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Abstract: Rapid and non-destructive identification of the suitable storage status of paddy during
storage is crucial for controlling the quality of stored grains, which can provide high-quality raw
grains for rice processing. Near-infrared (NIR) spectroscopy combined with neighborhood rough
set (NRS) and multiple classification methods were used to identify the different storage statuses of
paddy. The NIR data were collected in the range of 1000–1800 nm, and three storage statuses from
suitable storage to severely unsuitable storage were divided using the measured fatty acid value of
paddy. The spectral features were selected using NRS, successive projection algorithm and variable
combination population analysis methods. Random forest (RF), extreme learning machine, and
soft independent modeling of class analogy classifiers coupled with spectral features were used to
establish classification models to distinguish the different storage statuses of paddy. The comparison
results indicated that the optimal wavelengths selected by NRS combined with the RF classifier
to construct the NRS-RF series models led to satisfactory identification results, with high correct
classification rates of 96.31% and 93.68% in the calibration and test sets, respectively; the indicators of
sensitivity and specificity ranged from 0.93 to 0.99. Therefore, the combination of NIR technology
with NRS and RF algorithms for identifying the storage status of paddy was feasible, as this would
be more helpful for rapidly evaluating the changes of stored paddy quality. The proposed method
from this study is expected to provide support for the development of non-destructive equipment for
the accurate detection of the quality of stored paddy.

Keywords: spectral detection; grain storage security; spectral feature selection fatty acid; classification
model

1. Introduction

Paddy is one of the three major reserves of raw grains worldwide, and its quality
and safety during storage have attracted much attention from the public [1,2]. Due to the
imbalance of temperature and humidity during the storage process, paddy is prone to
phenomena such as increased water content, erosion by grain insects, and fungal infection,
which leads to deterioration in its quality status [3]. This directly leads to serious losses in
the quantity and quality of stored paddy when it is discharged from the warehouse [4,5].
Therefore, there is a technical challenge that urgently needs to be overcome in the field of
grain storage, which is to explore and clarify the quality change trend and suitable storage
status of paddy during the storage process, and then establish appropriate rapid detection
methods to effectively identify the safety status of paddy [6].

The fatty acid value is one of the important indicators used to measure the effectiveness
of maintaining the quality of paddy storage [7]. The changes in fatty acid values correlate
with other quality indicators such as freshness, food value, and germination rate [8].
Furthermore, it can also determine the current storage status of paddy samples through the
range of measured values. The national standard of China (GB/T 20569-2006) requires that
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the fatty acid value (KOH/dry basis)/(mg/100 g) of japonica rice can be used to classify
the storage status of rice: suitable for storage (≤25 mg/100 g), mildly unsuitable for storage
(≤35 mg/100 g), and severely unsuitable for storage (>35 mg/100 g). The conventional
detection methods for fatty acid content in paddy are usually based on physical and
chemical tests [9]. Although these methods meet the accuracy standards, there are some
problems such as long detection cycles, difficulty in quantification, destructive testing, and
high instrument costs that need to be further addressed [10]. They are not suitable for the
rapid, non-destructive, batch, and on-site testing needs of modern grain storage technology
aimed at the quality and safety of stored grains [11].

At present, near-infrared (NIR) spectroscopy technology, based on the analysis of
changes in internal components of the samples, has been widely applied in the quality
detection of agricultural products [12,13] such as fruits, vegetables, meat, and grain due
to its advantages of being fast and non-destructive, its simple operation, and not needing
pre-treatment [14]. At the same time, the related standard for NIR analysis models of rice
moisture, crude protein, and other indicators has been issued [15], and it also has good
application prospects in grain and oil quality and safety testing [16]. Some scholars have
conducted research on NIR detection methods for fatty acid values in rice using principal
component analysis, partial least squares regression, support vector machines, and other
main reference algorithms, and have achieved certain results [17]. Other scholars have
established a relationship model by combining the moldy state and the fatty acid value of
rice [18]. In addition, there are also scholars who have used the combination methods of
weighted multiplicative scatter correction with variable selection and partial least square
to dynamically monitor fatty acid values in rice storage based on a portable near-infrared
spectroscopy (NIRS) system [19]. It can be concluded that the combination of NIR technol-
ogy and data analysis methods is feasible for detecting the quality of rice. However, the
accuracy of the detection model and the expression effect of feature wavelengths still need
to be improved.

The collected raw spectral data contain a large amount of collinearity and redundancy
information, which seriously affects the efficiency of data analysis [20]. Therefore, feature
spectrum optimization is one of the important links in spectral data analysis and modeling.
In other words, screening out a small number of wavelengths using appropriate algorithms
can improve modeling efficiency and prediction accuracy. The typical wavelength selec-
tion algorithms such as competitive adaptive reweighted sampling (CARS), successive
projections algorithms (SPA), random frog, and variable combination population analysis
(VCPA) have been applied in spectral data analysis [21,22]. Neighborhood rough set (NRS)
is a feature selection method with strong applicability. Its biggest advantage is to use the
equivalence relationship between the upper and lower approximation sets to obtain the
core knowledge of the data without losing any effective information [23], thereby reducing
information and completing data dimensionality reduction [24]. Liu [25] utilized hyper-
spectral technology and the NRS algorithm to select feature bands and build a classification
model for soybean varieties. Zhu [26] successfully combined NRS with hyperspectral
images for detecting the degree of apple powdering. However, the complexity of most
models can be further simplified, and accuracy and stability still need to be improved.

In addition, the research on spectral feature wavelength selection based on NRS
algorithms is relatively limited, and a complete set of extraction methods has not been
formed. The application modes facing different samples are still in the exploratory stage.
In this study, the NRS algorithm is introduced into the field of the spectral non-destructive
detection of paddy quality and safety, and further applies it to effectively extract spectral
features of different types of paddy. In particular, using the storage state of paddy as
a classification standard and establishing a qualitative model for identifying it is rarely
reported in the literature.

Based on the description above, this study takes japonica paddy as the research object,
and uses NIR technology combined with feature selection methods such as neighborhood
rough sets to establish classification models and discriminate the suitable storage status of
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paddy, achieving rapid non-destructive testing of the safety and quality of the stored paddy.
The specific aims were (1) to collect the NIR data (1000–1800 nm) of paddy samples during
storage; (2) to detect the fatty acid of paddy and identify three grades (storage status) by
these values; (3) to extract the spectral features using NRS, SPA, and VCPA algorithms and
compare their differences; (4) to construct classification models using random forest (RF),
extreme learning machine (ELM), and soft independent modeling of class analogy (SIMCA)
classifiers with spectral features to distinguish the different storage statuses of paddy; and
(5) to compare performances of different models.

2. Materials and Methods
2.1. Sample Preparation

The high-quality japonica paddy was selected for the samples, and they were obtained
from some grain depots in northern China. The moisture content of all the samples ranged
from 14.0% to 14.5%, which met the safe moisture standards for paddy storage. More than
300 samples were packed in airtight bags and first stored in an artificial climate chamber
with a low temperature (≤4 ◦C) for later parameter determination. The effective number
of samples was 285 after sorting, and each sample was divided into two parts, one for
near-infrared spectroscopy data collection and the other for fatty acid value determination.
The fatty acid of the rice was measured by the methods of the developed national standard
of China (milled cereal productions–determination of fat acidity). In the experiment, three
parallel measurements were taken for each sample and the average value was taken as the
final result. Furthermore, the fatty acid values could be used as criteria for determining
the storage status of rice according to the relevant standard of guidelines for evaluation
of paddy storage character (GB/T 20569-2006). In other words, the paddy samples could
be classified into three storage statuses based on the fatty acid value (KOH mg/100 g by
dry basis): grade1 of suitable storage (value ≤ 25.0), grade2 of mildly unsuitable storage
(25.0 < value≤ 35.0), and grade3 of severely unsuitable storage (value > 35.0). After the data
analysis, two-thirds of the samples (n = 190) were selected randomly as the training set and
the remaining one-third (n = 95) was used as the testing set, which ensured independence
between the two sets.

2.2. Near-Infrared Spectrometer

A SupNIR-3000 NIR analyzer produced by Focus Technology (Hangzhou, China) Co.,
Ltd. was used to collect the spectrum data of the paddy sample. The NIR instrument
adopted an optical design that combined holographic digital gratings and a high sensitivity
indium gallium arsenic detector (with TEC cooling and constant temperature). Based on
the principle of diffuse reflection, the sample data were collected and analyzed using a
downward illumination method, which could reduce heating of the sample by the light
source. Additionally, the collected spectral range was 1000–1800 nm, with a wavelength
accuracy of ±0.2 nm, wavelength repeatability <0.05 nm, resolution of 10.9 ± 0.3 nm, and
absorbance noise <5E-5AU. Each sample was collected three times, scanned 32 times, and
the average value was taken to obtain the spectral data of the final sample. The schematic
diagram of the spectral collection in this study is shown in Figure 1.

2.3. Spectral Feature Selection Algorithms
2.3.1. Neighborhood Rough Set

The classical rough set (RS) theory was proposed by Polish mathematician Pawlak [27].
RS theory understands knowledge as the division of data and classification as the equiv-
alence relation in a specific space, which can describe or reduce uncertain or imprecise
knowledge by using feature attributes. In particular, there is no need to provide any other
prior information during the process of data analysis. However, when RS theory is used
for continuous data processing, it needs to be discretized, which causes the loss of original
data feature attributes. Therefore, the concept of neighborhood is introduced into RS theory
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to form a neighborhood rough set (NRS) model to solve the process of discretization of
numeric characteristic variables in the data set [28]. The specific description is as follows:
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Figure 1. Flow chart of spectral data collection of paddy samples.

Assuming the collected near-infrared spectral dataset of rice is S = Xij (i = 1,2,n;
j = 1,2,. . .,m), n is the number of samples and m is the number of spectral bands. Based on
NRS theory, the non-empty real number sample is set as U = {x1, x2, · · · , xn}, C is the con-
ditional attribute (spectral information feature), and D is the decision attribute (three states
of rice storage). Assuming M is the neighborhood relationship for describing C or a decision
attribute table, then NDT = (U, M, D) is the neighborhood decision system. Among them,
the neighborhood of xi(x i ∈ U) can be defined as δ(xi) =

{
xi
∣∣xi ∈ U, ∆

(
xi, xj

)
≤ δ, δ ≥ 0},

where the ∆
(
xi, xj

)
represents the distance measurement function, which usually can

be expressed using the P-norm of ∆p(x1, x2) =
(

∑N
i=1|f(x1, ai)− f(x2, ai)|P

) 1
p . In addi-

tion, for NDT =< U, M, D >, a neighborhood decision system, the set U is divided into
N equivalence classes (X1, X2, . . . , XN) via the decision attribute D and ∀Q ⊆ M, the
lower approximation NQD and upper approximation (NQD) of D about the Q field are,
respectively, expressed as:

NQD =
N⋃

i=1

NQXi (1)
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NQD =
N⋃

i=1

NQXi (2)

where NQXi = {xi|δQ(xi) ⊆ X, xi ∈ U}, NQXi = {xi|δQ(xi) ∩ X 6= Φ, xi ∈ U}.
Variable precision is one of the important parameters in neighborhood rough set

models, which is usually represented by variable factor β. With the introduction of variable
factors, the model can be allowed to have a certain degree of classification error rate. That
is to say, as many classification samples as possible are classified into the same category
under a given relatively small error rate. The data analysis ability of the rough set model is
improved by allowing for certain classification errors in upper and lower approximations to
analyze classification problems with uncertain relationships in probability. The value range
of β is 0.5 < β ≤ 1, when β = 1, equivalent to the classical rough set [29]. Two parameters
of β and neighborhood range δ directly affect the performance of the neighborhood rough
set model and the analysis results of the data. Therefore, β and δ parameter matching and
selection are important steps in model establishment [30]. In this study, the performance of
the model is compared and analyzed under different parameter changes.

The main steps for selecting spectral feature bands based on the NRS model are as follows:
(1) The collected spectral data should be preprocessed, and a decision information

table is further constructed as follows:

M =


s11
s21
...

sn1

s12
s22

...
sn2

· · ·
· · ·
. . .
· · ·

s1m
s2m

...
snm

d1
d2
...

dn

 (3)

where the matrix S represents the spectral information of the sample and can be consid-
ered as a conditional attribute, and snm refers to the spectral value of the nth sample at
wavelength m. Matrix d represents the category of the sample and can be considered as a
decision attribute.

(2) The different β and δ are set for modeling, and the NRS model is trained starting
from an empty set using heuristic search algorithms until the model’s discriminative ability
no longer increases after adding any conditions. Furthermore, the feature variables with
strong representativeness are gradually selected and placed in the subsets. Finally, a series
of feature subsets are generated for subsequent analysis.

(3) Different algorithms are used as classifiers for comparison. A series of feature
subsets are selected as input vectors of classifiers for training and recognition. The final
reduction result is to select a subset that maximizes recognition accuracy and contains the
least number of bands.

2.3.2. Successive Projections Algorithm

The successive projection algorithm (SPA) is a typical spectral feature extraction
method [31]. SPA is a forward variable selection algorithm that minimizes collinearity in
linear space. Assuming the number of samples in the dataset is n and the number of spectral
wavelengths is m, the spectral matrix X is n ×m. SPA starts by selecting any wavelength
as the starting point and iteratively searches for the parts of the projection that have not
been incorporated into the wavelength combination. Each cycle continuously introduces
the maximum projection direction until W times (w < n−1), thus forming a wavelength
subset that minimizes the linear relationship between any adjacent wavelengths in the
subset. In this study, the probability of wavelength selection was calculated and the first
few wavelengths with higher probability were selected as the final candidate variables.

2.3.3. Variable Combination Population Analysis

Variable combination population analysis (VCPA) is a feature wavelength selection
algorithm and its main idea derives from model cluster analysis [32]. VCPA has been
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applied in spectral data analysis. Firstly, the binary matrix sampling method (BMS) is used
to resample the sample space, and further combined with the exponential decay function
(EDF) to eliminate variables unrelated to sample characteristics. The VCPA is usually
combined with the partial least squares regression (PLSR) algorithm, which uses BMS to
sample several sets of variable subsets from the sample variable space and calculates the
probability of each wavelength point variable appearing in this iteration. By using the EDF
to remove wavelength points with lower frequencies, the variable set space is reduced. The
retained variables are repeated with BMS sampling and EDF removal. This process is repeated
N times, and the remaining variables with higher frequencies are combined to form the final
selected feature wavelength. In this study, the sampling frequency is 1000 and the iteration
number is 50; no more than 15 candidate variables are selected during each iteration process,
and the first few variables with higher frequencies are ultimately selected as the characteristic
wavelength variables.

2.4. Classification Models
2.4.1. Random Forest

Random forest (RF) is a non-parametric and nonlinear classification algorithm first
proposed by Tin Kam Ho and later improved by Breiman [33,34]. It utilizes the advantages
of ensemble learning methods to quickly process high-dimensional data and effectively
prevent overfitting. RF has been successfully applied to many neighborhoods, such as
image classification, remote sensing image endpoint recognition, and hyperspectral data
analysis. The main idea of RF is based on bootstrap-resampling technology, overcoming
the weakness of single decision tree classification. Multiple classification decision trees
are generated from the training variable set, forming a random forest to complete the
regression classification process. The importance of wavelength is measured using the
gradient descent of the Gini coefficient and the variable splitting results of all decision trees
are jointly analyzed to reduce the correlation between each classification tree. Measuring the
importance of classification variables improves the performance of the combined classifier,
and ultimately the classification results are determined by the voting method. In this study,
the range of the number of decision trees was set to 1–1000; the specific number of decision
trees and the corresponding number of split variables were optimized using a 10-fold
interactive validation method.

2.4.2. Extreme Learning Machine

The extreme learning machine (ELM) is a kind of machine learning system or method
based on a feed-forward neural network, which can overcome the problems of slow training
speed or over-fitting [35]. According to empirical risk minimization theory, the initialized
input weight and offset of the network model can be set randomly and the corresponding
output weight can be obtained through a one-step calculation. The ELM network model is
also divided into three layers for training and learning, namely the input layer, hidden layer,
and output layer. ELM is considered to have potential advantages in terms of learning
speed and generalization ability over most methods. Some improved versions of ELM have
obtained a deep structure, by introducing an auto-encoder to construct or stack hidden
layers, and can carry out feature learning [22], which makes ELM more suitable than others
for processing multi-class samples.

2.4.3. Soft Independent Modeling of Class Analogy

The soft independent modeling of class analogy (SIMCA) method is a common method
for sample quality classification in chemometrics [36]. The main classification pattern of
SIMCA is further developed based on principal component analysis of the dataset, and
ultimately implemented as a supervised classification method based on pattern recognition.
SIMCA first performs principal component analysis on the sample data of all classes
in the calibration set, constructs a principal component mathematical model for each
predicted class, and further fits and matches the spectral data of the unknown sample to
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the established principal component model of each class. The final analysis identified the
category of the sample.

2.5. Model Evaluation

The performance of the model is mainly evaluated through the correct classification
rate (CCR), which is the percentage of correctly classified samples (Nc) to the total number
of samples (Nt). The formula is as follows:

CCR =
Nc

Nt
× 100% (4)

In addition, sensitivity and specificity are also used to evaluate model performance [37].
Usually, the sensitivity and specificity indicators are close to one, which indicates that the
performance of the model is better. The formula is:

Sensitivity =
TP

FN + TP
(5)

Specificity =
TN

FP + TN
(6)

Among them, TP is the true positive class, which means that true samples are identified as
true samples; FN is a false positive class, where true samples are identified as negative samples;
TN is a true negative class, which means that negative samples are identified as pseudo samples;
and FP is a false negative class, where false samples are identified as true samples.

3. Results and Discussion
3.1. Analysis of Measured Fatty Acid

According to the statistics, 135 samples were classified as grade1 (suitable storage) and
their fatty acid values were in the range of 12.11–25.0 mg/100 g; 104 samples were classified as
grade2 (mildly unsuitable storage), and their values were in the range of 25.13–35.0 mg/100 g;
and 46 samples were classified as grade3 (severely unsuitable storage), and their values were in
the range of 35.15–67.90 mg/100 g. The statistical results of the measured fatty acid values
of paddy are shown in Table 1. Among them, the mean and variance of the calibration
set sample (n = 190) were 24.15 and 10.67 mg/100 g, while those of the test set sample
(n = 95) were 22.47 and 9.27 mg/100 g, respectively. In terms of mean and variance, the
results of the two datasets were relatively close, which indirectly indicated that the division
of the dataset was more reasonable. In addition, the range of fatty acid content in the test
set (12.98–60.21) was precisely covered by the calibration set range (12.11–67.90), which
met the basic modeling requirements, further indicating that the division of the sample
dataset had a certain degree of rationality. Furthermore, the frequency plot of the samples
of both the calibration and test sets based on their measured fatty acid values is shown in
Figure 2. From Figure 2, it can be seen that most paddy samples were in a suitable or mildly
unsuitable state for storage (≤25.0 mg/100 g), with only a small number of samples having a
fatty acid value greater than 35.0 mg/100 g and being in a severely unsuitable state. The overall
data distribution of the three class samples was significant and could serve as a reference for
classification models. However, there were easily mixed status samples at the threshold edges
of 25 mg/100 g and 35 mg/100 g, which may affect the performance of the model.

Table 1. Measured values of fatty acid in paddy based on the calibration and test sets.

Parameters Calibration Set
(n = 190)

Test Set
(n = 95)

Mean 24.15 22.47
Variance 10.67 9.27

Maximum 67.90 60.21
Minimum 12.11 12.98

Range 12.11~67.90 12.98~60.21
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3.2. Analysis of Spectral Characteristics

The pretreatment spectrums by smoothing of all the paddy samples with different
storage statuses are shown in Figure 3. Based on the picture above, it could be seen that the
spectral curves distribution trends of all samples were basically consistent within the testing
band of 1000–1800 nm, and they exhibited a gradient change trend with different fatty acid
contents in the absorbance. With the fatty acid value of paddy increased, the corresponding
absorbance displayed a trend from low to high, and the paddy storage status changed
from suitable storage to severely unsuitable storage. In other words, the paddy with a high
fatty acid value had a relatively strong ability to absorb light, which might be related to
the loss of nutrients such as water, protein, starch, and the darkening of its surface color,
because the increase in the fatty acid value of paddy indicated a decrease in its storage
quality. Furthermore, the test spectrum contained multiple different absorption bands
(1116 nm, 1264 nm, 1650 nm), which might be linked to the different internal components
and contents of hydrogen groups, such as OH, CH, and NH, in the paddy [38,39]. Therefore,
it is necessary to further analyze whether these spectral features can serve as the basis for
establishing classification models for distinguishing the different storage statuses of paddy.

3.3. Feature Wavelengths Based on NRS

The neighborhood rough set (NRS) algorithm was used to optimize the spectral feature
variables. It can be seen from reference [23] that the range of neighborhood size (δ) was
from 0 to 1 and the step size was usually set as 0.05; the range of variable accuracy (β) was
between 0.5 and 1, and the step size was set as 0.05 or 0.1. Based on the parameter values in
reference [26], the combination of β = 0.75 and δ= (0.05, 0.10, 0.15, 0.20) was named NRS-a,
and the combination of β = 0.85 and δ = (0.05, 0.10, 0.15, 0.20) was named NRS-b; these
were used for optimizing characteristic wavelengths, and the results are shown in Table 2.

The 16, 13, 12, and 10 wavelength variables of different δ were selected by NRS-a and
their distribution is shown in Figure 4. The analysis showed that the selected wave-
lengths were mostly distributed near the main absorption peaks and there were certain
commonalities among them in different δ. Thus, the nine wavelength variables with com-
mon characteristics (1057 nm, 1116 nm, 1204 nm, 1298 nm, 1354 nm, 1450 nm, 1454 nm,
1651 nm, 1762 nm) were further refined based on the optimization results of NRS-a for the
establishment of classification models.

For NRS-b, the 12, 10, 8, and 6 wavelength variables of different δ were selected
separately and their distribution is shown in Figure 5. Through contrast analysis, the
number of feature wavelengths selected by NRS-b had decreased and there were dif-
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ferences with the optimization results of NRS-a, but they were also distributed in the
vicinity of the main absorption peak. In addition, the eight wavelength variables (1086 nm,
1148 nm, 1234 nm, 1276 nm, 1400 nm, 1567 nm, 1651 nm, 1754 nm) were condensed based
on the optimization results of NRS-b for the establishment of classification models. It
was necessary to further verify through the established classification model whether the
selected characteristic wavelengths can express the storage state of paddy.
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Table 2. Selection results of optimal wavelengths by NRS-a and NRS-b.

β δ Numbers Optimal Wavelengths/nm

0.75

0.05 16
1043, 1057, 1106, 1204, 1206

1298, 1343, 1354, 1450, 1454, 1592
1651, 1654, 1676, 1690, 1771

0.10 13
1057, 1140, 1204, 1206

1298, 1332, 1354, 1450, 1555
1620, 1650, 1752, 1762

0.15 12
1057, 1123, 1204

1245, 1298, 1306, 1354, 1450
1458, 1476, 1651, 1762

0.20 10
1057, 1116, 1204

1210, 1282, 1354, 1450
1454, 1651, 1762

0.85

0.05 12 1086, 1122, 1148, 1227, 1282
1400, 1530, 1608, 1689, 1719, 1739, 1762

0.10 10 1055, 1148, 1234, 1276, 1400
1567, 1616, 1682, 1754, 1786

0.15 8 1062, 1148, 1234, 1354
1576, 1698, 1754, 1778

0.20 6 1086, 1234, 1562
1650, 1712, 1721
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3.4. Feature Wavelengths Based on SPA and VCPA

The selected optimal wavelength variables using the SPA and VCPA algorithms are
shown in Figures 6 and 7, respectively. For SPA, the 12 optimal wavelengths (1025 nm,
1075 nm, 1106 nm, 1230 nm, 1282 nm, 1296 nm, 1388 nm, 1450 nm, 1464 nm, 1555 nm,
1643 nm, 1737 nm) were selected because they had a higher probability of being selected
than other wavelengths (Figure 5). At the same time, the 13 optimal wavelengths (1057 nm,
1075 nm, 1123 nm, 1214 nm, 1279 nm, 1365 nm, 1416 nm, 1468 nm, 1523 nm, 1590 nm,
1643 nm, 1686 nm, 1744 nm) were selected by VCPA and they had the highest probability of
being selected (Figure 6). The above two sets of spectral characteristic variables did not have
completely consistent wavelengths, but they were all distributed near the main absorption
peaks, which was similar to the optimization results of the NRS algorithm. Therefore, it
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was necessary to further compare and verify the representativeness of the selected bands by
different algorithms through the ability of the established classification model.
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3.5. Classification Model Construction
3.5.1. Identification Results Based on NRS with Classifiers

The selected feature wavelengths by NRS-a (nine spectral bands) and NRS-b (eight
spectral bands) were combined with the three methods of RF, ELM, and SIMCA to establish
different classification models; these were named NRS-a-RF, NRS-b-RF, NRS-a-ELM, NRS-
b-ELM, NRS-a-SIMCA, and NRS-b-SIMCA. The classification accuracies of the different
models are shown in Table 3. The confusion matrix of classification results of paddy storage
status by NRS with different classifiers on the two data sets is shown in Figure 8. From
Table 3 and Figure 8, the classification result of the NRS-a-RF model, with CCR of 96.31%,
was slightly higher than that of the NRS-b-RF model (CCR of 94.21%) in the calibration
set and only one misjudgment was made for the identification of grade3 paddy samples,
severely unsuitable storage. However, there were significant differences in the test set, and
the CCR of NRS-b-RF decreased from 94.21% to 86.31%, whereas the NRS-a-RF model only
decreased by 2.63%. Therefore, the NRS-a-RF model had an ideal classification result in
terms of accuracy and stability.
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Table 3. Classification accuracy of paddy storage status by NRS with different classifiers.

Models
Calibration Set Test Set

CCR (%) CCR (%)

NRS-a-RF 96.31 93.68
NRS-b-RF 94.21 86.31

NRS-a-ELM 93.68 85.26
NRS-b-ELM 91.57 84.21

NRS-a-SIMCA 88.94 82.10
NRS-b-SIMCA 86.31 81.05
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The CRR of the NRS-a-ELM model in both the calibration set (CRR of 93.68%) and test
set (CRR of 85.26%) were higher than that of the NRS-b-ELM model with CCRs of 91.57%
and 84.21%, and there was no significant difference in the discrimination results of individual
grade samples between them. Furthermore, the whole performance of the NRS-a-ELM and
NRS-b-ELM models was inferior to the NRS-a-RF and NRS-b-RF models, which meant that
the classification ability of the RF method was better than the ELM method. Based on the
SIMCA classifier, the whole identification ability of the NRS-a-SIMCA and NRS-b-SIMCA
models was weaker than the NRS-a-ELM and NRS-b-ELM models and even worse than
the NRS-a-RF and NRS-b-RF models. The CCRs of NRS-a-SIMCA, with 88.94% and 82.10%,
and NRS-b-SIMCA, with 86.31% and 81.05% in both the calibration and test sets, were
lower by 11.58% and 12.63% than that of the best NRS-a-RF model in the test set. It is
feasible to use the selected feature wavelengths from the NRS algorithm to identify the
different storage states of paddy, where the feature wavelength from the NRS-a algorithm
was more representative and the performance of the RF classifiers was superior to others.
Therefore, the NRS-a-RF model had great potential for detecting the quality and safety
status of paddy during storage.

3.5.2. Identification Results Based on SPA and VCPA with Classifiers

To further compare the classification ability of extracted spectral features by NRS
algorithms, the selected feature wavelengths by the SPA (12 spectral bands) and VCPA
(13 spectral bands) methods were also combined with three classifiers of RF, ELM, and
SIMCA to establish different identification models. These were named SPA-RF, SPA-RF,
SPA-ELM, VCPA-ELM, SPA-SIMCA, and VCPA-SIMCA, and the classification accuracies
of the different models are shown in Table 4. The confusion matrix of the classification
results of paddy storage status by SPA and VCPA with different classifiers on both the data
sets are shown in Figure 9.

The analysis showed that the whole performances of models based on feature wave-
lengths by the SPA and VCPA algorithms were inferior to classification models based on the
NRS series methods. The classification ability of SPA-RF was higher than that of VCPA-RF
and their CCRs exceeded 90% in the calibration set, at 94.73% and 91.05%, respectively.
For the test set, their CCRs decreased to 86.31% and 83.15% and were lower by 7.37% and
10.53% than that of the best NRS-a-RF model, respectively. That is to say, the stability of
the SPA-RF and VCPA-RF models still needed to be improved. The classification results of
SPA-ELM and VCPA-ELM models showed a downward trend; their CCRs were 88.42% and
84.73% in the calibration set. For the test set, the number of misclassified samples increased
to 19 and 22 and their CCRs were 80.0% and 76.84%, respectively. For the SPA-SIMCA
and VCPA-SIMCA models, their classification results were unsatisfactory. In particular,
the CCRs were only 72.63% and 70.52% in the test set, respectively. From the information
mentioned above, it can be determined that the SIMCA method is probably not suitable for
the classification of paddy storage status based on spectral feature information.

The best NRS-a-RF model and the SPA-RF model were selected to further compare the
identification ability for different paddy samples through the indicators of sensitivity and
specificity (Table 5). The analysis showed that the sensitivity and specificity indicators of
the NRS-a-RF model were distributed within the range of 0.96–0.99 and the indicators of the
SPA-RF model were within the range of 0.92–0.99 in the calibration set. Their performances
were relatively ideal and there was no significant difference between them. For the test set,
the evaluation indicators of the NRS-a-RF model were distributed between 0.93 and 0.98,
which indicated a good stability for it. However, the classification accuracy and stability of
the SPA-RF model showed a decreasing trend (a range of 0.83 to 0.95). From this, it could
be seen that the overall classification performance of the SPA-RF model for the storage
status of paddy samples was also inferior to the best NRS-a-RF model. Therefore, it was
feasible to use the nine spectral feature wavelengths of the NRS-a algorithm combined with
the RF classifier to establish the NRS-a-RF model for the identification of the storage status
of paddy samples.
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Table 4. Classification accuracy of paddy storage status by SPA and VCPA with different classifiers.

Models
Calibration Set Test Set

CCR (%) CCR (%)

SPA-RF 94.73 86.31
VCPA-RF 91.05 83.15
SPA-ELM 88.42 80.0

VCPA-ELM 84.73 76.84
SPA-SIMCA 82.63 72.63

VCPA-SIMCA 80.52 70.52
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Table 5. The results of sensitivity and specificity based on NRS-a-RF and SPA-RF models.

Models Actual
Grade

Calibration Set Test Set

Sensitivity Specificity Sensitivity Specificity

NRS-a-RF
Grade1 0.96 0.98 0.93 0.97
Grade2 0.96 0.96 0.93 0.93
Grade3 0.96 0.99 0.94 0.98

SPA-RF
Grade1 0.95 0.99 0.87 0.93
Grade2 0.94 0.94 0.83 0.89
Grade3 0.92 0.98 0.88 0.95

4. Conclusions

In this study, the accurate identification of the suitable storage status of paddy during
storage using NIR (1000–1800 nm) technology combined with the feature selection algo-
rithms of NRS, SPA, and VCPA was investigated. The storage statuses of paddy samples
were divided into three grades (suitable storage, mildly unsuitable storage, severely un-
suitable storage) based on the values of measured fatty acid as the reference. The different
spectral feature wavelengths were extracted separately using NRS-a, NRS-b, SPA, and
VCPA. Based on the feature wavelengths, three classifiers of RF, ELM, and SIMCA were
used to establish the classification models for identifying the storage statuses of the paddy.
The analysis showed that the nine spectral wavelengths selected by the NRS-a algorithm
coupled with the RF classifier to build the NRS-a-RF model had the best classification
ability, with high CCRs of 96.31% and 93.68% in the calibration and test sets, respectively.
Additionally, the indicators of sensitivity and specificity were 0.93–0.99. Thus, the inte-
grated NRS and RF algorithms based on NIR technology could effectively improve the
identification ability for paddy storage status compared to other methods. This study is
expected to provide theoretical guidelines and new ideas for the development of on-site
rapid inspection technology for grain quality and safety.
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