections, which were determined on the basis of general dynamic equations in the 
form of the d’Alembert–Lagrange equations. 

Section 4 deals with the forces acting on the structure of an automotive lift. The 
condition for the stability of an automotive lift under the action of external forces, 
including the load’s gravity, has been articulated. The boundaries for the lift stability area 
of an automotive lift have been determined. 

Figure 1. Positions of the base of the scissor mechanism (a) in the folded state and (b) in the maximum
raised state.

This article considers the scheme of a new lever mechanism [20,21], where the joints of
the connection of the mechanism to the movable platform and the base are fixed motionless,
i.e., the distance between the connection joints does not change. The stability of this lifting
mechanism scheme is improved compared to the scissor mechanism. Developing and
researching a lifting lever mechanism with a fixed base is a pressing matter. The subject of
this article is the study of the proposed lift.

The novelty of the research lies in the new design of the lever mechanism of the lift,
where the joints of the connection of the mechanism to the movable platform and the base
are fixed and motionless, which increases stability compared to the scissor mechanism;
the development of methods for kinematic and kinetostatic analysis of the mechanism;
the study of the stability of an automotive lift with a load on a moving platform and de-
termination the boundaries of the stability area; the experimental measurement of stresses
in mechanism links and the comparison with the results of numerical calculations.

This article has the following structure.
Section 1 provides an overview of the research methods of the scissor mechanism used

in the moving platforms and the disadvantages of such a mechanism. The design of a new
lever mechanism that has improved stability compared to the scissor mechanism and the
methods required are discussed.

Section 2 concentrates on the design of a new lifting lever mechanism. The new lifting
lever mechanism’s design was examined, and it was found that it consists of two main
modules. The analysis of the kinematics of the spatial mechanism was conducted based on
a study of its flat scheme.

Section 3 describes the equations for finding reactions in cylindrical pairs of link
connections, which were determined on the basis of general dynamic equations in the form
of the d’Alembert–Lagrange equations.

Section 4 deals with the forces acting on the structure of an automotive lift. The
condition for the stability of an automotive lift under the action of external forces, including
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the load’s gravity, has been articulated. The boundaries for the lift stability area of an
automotive lift have been determined.

Section 5 describes the results of experimental studies on the determination stresses in
the links of the mechanism and compares them with the results of the calculated stresses
using the d’Alembert–Lagrange equations.

The conclusions that were obtained as a result of the research are presented in Section 6.

2. Materials and Methods

This section describes the derivation of kinematic equations for a new spatial lifting
lever mechanism. Analysis of design of the lever mechanism allowed us to identify two
main units (Figure 2): a spatial structure of seven links (4, 5, 6, 7, 8, 9, 10—black color)
and four-link mechanism (0, 1, 2, 3—red color). For a flat diagram of a lever mechanism
(Figure 3), vectors were introduced along the links of the mechanism, and closed vector
contours were considered. Then, projection equations on the x and y axes were written for
the vector equations. Graphs of changes in angular velocities and accelerations of the links
were obtained by numerically solving these equations, depending on the angle of rotation
of the first link.
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2.1. Design of a New Lifting Lever Mechanism

The analysis of the use of the scissor mechanism in lifting mechanisms of automotive
lifts revealed the need for designing a lever mechanism in which the joints of the connection
of the mechanism to the movable platform and the base are fixed motionless, which has
increased stability compared to the scissor mechanism.

At the Joldasbekov Institute of Mechanics and Engineering (Republic of Kazakhstan,
Almaty), a lever lifting mechanism with the joints of the connection of the mechanism to
the movable platform and the base, the spatial scheme of which is shown in Figure 2, was
synthesized [20,21].

2.2. Kinematic Relations

This mechanism has the following relations:

(1) parallelism of the axes of rotation of the links, i.e., D1D′1‖A1 A′1‖C1C′1‖B1B′1‖P1P′1‖;
(2) mutual equality of the lengths of the links, i.e., D1 A1 = D′1 A′1 = AD,

D1C1 = D′1C′1 =DC, A1B1 = A′1B′1 = AB, P1C1 = P′1C′1 = CP,
P1B1 = P′1B′1 = BP, C1B1 = C′1B′1 =BC.
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Thus, the kinematics of the spatial mechanism can be considered on the basis of the
study of its flat scheme (Figure 3), which is a projection of the original mechanism on the
Oxy plane.

The flat kinematic scheme of the lever lifting mechanism is a mechanism that consists
of the following structural groups: input link (1), two-link group (2,3) and four-link group
(4,5,6,7). Table 1 shows the constant geometric dimensions of the links of the lifting
lever mechanism.

Table 1. The constant geometric dimensions of the links of the lifting lever mechanism.

DC=l1 BC=l2 BP=l′2 AB=l3 PD1=l4 PA1=l′4
1178.8 mm 358.49 mm 1532.72 mm 704.628 mm 1500.0 mm 648.3 mm
C1D1 = l6 A1B1 = l5 P1B1 = l7 P1C1 = l′7 P1 A = a AD = b
1178.8 mm 704.628 mm 1532.7 mm 1171.5 mm 648.3 mm 851.7 mm

Variable geometric parameters of the lever lifting mechanism are as follows: ϕi,
i = 1, 2, 3, 4, 5, 6, 7.

We chose the origin of coordinates at point D. The kinematic equations of the
lever mechanism were written using the vector method: first, vectors were introduced
along the links of the mechanism; after that, closed vector contours DCBAD (blue color),
DABPA1B1P1D (blue, green and red colors) and P1B1 A1D1C1P1 (red color) (Figure 3), were
considered; and finally, vector equations were written. Then the following vector equations
take place:

→
l1 +

→
l′2 =

→
lDA +

→
l3 , (1)

→
lDA +

→
l3 +

→
l2 +

→
l4 =

→
lDP1 +

→
l7 +

→
l5 (2)

→
l7 +

→
l5 +

→
l′4 =

→
l′7 +

→
l6 (3)

Note that Equation (1) shows the kinematics equations of the four-link mechanism
(0,1,2,3), and Equations (2) and (3) are the kinematics equations of the adjoint four-link
group (4,5,6,7).

Projecting Equations (1)–(3) onto the x, y axes, we obtain six scalar equations with
eight unknowns ϕi, i = 2, 3, 4, 5, 6, 7 for a given ϕ1:

(a) for a four-link (0,1,2,3){
l1cos(ϕ1) + l′2cos(ϕ′2) = −b + l3cos(ϕ3)

l1sin(ϕ1) + l′2sin(ϕ′2) = l3sin(ϕ3)
, (4)

(b) for the group (0,2,3,4,5,7)

{
−b + l3cos(ϕ3)− l2cos(ϕ′2 + α2) + l4cos(ϕ4) = −(a + b) + l′7cos(−ϕ′7 + α7) + l5cos(ϕ5)

l3sin(ϕ3)− l2sin(ϕ′2 + α2) + l4sin(ϕ4) = l′7sin(−ϕ′7 + α7) + l5sin(ϕ5)
(5)

(c) for the group (4,5,6,7){
l7cos(−ϕ′7 + α7) + l5cos(ϕ5) + l′4cos

(
−ϕ′4 + α4

)
= l′7cos(ϕ′7) + l6cos(ϕ6)

l7sin(−ϕ′7 + α7) + l5sin(ϕ5) + l′4sin
(
−ϕ′4 + α4

)
= l′7sin(ϕ′7) + l6sin(ϕ6)

, (6)

To find the angular velocities ω2 and ω3 of links 2 and 3, we differentiate the system
of Equation (4). {

ω1l1sin(ϕ1) + ω2l′2sin(ϕ′2) = ω3l3sin(ϕ3)
ω1l1cos(ϕ1) + ω2l′2cos(ϕ′2) = ω3l3cos(ϕ3)

, (7)
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Resolving Equation (7) we find the angular velocities ω2 and ω3. To find the links of the
angular velocities ω4, ω5, ω6 and ω7, we differentiate the system of Equations (5) and (6).

−ω3l3sin(ϕ3) + ω2l′2sin
(

ϕ′4 + α4
)
−ω4l4sin(ϕ4) = ω7l7sin(−ϕ′7 + α7)−ω5l5sin(ϕ5)

ω3l3cos(ϕ3)−ω2l′2cos
(

ϕ′4 + α4
)
+ ω4l4cos(ϕ4) = ω7l7cos(−ϕ′7 + α7) + ω5l5cos(ϕ5)

ω7l7sin(−ϕ′7 + α7)−ω5l5sin(ϕ5) + ω4l′4sin
(
−ϕ′4 + α4

)
= ω7l′7sin(ϕ′7)−ω6l6sin(ϕ6)

ω7l7cos(−ϕ′7 + α7) + ω5l5cos(ϕ5) + ω4l′4cos
(
−ϕ′4 + α4

)
= ω7l′7cos(ϕ′7) + ω6l6cos(ϕ6)

(8)

Resolving Equation (9), we find the angular velocities ω4, ω5, ω6 and ω7.
To find the angular accelerations ε2 and ε3 of links 2 and 3, we differentiate the system

of Equation (7).
ε1l1sin(ϕ1) + ω2

1 l1cos(ϕ1) + ε2l′2sin(ϕ2 − α2) + ω2
2 l′2cos(ϕ2 − α2) = ε3l3sin(ϕ3)+

ω2
3 l3cos(ϕ3)

ε1l1cos(ϕ1)−ω2
1 l1sin(ϕ1) + ε2l′2cos(ϕ2 − α2)−ω2

2 l′2sin(ϕ2 − α2) = ε3l3cos(ϕ3)−
ω2

3 l3sin(ϕ3)

(9)

Resolving Equation (9), we find the angular accelerations ε2 and ε3. To find the links
of the angular accelerations ε4, ε5, ε6 and ε7, we differentiate the system of Equation (8).

ε3l3sin(ϕ3) + ω2
3 l3cos(ϕ3) + ε2l2sin(ϕ2) + ω2

2 l2cos(ϕ2) + ε4l4sin(ϕ4) + ω2
4 l4cos(ϕ4) =

ε7l7sin(ϕ7) + ω2
7 l7cos(ϕ7) + ε5l5sin(ϕ5) + ω2

5 l5cos(ϕ5)
ε3l3cos(ϕ3)−ω2

3 l3sin(ϕ3) + ε2l2cos(ϕ2)−ω2
2 l2sin(ϕ2) + ε4l4cos(ϕ4)−ω2

4 l4sin(ϕ4) =
ε7l7cos(ϕ7)−ω2

7 l7sin(ϕ7) + ε5l5cos(ϕ5)−ω2
5 l5sin(ϕ5)

ε7l7sin(−ϕ′7 + α7)−ω2
7 l7cos(−ϕ′7 + α7)− ε5l5sin(ϕ5)−ω2

5 l5cos(ϕ5) + ε4l′4sin(−ϕ4 + α4)
+ω4l′4cos(ϕ4) = ε7l′7sin(ϕ7 + α7) + ω2

7 l′7cos(ϕ7 + α7) + ε6l6sin(ϕ6) + ω2
6 l6cos(ϕ6)

ε7l7cos(−ϕ′7 + α7) + ω2
7 l7sin(−ϕ′7 + α7) + ε5l5cos(ϕ5)−ω2

5 l5sin(ϕ5) + ε4l′4cos(−ϕ4 + α4)
−ω2

4 l′4sin(−ϕ4 + α4) = ε7l′7cos(ϕ′7)−ω2
7 l′7sin(ϕ′7) + ε6l6cos(ϕ6)−ω2

6 l6sin(ϕ6)

(10)

Resolving Equation (10), we find the angular accelerations ε4, ε5, ε6 and ε7.
Using the Maple math software, a program for solving the problem of kinematic

analysis of the lift mechanism was compiled by solving Equations (4)–(10). Figure 4 shows
the graphs of the angular velocities of links 2 and 3.
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2.3. The Discussion of the Results from the Analysis

A separate flat kinematic chain (0,1,2,3), which was a flat four-link Chebyshev mecha-
nism, together with flat chains (0,4,5,6,7) and (0,4,8,9,10) formed a system of three parallel
circuits. The kinematic equations of this chain have an explicit analytical solution, which
made it possible to write down an analytical solution for all three parallel chains connected
to two parallel platforms (links). The graphs in Figures 4–7 display the changes in angular
velocities and accelerations of links based on the angle of rotation of the first link. Angu-
lar velocity graphs show that the angular velocities of links 2, 5 and 6 decreased as the
platform rose, and the angular velocities of links 2 and 7 had a maximum at ϕ_1 = 147◦.
Angular acceleration graphs show that the angular accelerations of links 2, 6 and 7 during
the lifting of the platforms decreased in the area of positive values and increased in the
area of negative values, and the angular accelerations of links 2 and 7 had a minimum of
negative values at the angle of rotation ϕ_1 = 147◦ and then smoothly increased in the area
of negative values. The smooth rise and fall of the lift are demonstrated by smooth and
continuous changes in speeds and accelerations without any kinematic jerks.

3. Kinetostatics of the Lift Lever Mechanism

This section presents the equations in the d’Alembert–Lagrange form obtained for
each link of the new lift lever mechanism. The system of equations was solved. The
reaction forces in the joints and the force of balance on the driving link while lifting were
determined, taking into account the forces of gravity, the inertia forces of the links and the
load of 150 kg on the moving platform.

Kinetostatic equations were used to analyze and evaluate the distribution of forces
to analytically determine the reactions in the joints under the influence of a load on the
upper platform.

Note that link 4 performs translational motion, and links 1,2,3,5,6 and 7 perform
rotational motion in planes parallel to the Oxy plane. The forces of inertia of the links are
determined by the following formula:

Φi = −miaSi , i = 1, . . . , 7, (11)
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where mi depicts the mass of i link and aSi depicts the acceleration of the center of mass of
the i link.

The moments of the forces of inertia of the rotational links are determined by the
following formula:

Mi = −Jiεi, i = 1, . . . , 7, (12)

where Ji depicts the moment of inertia of link i relative to the center of mass and Si and εi
depict the angular acceleration of link i.

The gravity forces of the links are determined based on the following known formulas:

Gi = mig, i = 1, . . . , 7, (13)

where g depicts the acceleration of the Earth.
At points K1 and L1, a force was applied from the pressure of the hydraulic cylinder

Pgc and directed along the line K1L1. A balancing moment Mu is applied to link 1. On link
4, in the center of gravity of the link, Ph depicts the force from the action of the load on the
mobile platform.

Reactions in cylindrical pairs of link connections can be determined based on the
general equations of dynamics in the form of the d’Alembert–Lagrange Equation (14). It
allows us to determine the reactions of all releasing connections, including those with any
redundancy number.

n

∑
k=1

Fk·δrk +
n

∑
k=1

Φk·δrk = 0 (14)

where, Fk depicts the active forces and reactions of connections, Φk is the inertial forces and
δrk depicts the virtual displacement.

Figure 8 shows the forces acting on the links of the lever mechanism, including inertia
forces, moments of inertia forces, link gravity forces, an external force acting on the platform,
balancing forces acting on link 1 and reaction forces in the joints.
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Below are the equations of the projections of all forces acting on the links of the
lever mechanism.

Link 1.
R01x − R12x −m1as1x − Pgc cos

(
βgc
)
= 0

−R12y + R01y −m1g−m1as1y − Pgc sin(βgc) = 0
−Js1ε1 + Mu − R01y

l1
2 cos(ϕ1) + R01x

l1
2 sin(ϕ1) + R12x

l1
2 sin(ϕ1)− R12y

l1
2 cos(ϕ1)

−Pgc cos α1

(
l1
2 − lK2C

)
− Pgc sin(α1)lK1K2 = 0

(15)

Link 2.

−R23x + R24x + R12x −m2as2x = 0
R23y + R12y − R24y −m2g−m2as2y = 0

−Js2ε2 − R23y
l2
2 cos(ϕ2 − π + α2) + R23x

l2
2 sin(ϕ2 − π + α2)

−R12xlCs2 sin(ϕ2 − π + α2 + αCs2)− R12x·lCs2 cos(ϕ2 − π + α2 + αCs2)

−R24y· l22 sin(ϕ2 − π + α2) + R24x
l2
2 sin(ϕ2 − π + α2) = 0

(16)

Link 3.
R03x − R23x −m3as3x = 0

R03y − R23y −m3g−m3as3y = 0
−Js3ε3 − R23y

l3
2 cos(ϕ3) + R23x

l3
2 sin(ϕ3)− R03y

l3
2 cos(ϕ3) + R03x

l3
2 sin(ϕ3) = 0

(17)
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Link 4.

−R46x − R45x +−R24x −m4as4x + Pgc cos βgc = 0
−R46y − R45y + R24y −m4g−m4as4y − Ph + Pgcsinβgc = 0

−Js4ε4 − R46y
lDP1

2 cos(ϕ4 − α4) + R46x
lDP1

2 sin(ϕ4 − α4)− R24y
lD1P

2 cos(ϕ4)

+R24x
lD1P

2 sin(ϕ4)− R45x

(
lD1P

2 − lA1P

)
sin(ϕ4 − α4) + R45y

(
lD1P

2 − lA1P

)
·

cos(ϕ4 − α4) + Pgc cos(βgc)lL1y − Pgcsin(βgc)
(

lD1P
2 − lL1x

)
cos(ϕ4) = 0

(18)

Link 5.
R45x − R75x −m5as5x = 0

R45y − R75y −m5g−m5as5y = 0
−Js5ε5 + R45y

l5
2 cos(ϕ5)− R45x

l5
2 sin(ϕ5) + R75y

l5
2 cos(ϕ5)− R75x

l5
2 sin(ϕ5) = 0

(19)

Link 6.
−R76x + R46x −m6as6x = 0

−R76y + R46y −m6g−m6as6y = 0
−Js6ε6 + R46y

l6
2 cos(ϕ6)− R46x

l6
2 sin(ϕ6) + R76y

l6
2 cos(ϕ6)− R76x

l6
2 sin(ϕ6) = 0

(20)

Link 7.
R07x + R75x + R76x −m7as7x = 0

R07y + R75y + R76y −m7g−m7as7y = 0
−Js7ε7 + R75y

l7
2 cos(ϕ7 − α7)− R75x

l7
2 sin(ϕ7 − α7)− R76xlC1s7sin(ϕ7 − α7)

+R76ylC1s7 cos(ϕ7 − α7) + R07x
l7
2 sin(ϕ7 − α7) + R07y

l7
2 cos(ϕ7 − α7) = 0

(21)

In all equations, the following notation is adopted:
Φix = −miasix, Φiy = −miasiy—projections of the inertia force of the i link on the

x, y axes;
asix, asiy—acceleration projections of the center of mass of the i link on the x, y axes,

i = 1, . . . , 7;
Rij—the reaction force in the joint from the action of the i link on the j link;
Gi = mi·g—the force of gravity applied at the center of mass of the i link;
Pgc—the force acting along the hydraulic cylinder;
Ph—the load force acting on platform 4.
Thus, a system of 21 equations with 21 unknowns was obtained. To solve this system

in the Maple computer system, a program for solving the problem of kinetostatic analysis
for various positions of the lever mechanism was compiled.

The Discussion of the Results from the Analysis

Equations and numerical results of the force analysis of the mechanism are obtained
for a statically determinate system. The number of Equations (15)–(21) matches with
the number of unknown reactions in kinematic pairs and represents a system of linear
equations. This system is solved and the reactions are determined, which are further used
to analyze the stress-strain state of the links in the design.

4. Analysis and Evaluation of the Stability of the Design of an Automotive Lift

This section covers an analysis and assessment of the stability of the lift mechanism
with mass M1 and a displaced load with mass M2. An expression for the stability condition
has been written down, and the boundaries of the stability area for the automotive lift have
been determined. Also, an analysis of the stability of an automotive lift under specific
parameters was carried out.

To analyze and evaluate the stability of the design of an automotive lift loaded with
a load M2 on the working platform, we review the forces acting on it. Figure 9 shows a
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diagram of a lift with mass M1 and a load with mass M2 displaced relative to the ordinate
of the reporting system xO1y by the value b.
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Figure 9. Scheme of an automotive lift with a mass of M1 and a load of mass M2.

Let us introduce two reference systems: fixed xOy and xO1y connected with the center
of mass of the lift. The coordinates of the lifter’s center of mass in the fixed coordinate
system are X1, Y1. The coordinates of the center of mass of the load in the coordinate
system xO1y are X2, Y2. The distance between the two wheels of the lift is 2d; the height of
the lift is H. The height of the load is h. The coordinates of the load relative to the xO1y
reporting system are b, y2. Points C1 and C2 designate the centers of mass of the lift and
load, respectively. Point C is the common center of gravity of the lift with the load. R is the
radius of the lift wheels. M is the mass of the lift and load.

The coordinates of the common center of gravity of the lift of mass >M1 with a load of
mass M2 are determined by the following formulas:

Xc =
M1X1 + M2X2

M1 + M2
, Yc =

M1Y1 + M2Y2

M1 + M2
(22)

We pass from the xOy reporting systems to xO1y (Figure 9); then,

x1 = 0, y1 =
H
2
+ 2R, x2 = b, y2 =

h
2
+ H + 2R (23)

Substituting (23) into Equation (22), we obtain the coordinates of the common center
of gravity as follows:

xc =
M2b

M1 + M2
, yc =

M1

(
H
2 + 2R

)
+ M2

(
h
2 + H + 2R

)
M1 + M2

(24)

Let us transform Equation (24) to the following form:

xc =
m·b

1 + m
, yc =

H(1 + m) + 4R(1 + m) + h·m
2(1 + m)

, (25)

where m = M2
M1

.

Let us derive the stability condition for the lift. Let the lift under the action of a
→
F

force move with acceleration or deceleration
..
x. Therefore, the following relation holds:

F = (M1 + M2)
..
x = M

..
x (26)
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Figure 9 shows a diagram of the forces acting on the lift. From them, one can verify
that the following relation holds:

tgθ =
d− xc

yc + R
(27)

We write the stability condition from the condition that the vector
→
P does not go

beyond the area limited between the axles of the wheels:

..
x
g
<

d− xc

yc − R
(28)

where P =
√(

M
..
x
)2

+ (Mg)2.
Substituting (27) into (28) and after some transformation we obtain the following:

..
x
g
<

2
[
d− mb

1+m

]
H + 2R + mh

1+m
(29)

Inequality (29) is the final expression of the stability condition for an automotive lift.
Using the obtained expression for the stability condition, we determine the bound-

aries of the stability area of the lift. The parameters of an automotive lift have the
following parameters:

M1 = 500 kg, M2 = 150 kg, R = 15·10−2 cm, H = 3 m (30)

Substituting
..
x = 0 into Equation (29), we obtain the boundaries of the equilibrium

stability area of the automotive lift as follows:

η =
b
d
= 1 +

1
m

(31)

Figure 10 shows the dependencies of η on m. It follows from the resulting graph that
with increasing m, i.e., with an increase in the mass of the load, the area of stability of the
equilibrium of the automotive lift decreases. With m→ ∞ ; η = 1, i.e., b = d.
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The stability conditions for an automotive lift moving from place to place and acceler-
ating in a dimensionless form have the following form:

ξ =

..
x
g
< λ ·

[
1− m

1+m η
]

1 + 2 R
H + m

1+m
h
H

(32)

where λ = L
H , L = 2d—the distance between lift wheels.
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Let us assume that the conditions R
H � 1; h

H � 1 are satisfied; then, Equation (32) can
be written as follows:

ξ =

..
x
g
< λ ·

[
1− m

1 + m
η

]
(33)

It follows that 1− m
1+m η > 0 or b− d < d M1

M2
, since these are the equilibrium conditions

of an automotive lift.
We assume that the equilibrium of the lift is stable; therefore, the stability of an

automotive lift moving from a place with acceleration depends on the height and distance
between the wheels of the lift. To illustrate the stability analysis of an automotive lift, let us
consider a system with the following parameters:

b = 1.5 m, d = 1 m, M1 = 270 kg, M2 = 90 kg, H = 3 m, L1 = 2 m, L2 = 3 m. (34)

Then, based on Equation (25), we obtain restrictions on the acceleration of the lift in
the following form. For values L1 = 2 m and L2 = 3 m, the restrictions would be described
by the inequalities

..
x
g < 0.7 m

s2 and
..
x
g < 1 m

s2 , respectively. It follows that as the distance
between the wheels of the lift increases, the stability area of the moving automotive lift
increases, and with increasing height it decreases.

Figure 11 plots the dependence of relative accelerations ξ on the ratio λ for various η.
The stability area of the lift decreases with increasing displacement of the load b relative to
the lift.
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Figure 12 shows the boundaries of the lift stability area for various values of the ratio
of the mass of the load to the mass of the lift m. Based on the analysis of these graphs, it can
be said that with an increase in the mass of the load, the stability area of the lift decreases.

Appl. Sci. 2023, 13, 11361 14 of 18 
 

𝜉 = 𝑥ሷ𝑔 ൏ 𝜆 ⋅ ቂ1 − 𝑚1 + 𝑚 𝜂ቃ (33) 

It follows that 1 − ௠ଵା௠ 𝜂 ൐ 0  or 𝑏 − 𝑑 ൏ 𝑑 ெభெమ , since these are the equilibrium 
conditions of an automotive lift. 

We assume that the equilibrium of the lift is stable; therefore, the stability of an 
automotive lift moving from a place with acceleration depends on the height and distance 
between the wheels of the lift. To illustrate the stability analysis of an automotive lift, let 
us consider a system with the following parameters: 𝑏 = 1.5𝑚, 𝑑 = 1𝑚, 𝑀ଵ = 270 𝑘𝑔, 𝑀ଶ = 90 𝑘𝑔, 𝐻 = 3𝑚, 𝐿ଵ = 2𝑚, 𝐿ଶ = 3𝑚. (34) 

Then, based on Equation (25), we obtain restrictions on the acceleration of the lift in 
the following form. For values 𝐿ଵ = 2𝑚 and 𝐿ଶ = 3𝑚, the restrictions would be described 
by the inequalities ௫ሷ௚ ൏ 0.7 ௠௦మ  and ௫ሷ௚ ൏ 1 ௠௦మ , respectively. It follows that as the distance 
between the wheels of the lift increases, the stability area of the moving automotive lift 
increases, and with increasing height it decreases. 

Figure 11 plots the dependence of relative accelerations 𝜉 on the ratio 𝜆 for various 𝜂 . The stability area of the lift decreases with increasing displacement of the load 𝑏 
relative to the lift. 

 
Figure 11. Graph of the dependence of relative accelerations 𝜉 on the ratio of the distance between 
the wheels to the height of the lift 𝜆 at various 𝜂. 

Figure 12 shows the boundaries of the lift stability area for various values of the ratio 
of the mass of the load to the mass of the lift 𝑚. Based on the analysis of these graphs, it 
can be said that with an increase in the mass of the load, the stability area of the lift 
decreases. 

 

Figure 12. Graph of dependence ξ on λ at various m.



Appl. Sci. 2023, 13, 11361 15 of 18

The obtained dependencies of the stability area on the parameters of the lift can be
used for the optimal design of an automotive lift with a load.

5. Experimental Study of Stresses in the Links of the Lifting Mechanism

This section describes the study of stresses in the links of an experimental sample of
the lever mechanism of an automotive lift with a hydraulic drive. Stress recording was
carried out using a ZET 058 strain gauge system when lifting a load weighing 150 kg. The
calculated stress values obtained in Section 3 were imposed on the recorded experimental
graphs of stress changes over the time of lifting the load, and a comparison was made.

For the considered scheme of an automotive lift, an experimental sample of a lever
lifting mechanism with a hydraulic drive was made on which stress measurements were
carried out in four links, which were then compared with the calculated stress values
obtained in Section 3.

Foil strain gauges were used to measure stresses in the links. Strain gauges were glued
to points on the links to determine the stresses arising during the movement of the lever
lifting mechanism. The strain gauges were connected to the ZET 058 strain gauge measuring
system, which, together with the ZETLAB TENZO software version No. 2020.11.30 (LLC
“ZETLAB”, Moscow, Zelenograd, Russia), allows for collecting information from the strain
gauges in real time via eight channels simultaneously.

Figure 13a shows a photograph of an experimental automotive lift; Figure 13b shows
the points of sticking four strain gauges onto the links of the mechanism. Figure 14 shows
the change in normal stresses at point 1 of the lift mechanism link when lifting with a load
of 150 kg.
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To impose the calculated curve on the experimental curve, a recalculation was made
for the abscissa axis of the calculated curve depending on the angle of rotation according to
the following formula:

ϕ1 = ω1t (35)



Appl. Sci. 2023, 13, 11361 16 of 18

where ω1 depicts the angular speed of lifting of the first link t depicts the lifting time of a
load weighing 150 kg obtained during the experiment.
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Figure 14. Calculated and experimental change in normal stresses at point 1 of the link of the lift
mechanism when lifting a load weighing 150 kg.

Figure 15 shows the experimental value of the stress recorded in the middle of link 1
and the calculated value of the stress when lifting the mechanism with a load of 150 kg.
The maximum stress is equal to 26.8 MPa. The experimental curve has fluctuations that
arise due to the acceleration of the mechanism when lifting a load of 150 kg.
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As can be seen from Figure 14, the experimental curve of normal stress recorded at
point 4 (middle of link 7) when lifting the mechanism with a load of 150 kg has a maximum
stress of −6.4 MPa and a minimum value of 1.4 MPa. The calculated curve for the normal
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stress σ4 looks like an approximately inclined line from −3.3 MPa to 1.7 MPa. The stress
values in the links under a load of 150 kg are small and do not exceed 27 MPa.

As can be seen from Figures 14 and 15, the study using the d’Alembert–Lagrange
equations provides an approximate description of the dynamics without taking into account
oscillatory phenomena in the lift mechanism during its movement. The obtained values of
stress in the links are sufficient for selecting the sections of the links of the lever mechanism.

6. Conclusions

In this article, the scheme of a new lever mechanism of the lift was considered, where
the joints connecting the mechanism to the movable platform and the base are fixed. This
type of lifting mechanism has increased stability compared to the scissor mechanism.
Methods of kinematic analysis of the lever mechanism and kinetostatic analysis of the
lever mechanism under the action of a load on a mobile platform were developed for the
design of the new lever mechanism of the lift. Research on the stability of an automotive
lift with a displaced load along the moving platform was carried out, and the boundaries
of the stability were determined. Experimental measurements of stresses in four links were
carried out and compared with the calculated stress values. The experiment showed that
the scheme of the new lever mechanism of the lift is operational; stresses in the links of the
mechanism under a load of 150 kg have maximum values of 27 MPa.

All of the research methods described in this article are applied only to the design of a
new lift lever mechanism.
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