
Citation: Li, Z.; Zhang, Y.; Yuan, X.;

Xiao, Z.; Zhang, Y.; Huang, Y.

ϕ-OTDR Based on Orthogonal

Frequency-Division Multiplexing

Time Sequence Pulse Modulation.

Appl. Sci. 2023, 13, 11355.

https://doi.org/10.3390/

app132011355

Academic Editor: Michael

(Misha) Sumetsky

Received: 23 September 2023

Revised: 11 October 2023

Accepted: 11 October 2023

Published: 16 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

ϕ-OTDR Based on Orthogonal Frequency-Division
Multiplexing Time Sequence Pulse Modulation
Zhengyang Li , Yangan Zhang *, Xueguang Yuan , Zhenyu Xiao, Yuan Zhang and Yongqing Huang

School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
lizhengyang@bupt.edu.cn (Z.L.); yuanxg@bupt.edu.cn (X.Y.); zyxiao@bupt.edu.cn (Z.X.);
zhang_yuan@bupt.edu.cn (Y.Z.); yqhuang@bupt.edu.cn (Y.H.)
* Correspondence: zhang@bupt.edu.cn

Abstract: This study introduces an innovative phase-sensitive optical time-domain reflectometer
(ϕ-OTDR) technology based on orthogonal frequency-division multiplexing (OFDM) and nonlinear
frequency modulation (NLFM) pulse modulation sequences. The proposed approach addresses the
inherent trade-offs among spatial resolution, frequency response range, and sensing distance that
conventional ϕ-OTDR systems encounter. This method optimizes spatial resolution and sensing
distance by modulating both the frequency and phase of optical pulses. Moreover, it enhances
sidelobe suppression by adjusting the nonlinearity of frequency modulation, reducing interference
between adjacent signals, and improving the signal-to-noise ratio (SNR). Additionally, orthogonal
frequency-division multiplexing expands the frequency response range. This paper elucidates
the fundamental principles and implementation of OFDM-NLFM time-domain pulse modulation
techniques and designs, experimentally validates a ϕ-OTDR system based on this method, and
conducts comprehensive testing and analysis of the system’s performance. The experimental results
demonstrate that the proposed ϕ-OTDR system achieves an 11 m spatial resolution and a frequency
response range of 1–10 kHz over a 16.3 km optical fiber, utilizing a 65 MHz frequency bandwidth with
multiplexed signals across four frequencies. This innovative approach reduces hardware resource
consumption, opening up promising prospects for various practical engineering applications in
optical fiber sensing technology.

Keywords: optical fiber sensing; phase-sensitive optical time-domain reflectometer; orthogonal
frequency-division multiplexing; nonlinear frequency modulation

1. Introduction

Fiber optic sensing technology is a crucial engineering technique that has demonstrated
widespread applications in various fields, including industrial automation, perimeter
security, aerospace, and more. Among these applications, phase-sensitive OTDR, also
known as ϕ-OTDR, has gained significant popularity in the current landscape of fiber optic
sensing technology. This is due to its numerous advantages, such as high spatial resolution,
extended sensing distances, and immunity to the effects of fiber connections [1–4].

The ϕ-OTDR system’s frequency response range is inherently constrained by sensing
distance, where greater distances yield narrower attainable bandwidths [5–7]. Current
methods to widen this bandwidth include positive and negative pulse signals, periodic
non-uniform sampling, and frequency division multiplexing (FDM). Notably, in 2017,
D. Chen et al. introduced a DAS system employing FDM-TGD-OFDR, achieving a 9 kHz
frequency response across a 24.7 km distance with modulation pulses spanning five fre-
quency segments within a 100 MHz bandwidth [8]. Similarly, in 2018, J. Xiong et al. com-
bined positive and negative pulse signals, FDM technology, and chirped pulse ϕ-OTDR,
achieving a spatial resolution of 9.3 m and a frequency range of 0–24 kHz over a 2.1 km
sensing distance using 195 MHz modulation bandwidth and four-frequency segment
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FDM [9]. Moreover, in 2023, Z. Xiao et al. proposed an equivalent sampling method based
on compressed sensing and interval-scanning pulses, thus enhancing the frequency re-
sponse of phase-sensitive optical time-domain reflectometry through periodic non-uniform
sampling [10]. Among these approaches, FDM emerged as a particularly effective approach
in extending the frequency response range. However, this necessitates protective frequency
bands to prevent interference between different frequency segments, thus demanding sub-
stantial modulation bandwidth and high-bandwidth detectors for achieving high-frequency
response bandwidths [11–13]. The spatial resolution of the ϕ-OTDR system relies on pulse
width, and achieving higher resolution necessitates narrower pulses. However, this re-
duction in pulse width decreases the injected optical energy, leading to a lower SNR and
reduced sensing distances [14–16]. Consequently, conventional ϕ-OTDR systems confront
a trade-off between spatial resolution and sensing distance, which poses challenges in
meeting both high-resolution and long-distance sensing requirements [17,18]. Among
the available solutions, linear frequency modulation (LFM) signals often feature narrow
main lobe widths but lower sidelobe suppression ratios. To enhance sidelobe suppression,
time-domain windowing is commonly employed. Nevertheless, this time-domain ap-
proach can diminish the main lobe’s height, resulting in reduced spatial resolution [19–21].
Hence, a shift in frequency modulation techniques becomes imperative to improve the
sidelobe suppression ratio. Differing from some other frequency modulation techniques,
such as linear frequency modulation (LFM), the frequency modulation characteristics of
non-linear frequency modulation (NLFM) signals contribute to reducing sidelobes in the
time-domain signal. This enhances the prominence of the main lobe and improves the
signal-to-noise ratio, thus enhancing the performance of optical fiber sensing systems. This
is particularly crucial in optical fiber sensing applications where better signal quality is
required. In 2019, J. Zhang et al. achieved a sensing range of 80 km and a spatial resolution
of 2.7 m by employing iterative pre-distortion in combination with non-linear frequency
modulation techniques. However, the frequency response range of this system was limited
to 10–610 Hz [22]. In 2022, Y. Muanenda et al. utilized the readily adaptable direct digital
synthesis (DDS) of pulses technique to generate compressed pulses with NLFM waveforms,
thus achieving a spatial resolution of 0.5 m at a distance of 1.13 km. Nonetheless, this
system required a spectrum resource of 500 MHz [23]. Hence, it is evident that the incor-
poration of NLFM technology alone with ϕ-OTDR systems still necessitates addressing
concerns related to frequency response range and hardware resource utilization.

This paper introduces an ϕ-OTDR technique that combines OFDM and NLFM time-
series pulse modulation. It employs multiple orthogonal subcarriers to efficiently stack
spectra, enhancing spectrum utilization and extending the system’s frequency response
range. Within the finite detector bandwidth, this approach allows for more frequency band
multiplexing. NLFM technology is used to fine-tune frequency modulation nonlinearity,
resulting in reduced sidelobe levels, improved sidelobe suppression ratios, reduced inter-
ference between neighboring signals, and an enhanced SNR. The combination of OFDM
and NLFM in pulsed light generates wider pulse widths, enabling more optical energy
injection into the sensing fiber and yielding higher backscattered optical power in long-
distance sensing scenarios. Consequently, this approach enhances spatial resolution and
SNR, extending sensing distances. The experimental results demonstrate that utilizing
OFDM-NLFM time-series pulse modulation with a 65 MHz bandwidth achieves an 11 m
spatial resolution and a 1–10 kHz frequency response range over a 16.3 km optical fiber by
multiplexing four frequencies. This research has the goal of improving fiber optic sensing
technology to make it more practical for applications in industries such as industrial au-
tomation, security, and aerospace. This study’s objectives include expanding the frequency
response range of ϕ-OTDR systems, enhancing spatial resolution, and extending sensing
distances. The introduction of novel modulation techniques is intended to tackle the limita-
tions of current technology, thereby driving progress in fiber optic sensing, increasing its
utility, and fostering its utilization in engineering applications and scientific research.
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2. Principle and Theoretical Analysis
2.1. System Principles

The schematic diagram of the ϕ-OTDR based on OFDM-NLFM time-domain pulse
modulation is shown in Figure 1. It utilizes an OFDM-NLFM time-domain signal as the
pulse modulation signal. This sequence consists of N pulses, and N detection pulses are
multiplexed within one sequence period T. The pulse repetition period is T/N, where the
sequence period T is greater than the maximum round-trip time of light for detection pulses
through the long-distance sensing fiber. The value of N depends on the maximum response
frequency to be achieved and the ratio determined by the sensing distance for sequence
repetition frequency. The pulse width of each detection pulse is τp(τp < T/N), where
τp determines the energy of the detection pulse light, and this energy cannot exceed the
threshold of fiber nonlinearity effects. The detection pulse is an NLFM signal with a mod-
ulation bandwidth of BS, which dictates the system’s spatial resolution. The frequencies
of multiple detection pulses are orthogonal to each other. Additionally, f0 represents the
central frequency of the detection pulse electrical signal, and the central frequency of each
detection pulse varies with a step size of ∆ f . Through OFDM, the input signal is divided
into multiple parallel signals, with each modulated on independent orthogonal subcarriers.
This effectively utilizes the available spectrum and overcomes the bandwidth limitations
in long-distance sensing. NLFM, with its non-linear variation of instantaneous frequency
over time, enhances the sidelobe suppression ratio, reduces interference between adjacent
signals, and improves the system’s SNR [24–28]. The system combines the advantages of
OFDM and NLFM, simultaneously enhancing spatial resolution, frequency response range,
and sensing distance.
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The probing light is modulated into chirp pulses, which can be represented as:

s(t) = rect(t/τp)exp{j2π fat + jπkt2
}

(1)

where rect(t/τp) is a rectangular window function within the time range t ∈
[
0, τp

]
, τp is

the pulse width, fa is the initial frequency of the chirp pulse signal, and k is the frequency
chirp rate [29].

After coherent detection and photodetection, the photocurrent signal is transformed
into a complex signal through the Hilbert transformation in the digital domain. To maximize
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the SNR, a matched filter should be used for data processing. In the digital domain, the
matched filter s∗(−t) is generated to process i(t), resulting in the output signal:

rc(t) = i(t)⊗ s∗(−t) = h(t)⊗ R(t) (2)

Here, ⊗ denotes convolution, and rc(t) represents the trace line of the synthesized
reflectivity of the test fiber. R(t) can be considered as the target detection pulse. Through
the matched filtering process, the original chirped frequency-modulated pulse s(t) is
compressed into R(t). R(t) is a function similar to sine and can be represented as:

R(t) = s(t)⊗ s∗(−t) = rect(
t

2τp
)

sin[πkt(τp−
∣∣t∣∣)]

πkt
exp{−j2π ( fa +

kτp

2
) t} (3)

The system’s spatial resolution R(t) is determined by the full width at half maximum
(FWHM) of the main lobe and is inversely proportional to the chirp frequency range, which
is independent of the pulse width. This breaks the mutual constraint between spatial
resolution and sensing distance. Therefore, by selecting appropriate chirped modulation
pulses, higher spatial resolution can be achieved at longer sensing distances.

The matched filter is the optimal linear filter for white noise signals. If the double-
sided power spectral density of white noise is N f , then the SNR at time t0 is given by

SNR =
Ps

Pn
=

so(t0)s∗o (t0)

E[no(t)n∗o (t)]
≤ Es

N f
(4)

In the equation, Ps represents the power of the filtered output signal so(t) at time t0, Pn
is the average power of the filtered output noise no(t), E[·] denotes the expectation function,
and Es is the energy of the input signal si(t). When matched filtering is employed, the SNR
can reach its maximum value. It is evident from this formula that the achievable SNR of
the system depends solely on the energy of the input waveform and is independent of
other details, such as the modulation type of the input signal. Therefore, for systems with a
constant white noise level, increasing the power and duration of the detection waveform is
the only way to enhance the SNR.

The use of chirp frequency modulation can increase the effective linewidth of laser
pulses, thereby reducing the Brillouin gain and raising the threshold for stimulated Brillouin
scattering (SBS). Additionally, when the carrier spacing is greater than the Brillouin gain
bandwidth, employing multi-carrier pulses distributes pulse energy across optical sideband
carriers, and the SBS threshold is determined by the carrier with the highest spectral power,
further reducing the Brillouin intensity. Therefore, utilizing chirp-modulated pulses and
multi-carrier pulses enables the injection of higher-energy laser pulses into the sensing
fiber, enhancing the SNR for long-distance sensing while also expanding the frequency
response range.

2.2. Generation of NLFM Signals

In ϕ-OTDR systems, the detection signal primarily consists of the backscattered light
from the pulsed optical signal, forming a continuous signal that varies with distance.
Excessive sidelobes can lead to crosstalk between Rayleigh signals at different locations [30].
This paper employs NLFM instead of LFM to achieve lower sidelobe levels and enhance
the system’s SNR.

The theoretical foundation of NLFM signals is based on the phase progression princi-
ple [31]. NLFM signal models are diverse, and generating these signals is more complex
compared to LFM signals, which lack precise signal design methods. In practice, various
approximation methods are employed.

LFM signals are typically represented as

s(t) = u(t)ej2π f0t =
1
√

τp
rect(

t
τp

)ej2π( f0t+ 1
2 µt2) (5)
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u(t) =
1
√

τp
rect(

t
τp

)ej2π( f0t+ 1
2 µt2) (6)

Assuming the signal bandwidth is B, then µ = B/τp represents the frequency modula-
tion rate. By taking the derivative of the phase of the signal s(t), we obtain the instantaneous
frequency of the signal:

F(t) =
1

2π

d(πµt2 + 2π f0t)
dt

= f0 + µt (7)

This paper employs the classical window function inversion method [32,33] to generate
NLFM signals by altering the duration of different frequency components within the signal
while maintaining constant instantaneous power. Once a window function W is given, the
group delay function T of the waveform can be approximately solved using the stationary
phase principle. Then, the phase function is determined based on the instantaneous
frequency. The specific process of signal generation is as follows:

The NLFM signal is represented as:

x(t) = a(t) exp(jθ(t)) (8)

In the equation, a(t) represents the signal’s amplitude, which is typically a constant
value, and θ(t) represents the signal’s phase function. Assuming the spectrum of x(t) is
X( f ), then the frequency response of its matched filter should be:

H( f ) = X∗( f )e−jΘ( f ) (9)

In the equation, “∗” represents complex conjugation, Θ( f ) = 2π f t0, where t0 is the
moment at which the peak of the matched filter’s output signal component is formed, and
e−jΘ( f ) is the linear phase factor. In this case, the frequency spectrum Y( f ) of the matched
filter’s output y(t) is given by:

Y( f ) =
∫ +∞

−∞
y(t) exp(−j2π f t)dt = X( f )H( f ) = |X( f )|2 (10)

For a certain frequency-domain window function W( f ), let:

|X( f )|2 = W( f ) (11)

According to the phase unwrapping principle, it is known that there is a relationship
between the signal’s spectrum and the frequency modulation rate, which is given by

X( f ) ∝

√
1

θ′′(t)
=

√
1

d f (t)
dt

=

√
dT( f )

d f
(12)

In the equation, T( f ) represents the group delay function of the signal, and f (t) is the
frequency modulation function, which are inverse functions of each other. Assuming that the
selected signal’s spectrum after pulse compression is denoted as W( f ), then W( f ) ∝ dT( f )

d f .
Therefore, the group delay function can be obtained by integrating W( f ) as follows:

T( f ) = K
∫ f

−∞
W(v)dv (13)
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In the equation, K is a constant coefficient. When it is required that the NLFM signal
has a bandwidth of B and a duration of tp, we have:

K =
tp∫ B/2

−B/2 W(v)dv
(14)

Based on the relationship between T( f ) and f (t), we can obtain:

f (t) = T−1( f ) (15)

Therefore, the phase function of the signal is:

θ(t) = 2π
∫ t

−∞
f (τ)dτ (16)

At this point, the generation of the NLFM signal x(t) is complete.
The time–frequency spectrum of LFM is shown in Figure 2a, and the compressed

pulse is shown in Figure 2b. Using the method described earlier, NLFM pulses with a
sweep range of 20 MHz and a pulse width of 4 µs were generated through simulation. The
compressed pulse’s amplitude, after undergoing matched filtering, is shown in Figure 2b.
In the figure, the main lobe width of the compressed pulse is measured at 10.2000 m,
with a sidelobe suppression ratio reaching 12.8631 dB. In comparison to LFM, as shown
in Figure 2b, where the main lobe width of LFM is 6.1850 and the sidelobe suppression
ratio is 6.63492 dB, Figure 2c demonstrates the instantaneous frequency of NLFM, and
Figure 2d shows the relative frequency spectra. It is evident that NLFM exhibits significant
improvements in both main lobe width and sidelobe suppression ratio.
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2.3. Generation of OFDM-NLFM Signals

When a pulse consisting of Mt individual frequency-modulated pulses enters the
sensing optical fiber, where each individual pulse has a duration of τp and a frequency
modulation bandwidth of Bs, and the frequencies of adjacent individual pulses are sepa-
rated by ∆ f , with the initial pulse having a central frequency of f0, the central frequency
of the signal for the m pulse is represented as fm = f0 + (m− 1)∆ f . The bandwidth of all
pulse signals is denoted as B = Bs + (m− 1)∆ f .

Assuming the m waveform’s pulse-compressed output spectrum is represented by the
combined window spectrum Wm( f ), then

Wm( f ) =

N
∑

i=1
aiWi( f )

N
∑

i=1
ai

(17)

According to Equation (12), the group delay Tm( f ) of the m pulse signal can be
obtained by integrating Equation (16).

The frequency modulation function of the m pulse signal can be derived from the
group delay as follows:

fm(t) = T−1
m ( f ) (18)

Similarly, integrating Equation (17) yields the phase function:

θm(t) = 2π
∫ t

−∞
fm(τ)dτ (19)

Once the phase function is determined, we can obtain the signal for the m instance of
OFDM-NIFM as follows:

Sm(t) = exp(jθm(t)) (20)

Combining the OFDM-NLFM ϕ-OTDR system with the basic system is essentially the
same. The only difference lies in the driving signal generated by the arbitrary waveform
generator. In the basic ϕ-OTDR system, the arbitrary waveform generator produces linear
sweep pulses with exactly the same sweep range. Constrained by the length of the optical
fiber, the time interval T between each pulse must be greater than the total round-trip time
of light in the fiber. However, in the combined OFDM-NLFM ϕ-OTDR system, the driving
signal generated by the arbitrary waveform generator is as shown in Figure 3.
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The repetition period of the pulse combination remains T, but within each pulse
combination, there are N individual swept-frequency pulses with a time spacing of only
T/N. By employing a frequency reuse algorithm, each pulse can effectively perform one
detection cycle. This enhancement increases the system’s sampling rate for vibrations by a
factor of N and also expands the vibration frequency response bandwidth by N times.

Although the time interval between two pulses is merely T/N, when viewed in the
frequency domain, the frequencies of adjacent pulses do not interfere with each other.
Consequently, the Raman signals generated by these adjacent pulses in the frequency
domain are also free from mutual interference, thus allowing them to be separated using a
frequency-domain multiplexing algorithm.

The spectrum diagram of the OFDM-NLFM signal is shown in Figure 3. When
∆ f = Bs, the spectra of each signal are precisely separate and arranged sequentially,
with each occupying a distinct channel. This separation significantly reduces inter-signal
interference, simultaneously enhancing spectrum utilization and favoring matched filtering.

3. Experiments and Results

As shown in Figure 4, the experimental setup utilizes a narrow-linewidth laser (TeraXion,
SFFL-N-34 (Quebec City, QC, Canada)) with a central wavelength of 1550.2387 nm and a
linewidth of 1.035 KHz. The laser output is split into local light and signal light using
a 10:90 coupler. The signal light is intensity-modulated into an OFDM-NLFM signal
using an electro-optic modulator (EOM, JDSU, X5 (Singapore)). This signal consists of
4 subcarriers, each with an NLFM signal with a sweeping bandwidth of 20 MHz. An
acousto-optic modulator (AOM, Gooch & Housego, T-M080 (Ilminster, UK)) is used for
sideband suppression and a frequency shift of 80 MHz. The modulated pulse light is
then amplified by an erbium-doped fiber amplifier (EDFA). It passes through a circulator
and then enters a grating filter to filter out the amplifier’s spontaneous emission noise.
Subsequently, the light enters another circulator and travels through approximately 16.3 km
of optical fiber. At around 14.3 km, the first piezoelectric transducer (PZT) with 5 m of
wound optical fiber is positioned. Following this, it is connected to a 2 km-long optical fiber
spool. A second PZT, which also has 5 m of wound optical fiber, is placed. Finally, there is
a remaining 20 m of tail fiber at the end. The fiber generates backward Rayleigh scattering
signals. These signals, along with the local light, are combined in the circulator. The beating
frequency signal is detected using a balanced photodetector (BPD, MBD-200M-A) with a
bandwidth of 200 MHz.
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Figure 4. Experimental setup.

The converted electrical signal first passes through a high-pass filter with a cutoff
frequency of 80 MHz. It is then mixed with an 80 MHz sine wave and subsequently
goes through a low-pass filter with a cutoff frequency of 120 MHz. Afterward, the signal
is sampled by an acquisition card, with a sampling rate of 250 MSa/s. The acquired
data are processed using a PC, where each frequency band is down-converted separately,
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followed by low-pass filtering and matched filtering. This process extracts the amplitude for
positioning and simultaneously extracts the phase to reconstruct the vibration waveform.

When the subcarrier spacing is less than 1 times the sweep bandwidth, the received
signal’s positioning SNR and spatial resolution degrade. A 9.8 kHz 1 Vpp sine wave
drive voltage is still applied to the PZT, with a sweep bandwidth of 20 MHz, theoretically
achieving a spatial resolution of 10 m. As an example, considering a subcarrier spacing
equal to 0.75 times the sweep bandwidth, the bandwidth occupied by the four frequency
components should be 20 × 0.75 × 3 + 20 = 65 MHz, as shown in Figure 5:
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Figure 5. The power spectrum of the OFDM-NLFM pulse when the center frequencies of the
subcarriers are spaced by 0.75 times the sweep bandwidth.

The dynamic range of the received signal after matched filtering is approximately
15 dB. The vibration position is determined using a moving differential method, and the
result is shown in Figure 6a. A peak appears at 16.3 km in Figure 6a, indicating the location
of the applied 9.8 kHz sine wave vibration. The SNR for this positioning is approximately
5 dB. As shown in Figure 6b, the moving differential peak of the tested optical fiber at
16.3 km is amplified. The indicated spatial resolution is approximately 11 m, which has
decreased by about 1 m compared to the theoretical value.
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The curves 1, 2, 3, and 4 in Figure 7a represent the results of separate phase demodulat-
ing signals from four different frequency bands. Specifically, curve 1, which is represented
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by the blue curve, shows the time-domain waveform of the signal in the 0–20 MHz fre-
quency band after phase demodulation. Curve 2, which is represented by the red curve,
represents the time-domain waveform of the signal in the 15–35 MHz frequency band
after phase demodulation. Curve 3, which is represented by the yellow curve, displays
the time-domain waveform of the signal in the 30–50 MHz frequency band after phase
demodulation. Lastly, curve 4, which is represented by the purple curve, illustrates the
time-domain waveform of the signal in the 45–65 MHz frequency band after phase de-
modulation. The results demonstrate sine waves with a frequency of 200 Hz in all cases,
confirming the sensing system’s ability to accurately capture all four frequency components
of the vibration signal. The results shown in Figure 7a all indicate sine waves with a
frequency of 200 Hz, confirming that this sensing system can accurately capture all four
frequency components of the vibration signal.
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The amalgamated vibration waveform, which resulted from the sequential concate-
nation of phase-demodulated waveforms extracted from the 4 NLFM pulses, is visually
represented in Figure 7b. Employing a fast Fourier transform (FFT) technique on the
aforementioned vibration waveform, as showcased in Figure 7b, has enabled the derivation
of the corresponding power spectrum, which is prominently depicted in Figure 7c. Within
Figure 7c, a conspicuous peak is discernible at precisely 9.8 kHz, which is concomitant
with the inherent frequency of the vibration signal, demonstrating an impressive SNR
at approximately 40 dB. Figure 7b,c collectively underscore the capabilities of this sens-
ing system, underpinned by its employment of OFDM. Notably, this system exhibits an
unprecedented capacity for augmenting the frequency response range inherent to vibra-
tion signals. Moreover, the amalgamation of phase demodulation results from multiple
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NLFM pulses validates its capacity to reconstruct high-frequency vibration waveforms
with precision.

In the context in which the subcarrier center frequencies exhibit a spacing equivalent to
0.75 times the sweep bandwidth, an experiment was conducted involving the application of
a swept sine wave signal with specific parameters. This signal entailed a rise time of 20 ms, a
fall time of 20 ms, a frequency range spanning 1–10 kHz, and an amplitude characterized by
a peak-to-peak driving voltage of 0.5 Vpp. The subsequent phase-recovered time-domain
signal has been thoughtfully depicted in Figure 8a, while the outcome of subjecting the
time-domain signal to short-time Fourier transform (STFT) is meticulously presented in
Figure 8b. These visual representations, denoted as Figure 8a,b, serve as empirical evidence
affirming the capability of this sensing system. Employing FDM, this system effectively
expands its frequency response range from the initial 1~2.5 kHz to a more comprehensive
1~10 kHz range, marking a substantial fourfold enhancement in comparison to traditional
single-frequency pulse approaches.
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When the subcarrier center frequency spacing was 0.75 times the sweep bandwidth, a
triangular wave with a frequency of 200 Hz and an amplitude of 5 Vpp was applied to PZT1,
while a sine wave with a frequency of 4.8 kHz and an amplitude of 1 Vpp was applied to
PZT2. The results of the motion differential are shown in Figure 9, with a localization SNR
of approximately 8 dB.
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The vibration applied to PZT1 is depicted in Figure 10a in the time domain, with the
corresponding power spectrum shown in Figure 10b, which exhibits an SNR of approxi-
mately 55 dB. For the vibration applied to PZT2, its phase-recovered time-domain signal
is illustrated in Figure 10c, accompanied by the power spectrum shown in Figure 10d,
which boasts an SNR of roughly 35 dB. These representations in Figure 10a–d collectively
validate the system’s capability to identify and accurately reconstruct the waveforms of
multiple-point vibrations.
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4. Conclusions

This study presents a novelϕ-OTDR technique that integrates OFDM and NLFM pulse
modulation. The application of OFDM-NLFM signals addresses the challenges related to
long-distance sensing, particularly in terms of limited frequency response bandwidth. By
increasing the repetition frequency of the probing light through frequency multiplexing,
this approach enhances spectral efficiency and expands the system’s frequency response
spectrum. Additionally, it enables more advanced frequency division techniques within
the receiver’s confined bandwidth. Fine-tuning the degree of nonlinearity in frequency
modulation improves sidelobe suppression, reducing interference between adjacent signals
and enhancing the system’s SNR.

In summary, our investigation demonstrates optical fiber sensing with a 65 MHz
frequency bandwidth, with multiplexing of four distinct frequency components using
OFDM-NLFM signals. This innovative approach achieves an 11 m spatial resolution over
a 16.3 km optical fiber span while covering a frequency response range from 1 to 10 kHz.
These empirical findings highlight the substantial potential of this technique in extending the
frequency response capabilities ofϕ-OTDR systems, paving the way for its integration in diverse
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optical fiber sensing applications. Future studies may explore further advancements in signal
processing and parameter optimization to maximize performance and applicability.
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