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Abstract: Heating, ventilation, and air conditioning (HVAC) system performance research has re‑
ceived much attention in recent years. Many researchers suggest a set of appropriate fuzzy inputs
that can be used to design fuzzy rules‑based smart thermostats or controllers that can respond to
demand‑controlled ventilation, which in turn optimizes HVAC energy usage and provides satisfac‑
tory indoor temperatures. Previous research has focused on limited input parameters, such as indoor
occupancy status, ambient temperature, and humidity constraints, which cannot efficiently and pre‑
cisely manage thermal comfort. Hence, this study proposes a novel fuzzy controller with additional
input parameters to keep indoor thermal comfort consistent with the corresponding number of oc‑
cupants. The process employs an automatic fuzzy rule generation method to simplify the task of
generating rules in the fuzzy inference system (FIS) using Mamdani FIS. A design‑builder is used
for modeling the HVAC systems. Local weather data were used to conduct simulations via Energy‑
Plus. The thermal comfort analysis using the Fanger model for three different scenarios shows that
the proposed FIS controller can successfully respond to the indoor comfort variation in all possible
scenarios and ensure a satisfactory comfort level. The proposed method demonstrates up to 50%
energy savings if occupants do not worry about comfort.

Keywords: smart home; fuzzy logic; thermal comfort; smart thermostat; temperature setpoint

1. Introduction
Research has found an unexpected 2.9% growth inworldwide energy consumption in

building sectors compared to a typical yearly increase of 1.5%, and this number is expected
to rise dramatically in the coming years. Demand was consistent across different nations,
with China and the United States emerging as the world’s greatest energy consumers since
2002 [1]. This trend is closely related to population growth, the expansion of industry and
building infrastructure, climate change, and governments’ efforts to improve the living
standards of their citizens. Furthermore, there has been an atypical rise in the demand and
shipment of energy‑intensive appliances such as microwaves, hair dryers, air conditioners,
heating systems, televisions, and other home appliances worldwide [2].

HVAC systems are significant energy consumers, contributing up to 80% of building
peak loads [3,4] due to their reliance on ambient conditions. Studies on demand response
programs in [5–7] presented techniques to help customers schedule peak load profiles
during periods of peak energy consumption or transition to renewable energy systems.
Studies on fuzzy controllers have proposed predictive model control (PMC) [8,9], artifi‑
cial neural networks (ANN) [7,10–13], and adaptive control (AC) [14–16] to lower energy
usage based on occupant comfort needs. The PMC technique has been used to optimize
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occupant comfort [3,17], while ANN and AC provide solutions to optimize energy usage
performance during periods of extreme heat [18–20] while maintaining acceptable indoor
comfort levels.

Most of these studies use ambient temperature and humidity to control indoor com‑
fort and energy consumption [21–23]. Studies in [24,25] argue that ambient temperature
and humidity cannot fully or precisely reflect the occupant’s thermal comfort sensation in
light of other parameters. Consequently, this study modified IoFClime [26] to implement
occupancy‑based controls to deal with the aforementioned challenge and achieve high en‑
ergy savings potential. IoFClime is anHVAC‑based controller that implements fuzzy logic
to manage room temperature while taking into consideration outdoor conditions.

A fuzzy inference engine was used to model inputs with a specified number of de‑
fined rules to keep the indoor temperature consistent with the desired comfort level under
three possible scenarios. A feedback loopwas included to deal with changes in the desired
comfort level, and a real‑time electricity tariff was used to evaluate the proposed approach
against energy consumption and thermal comfort levels.

The proposed approach can reduce energy consumption by up to 50% when occu‑
pants choose to sacrifice thermal comfort for energy savings, in comparison with the study
in [26] (IoFClime). The proposed fuzzy controller has the following key contributions:
• The interface allows the occupant to set the desired setpoint on the thermostat.
• Depending on the desired setpoint, the controller picks up and regulates energy con‑

sumption within the range of the occupant’s desired thermal comfort zone.
• Finally, the proposed approach can be utilized to take on additional parameters.

This research is organized as follows: The literature review in Section 2 presents anal‑
yses of the recent smart HVAC controller. The problem formulation is presented in Sec‑
tion 3. An overview of system implementation is presented in Section 4. The study results
are presented in Section 5. Finally, Section 6 concludes the study.

2. Literature Review
Over the years, HVAC equipment has been used in buildings to improve indoor ther‑

mal comfort and ensure healthy living environments [27]. HVAC equipment has histor‑
ically consumed more than twice the expected primary energy demand because of poor
operational management. Recently, the research in [1] described automated strategies to
turn on HVAC systems when spaces are occupied and turn them off when spaces are va‑
cant. These strategies use occupant data and indoor metrological conditions to formulate
a model that activates the controller and controls the HVAC operation. The procedures to
minimize HVAC energy consumption can be classified into predictive and non‑predictive
approaches [1,2].

2.1. Existing Predictive Control
Predictive control automates themanagement of HVACoperations based on dynamic

indoor weather conditions or occupancy data. Predictive control uses an explicit control
system modeled with different parameters to meet demand response design criteria. In
other words, predictive control relies on external signals that are supplied in advance to
activate demand control. One of the advantages of predictive control is that changes to the
occupancy schedule do not affect the performance of the controller. The current predic‑
tion algorithm in [28–32] requires a control value like cost, heat demand, or photovoltaic
generation to fulfill demand as cheaply as possible. This suggests that controllers must be
supplied with the proper input to determine the ideal moment to use energy. Thus, the
control systemmust use the input data to obtain the best output possible from the process.
A typical example proposed in [33] uses a more advanced controller that uses inference
rules frequently. The scheduling strategy often relies on precedents and practical resource
restrictions to estimate job start and finish times, whereas rule‑based strategies have spec‑
ified membership functions and inference rules for control decision‑making.
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Studies in [8,34–36] use real‑time occupancy information collected through various in‑
stalled devices such as passive infrared, audio, carbon dioxide, and camera sensors within
the perimeter of interest to detect and predict occupancy in the space. These approaches
attempt to minimize the false results in occupancy prediction from the previous literature
and improve appliance energy consumption. However, these approaches face challenges
in predicting actual human occupancy to avoid false negatives triggered by non‑human
objects such as pets. Similarly, predicting the total number of occupants in the building
and adjusting thermal comfort levels accordingly is another challenge.

The study in [37] discusses an HVAC controller that uses carbon dioxide (CO2) and
passive infrared sensors to detect occupants and send a signal to the actuator to regulate
temperature depending on the number of occupants in the building. Although these sen‑
sors arewidely used in the previous literature, their commercial application is not practical,
as suggested by [38]. A similar approach applied CO2 in conjunction with ML algorithms.
The evaluation of the results indicates solid performance even with sudden changes in
temperature in the perimeter of interest when space has been occupied.

A study in [8,39,40] proposed a controller for occupancy detection using audio to ef‑
fectively identify human occupancy. This controller used a Gaussian mixture model to
estimate the total number of occupants in a space. The proposed method achieved a cer‑
tain level of accuracy but with a high number of false results caused by nearby external
sounds. Similarly, the approach required all indoor occupants to speak simultaneously to
perform the occupancy estimation for HVAC ventilation control.

To enhance the accuracy of the controller in [9], the study in [39] introduced a back‑
ground cancelation procedure to deal with noise inference from undesirable sources by ig‑
noring the frequency level of the desired sound frequency threshold. The idea relies on the
strength of the sound frequency received by the background cancelation algorithm, which
reduces false alarms by 11–12% and energy consumption by 3.54%. Despite the application
of the background cancelation algorithm, the study suffers from false occupancy prediction.

A controller proposed in [41] combined camera‑based image and video processing
with the help of computer vision (CV) libraries and estimated total occupancy numbers
throughheadcount or indoor object tracking. A similar approach in [42] used single‑camera
occupancy detection to control ventilation in the lecture theater through a headcount es‑
timation procedure. The experimental results show good performance in occupancy pre‑
diction. However, the false results described in the report occurred due to poor camera
coverage when students randomly entered or exited the perimeter of interest. The major
challenge of this study is poor occupant detection during periods of occupancy overlap.

An adaptive controller is proposed in [43–46] that uses a collaboration of optical and
passive infrared cameras to detect human occupancy in space. The idea is to reduce poten‑
tial false alarms by using a single camera to ensure reliable detection, thereby increasing
HVAC energy savings and improving thermal comfort.

2.2. Existing Non‑Predictive Control
A controller that implements non‑predictive control relies heavily on fixed timetables.

It uses such data to create amodel that predicts when a buildingwill be filled and uses that
information to regulate HVAC operation. In a setting where activities follow a predeter‑
mined daily schedule, this sort of control strategy may be useful. Commercial structures
like offices, labs, and corporate environments are fantastic illustrations that reflect the lit‑
erature [22,47–50]. However, this strategy would not be effective in places where occu‑
pancy does not adhere to a set timetable. Most of the non‑predictive controllers, such as
those in [43,51], employ binary algorithms and demonstrate that frequent on/off cycling
tends to shorten the lifespan of electrical appliances. As such, more advanced controllers
in [52] using decision control algorithms such as fuzzy logic were designed as improve‑
ments to binary algorithms with sets of values other than zeros and ones, allowing for
additional control.
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The research in [12] proposes controlling HVAC energy usage according to demand,
as the controller can postpone operation whenever electricity prices are at their highest. A
similar approach in [7] uses a scheduling strategy to determinewhich control signalwill ac‑
tivate energy consumption. This strategy uses a rule‑based technique to quickly access the
power grid voltage or rate stabilization and is an excellent example ofmodel‑based control.

The schedule‑based controller previously used in [7,53–56] reduces energy costs and
prevents the usage of appliances during times of high demand. For instance, it is possi‑
ble to schedule standby equipment to operate when energy costs are lower so that other
appliances in the house may operate. Both runtime and static techniques may be used to
provide this control.

3. Problem Formulation
A reactive response must deal with the dynamic variation of indoor comfort through

demand‑controlled ventilation. Most of the existing solutions are limited to ambient tem‑
perature and humidity, while, in fact, there is a much larger set of additional input factors
that combine to drive healthy indoor thermal comfort. For example, the initialized setpoint
is one of the essential parameters defining desired comfort levels and has been ignored in
previous research [20]. These input factors include occupancy number, desired comfort
level, metabolic activity, clothing, perceived temperature, and airspeed. However, not all
these inputs can be practically modeled and implemented in a control system. For this rea‑
son, temperature‑ and humidity‑based controllers are not efficient for maintaining desired
comfort levels and high energy savings potential.

This study proposes an adaptive controller utilizing five input factors, as shown in
Figure 1.
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This study uses an 11‑point thermal sensation scale (on a scale of −5 to 5), as shown
in Figure 2.
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Figure 2. ASHRAE 55 and ISO 7730 11‑point thermal sensation scale.

Since an 11‑point scale covers both sides and a mid‑point, we can consider the right
half (1 to 5) as a 5‑point scale on the positive side. Similarly, we can consider the left half
(−1 to −5) as a five‑point scale on the negative side. This study employed this scale to al‑
low the occupants to choose their comfort satisfaction levels and participate in the demand
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response program, thereby offering a choice betweenmaximizing energy savingsand strik‑
ing a balance between comfort and energy savings.

3.1. Overview of the Proposed Fuzzy Controller
Fuzzy logic systems (FLSs) have shown solid proficiency in decision‑making research

that deals with approximations rather than exact values. Additionally, their mathematical
modeling requirements for practical implementation in a control system are not complex
compared to conventional techniques [57]. For this reason, the study utilizes FLS for the
design and implementation of the proposed controller presented in Figure 2. The fuzzy‑
based HVAC controller consists of four main components: fuzzification, inference engine,
fuzzy rule base, and defuzzification. Figure 2 shows these elements as well as the overall
FLC design. Each element influences the controller’s efficiency and behavior. For instance,
during the fuzzification process, the fuzzy component translates measurements of crisp
input data into fuzzy data or membership functions (MFs) known as linguistic variables,
which are analogous to human decision‑making. The fuzzy inference method combines
theMFs and the control rules (i.e., rule base) in the second stage to produce the control out‑
put. The basis of a fuzzy inference engine’s operation is its rule base, and those rules have
a strong affinity with human emotion and intuition. Specifically, it offers the knowledge
required for the language control rules underlying fuzzification and defuzzification.

The MATLAB Fuzzy Logic Toolbox offers tools to construct and update fuzzy infer‑
ence systems in the design process of the FL controller for HVAC. The total flow process
of the FLC‑designed system is shown in Figure 2. Fuzzy logic controllers come in two va‑
rieties: Mamdani‑based controllers and Takagi–Sugenos–based controllers. We used the
Mamdani‑type FISmethodology as a fuzzy inferencemethod because the Sugeno FIS does
not have an output membership function while the Mamdani‑type FIS does.

The input variables used in the proposed controller include temperature (T), humidity
(H), occupancy (O), initialized setpoint (Is), and energy price (P). These inputs are fuzzified
to generate fuzzy membership functions (MFs), which are part of fuzzy sets defined in a
readable and understandable format.

As shown in Figure 2, the FIS takes four crisp inputs and fuzzified them, generating
fuzzyMFs using the fuzzy engine. It then applies fuzzy operators to fuzzyMFs to construct
fuzzy rules that signify the fuzzy input relationship effect on the output variable through
a fuzzifier. The fuzzy model proposed to manage the HVAC system is implemented using
Mamdani FIS.

The following rules and assumptions are followed for Mamdani FIS, and the conclu‑
sionusing the linguistic variables ismathematically presented in Equation (1). For example,

IF (OutdoorT) is (“Warm”) AND (IndoorT) is (“Warm”) AND (P‑Rate) is (“Low”)
AND (Occ) is (“Present”) AND (ISP) is (“Low”) AND (Humidityrel

)
is “Normal,” THEN

ventilation frequency is “Normal.”

z =
∫
µc(z).zdz∫
µc(z)dz

(1)

For the energy consumption cost, the following formula (see Equation (2)) is used
to calculate the total hourly energy consumption cost: where Cost(h) represents hourly
cost, EC(h) represents energy consumption on an hourly interval, and P represents the
electricity tariffs based on real‑time price (RTP).

Cost(h) = EC(h)× P(h) (2)

The peak‑to‑average (PAR) formula is used to obtain information on the peak load
during a power imbalance (see Equation (3)).

PAR =
Loadmaximum
Loadaverage

(3)
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To determine the efficiency of the proposed approach, the following equation (see
Equation (4)) is used to calculate the efficiency gain compared to previous approaches,
where Valuepre represents the efficiency attained by an existing study and Valuepro repre‑
sents the efficiency achieved by the proposed approach.

EfficiencyGain =
Valuepre −Valuepro

Valuepre
(4)

3.2. The Proposed Model
Theproposed FISHVACcontroller utilizes a rule‑based inference system todetermine

the optimal setpoint using combinations of input values from the sensors and price values
from the smart grid. Depending on the inputs and energy prices, the rules are fired, and
the optimal setpoint value is delivered to the controller to adjust the desired temperature.
The proposed HVAC controller can be extended with an additional number of parameters
to increase the control efficiency and can be embedded in an IoT system.

RTOS is a highly scalablemicro‑kernel‑based real‑time operating system designed for
scalability and reliability and is easier to implement with IoT applications. For this reason,
the study considered the Nucleus RTOS operating system. The combinatoric method gen‑
erates 175 rules automatically based on the five proposed input parameters. The variation
in ambient temperature and humidity is measured using the thermodynamic model [57],
occupancy number using the million per pert model [25], and energy price from the smart
grid incentive, which is sent to the feedback loop system together with the desired initial‑
ized setpoint.

3.3. Modeling of Indoor Cooling System
This study adopts the indoor cooling strategy proposed in [52,58] to maintain the

desired temperature level in a zone. Figure 3 shows that the air conditioner has provided
the zone with the required energy to maintain the desired temperature corresponding to
the initial thermostat setpoint settings.
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Whenever the building is occupied, the occupancy prediction sensor attached to the
thermostat sends a signal to the proposed controller, which in turn commands the air con‑
ditioner to start operating depending on the number of occupants in the building. The air
conditioner works by introducing outdoor air (OA) to increase the cooling load and dilute
the level of CO2 produced by occupants, updating the thermal comfort to an acceptable
level. The exhaust air (EA) is connected to the outdoor air damper to control the flow of
return air (RA) to attract combination air (MA) into the air handling unit. The combination
air is dehumidified by a cooling coil (CC), humidified by a humidifier (HD), and heated
by a heating coil (HC) to achieve the preferred air mixture for the air‑conditioned zone.
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Themodel starts bymeasuring the difference between sensible heat temperature (THA ),
outside air moisture (MOA), room temperature (TRA), and return air moisture (MRA) and
sends a signal to the controller. After that, the control parameters of the mass flow rate of
the air stream ( .ma), heater input power percentage (α), humidifier output power percent‑
age (γ), and outside air damper opening (ß) of the HD, HC, and CC are changed, and the
air conditioner then begins to lower the room temperature. The given values of THA are
again comparedwith roomTRA andMRA and sent to the feedback loop. The steady flow in
the mixing procedure for energy optimization can be presented as shown in Equation (5).

(1− β)× .maTHATRA + β× .maTHATOA =
.maTHATMA

β× .macpa(TOA − TRA) =
.maTHA(TMA − TRA)

(5)

The mass of moisture air can be balanced as shown in Equation (6).

(1− β)× .maMRA + β× .maMOA =
.maMMA

β× .ma(MOA −MRA) =
.maTRA(MMA −MRA)

(6)

3.4. Cooling Model
This study adopted a cooling model [52,58] to convert the energy in a chiller, which

uses a chilled water cycle in conjunction with the evaporator. The steam in moist air con‑
denses moisture as air moves through it, resulting in a lower temperature in the chilled
water and a higher temperature in the return air dewpoint. The chilled water coil receives
the mixed air, eliminating the sensible and latent heat of the air (Qes and Qel). The dehu‑
midified and cooled air is fed to the heater. As air circulates in the chilled water, the heat
exchange rate reaches 100%, making it easier to extract condensed moisture from the coil
instantly by gravity (see Figure 4), representing steady flow operation.
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By ignoring the variance potential and kinetic energy, the energy optimization of the
chilled water can be presented as Equation (7)

−
( .
Qes +

.
Qel

)
= cpa(he − hMA) (7)

The energy of dry air and water vapor is divided into the humid air energy variance:

−
( .
Qes +

.
Qel

)
=

.macpa(Te − Tm) +
.mahfg(we −wm) (8)

Since Qes affects only the air temperature and Qel affects only the air vapor, then
Equation (8) can be written as shown in Equations (9) and (10):

−
.
Qes =

.macpa(Te − TMA) (9)

−
.
Qel =

.mahfg(we −wMA) (10)
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Equation (10) can be simplified to the vapormass conservation equation, as presented
in Equation (11).

Qel
hfg

=
.ma(we −wMA) (11)

3.5. Humidifier Model

The output power (γ
.
QL) of the humidifier is used to transfer electrical energy to latent

heat. A steam humidification model is applied to the system to adjust the humidity of the
air supply. The air that the machine has treated is pumped into the air conditioning zone.
However, under this condition, variations in humidity can affect the indoor temperature.
Equation (12) represent humidifier which can be used as a basic vapor mass conservation
equation. The humidifier can be presented as follows:

γ
.
QL
hfg

=
.ma(ws −wh) (12)

3.6. Integration of the Thermal Comfort Model
The variation in temperature, occupancy, and other indoor variables that can transfer

heat to the space can significantly influence the thermal comfort of the air‑conditioned
zone. Therefore, the thermal comfort variation modeling based on the dynamic energy
optimization equation in [52] is adopted as follows:

.
QC.V =

.
WC.V. + ∑

out

 .

.m

(
h+

V2

2
+ gz

)−∑
in

 .

.m

(
h+

V2

2
+ gz

)+
dEC.V.

dt
(13)

If the potential and kinetic energy variations are disregarded, Equation (13) can be
reduced as follows:

.
QC.V = ∑

out

.
mh−∑

in

.
mh+

dEC.V.

dt
(14)

Since different indoor parameters can influence air conditioning loads, the thermal
comfort state can represent

.
Qrs and

.
Qrl, and Equation (14) can be used to derive the energy

optimization (Equation (15)) for an air‑conditioned zone:

mCVcv
dEC.V.

dt
=

.macp
(
TQA−TRA

)
+

.
Qrs (15)

The change in the air‑conditioned zone humidity is presented below:

mCV ×
dwC.V.

dt
=

.ma(wSA−wRA)×
.
Qrl
hfg

(16)

where .macp(TSA−TRA) is energy and
.ma(wSA−wRA) is mass vapor, considering the vari‑

ation in indoor parameters in the air conditioning zone. Equation (16) can be joined with
the thermalmodel. The resulting equations (see Equations (17) and (18)) below are applied
to measure the variation inindoor comfort.

mcV
dTC.V.

dt
=

.macpa(Th−Te) + β
.macp(To−Tr)−

.macp(Tm−Te) +
.
Qrs (17)

m
dwC.V.

dt
=

.ma(ws−wh) + β
.ma(wo−wr)−

.ma(wm−we) +

.
Qrl
hfg

(18)
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4. SystemModel Implementation
When dealing with the control system, the operation is mathematically modeled for

traditional buildings but is not needed in intelligent systems (i.e., model‑free automatic
controllers). Model‑free controllers previously proposed in [52,58,59] do not implement
feedback control. One of the reasons is that these studies were designed to recognize occu‑
pancy status as an indicator of occupants present in the building. However, predicting the
occupancy status in the building cannot provide enough information to adjust the setpoint
temperature accurately.

Hence, the research considered occupancy numbers intending to make the controller
respond whenever occupants enter or exit the building. Previous research [31,59] presents
a framework on how occupancy can be estimated and used by the fuzzy controller to
balance HVAC energy consumption with thermal comfort according to the occupancy
of the building.

Therefore, unlike in previous studies, the proposed controller can adjust setpoint tem‑
perature concerning room occupancy without having to adjust other parameters like in‑
door carbon dioxide or humidity through feedback control. At the same time, occupants
can choose their preferred comfort levels through initialized setpoints using an adaptive
control strategy [24].

4.1. Temperature Input
Indoor temperature is a crucial factor in assessing user comfort. Inmany cases, indoor

temperature is the driving factor that influences HVAC energy consumption. Maintaining
an average temperature in harsh weather conditions can lead to high energy consumption.
Figure 5 depicts the indoor temperature membership. The variable temperature was mod‑
eled with five fuzzy sets for indoor temperature labeled normal (N), warm (W), hot (H),
very hot (VH), and extremely hot (EH), with a value range of 15–40 ◦C.
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4.2. Humidity Input
The humidity variable has a significant influence on the change in the desired ther‑

mal comfort level. Therefore, incorporating relative humidity into the proposed system is
essential to assessing indoor comfort. The ASHRAE standard, based on the guidelines pre‑
sented in [24,25], was used to model temperature and humidity to ensure indoor thermal
comfort. Therefore, humidity is modeled with three fuzzy sets labeled low (L), normal (N),
and high (H) with a value range of 30–100%.

4.3. Occupancy Input
Occupancy status has been used in previous studies as an indicator of room occupa‑

tion to start ventilation activities, but it could not be used to increase or describe ventilation
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requirements. This study proposes the occupancy number as an input to a controller that
can be used to set a temperature setpoint proportional to the occupancy number to balance
energy consumption and thermal comfort.

This study uses an occupancy predictionmethodology proposed in our previous work [59].
Theprocedure consists of the roomoccupancymeasurement andanoutput that is fed to the fuzzy
system to generate the appropriate setpoint temperature.

Figure 6 displays the membership values for the occupancy input parameter and is
labeled absent, low,medium, or high. The proposed controller can handle a 175‑occupancy
capacity.
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4.4. Initialized Setpoint
The initialized setpoint is considered an input parameter to enable occupants to ad‑

just the thermostat setpoints to fit their needs and preferences. For example, to minimize
energy consumption and sacrifice comfort satisfaction, a high setpoint can be considered.
On the other hand, if the occupant cares more about comfort than energy consumption, a
lower setpoint is used. At the same time, a normal setpoint enables the thermostat to bal‑
ance thermal comfortwith energy consumption. On a timely basis, the proposed controller
monitors the variation in initialized setpoints and assists in applying the applicable rule to
adjust the thermostat based on occupant preference. The initialized setpoint values used
are based on the recommendations in [24,52] for healthy indoor conditions. The initialized
setpoint variable is modeled with three fuzzy sets labeled low (L), normal (N), and high
(H) (see Figure 7).
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4.5. Electricity Tariff
During the simulation process, it is essential to define the type of electricity tariff consid‑

ered. Different electricity tariffs produce different output results on both energy usage and
the distribution of thermal comfort analysis. Based on the three electricity tariffs proposed
in [20], this study considered real‑time pricing (see Figure 8) for evaluating the proposed con‑
troller. The choice of electricity tariff is highly subjective to the types of building appliances.
However, HVACusers can greatly benefit from a real‑time pricing scheme that provides them
with current energy costs and offers energy consumption choices (sacrifice of comfort, com‑
fort satisfaction, or balance of energy cost with comfort level). Additionally, an occupant can
modify the choice at any given moment as necessary, especially when receiving incentives
from the grid during periods of extreme heat. The variable electricity tariff is modeled with
three fuzzy sets labeled low (L), normal (N), and high (H) (see Figure 8).
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Figure 8. Three different electricity tariffs.

Most energy suppliers today do not offer a flat rate for the energy used throughout the
day. Residents noticed the difference in wholesale prices, particularly in harsh weather or
during peak hours. When there is a large electricity demand. occupantswill be charged the
highest rate per kilowatt/hour during this time. Alternately, the proposed controller used
the energy price parameter as an input value to control HVAC energy consumption. The
parameter is provided with three membership variables as indicated in Figure 9 (“Low”,
“Normal” and “High”) to help occupants lower the HVAC energy usage.
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4.6. Generation of FIS Rules
The proposed approach is implemented using fuzzy rules to measure total energy

usage. The rules in the FIS tend to increase in conjunction with the FIS input parameters.
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Combinatorics and 175 weightage rules are added to the existing 486 rules in [57]. The
weightage is assigned to each input parameter in the algorithm, which is then used to
measure the score, which is then used to assign values to output parameters.

The process of FLC involves a fuzzification process to initialize anddefine all the input
membership functions, a rule definition process to assign the required output fuzzy value
to the input parametermembership functions, and a defuzzification process following rule
evaluation to achieve a crisp value for energy consumption. After that, the remaining per‑
formance metrics are determined.

To avoid the combinatorial growth of the IF‑THEN rule, the score parameter is intro‑
duced as an indicator of energy consumption. The overallweights assigned to the variables’
membership functions are used to measure the score. The weights are determined by the
membership function, with weights of 0, 1, and 2 for low, medium, and high membership
functions (see Algorithm 1).

The occupancy input parameter has binary weights of 0 or 1. The model for the rule
generation algorithm is based on the score (S) of combinations of input parameters, as
presented in Equation (19) below.

S = ∑6
i=1 W(𝓋i) (19)

Algorithm 1. Automatic Rule Generator Algorithm

OutdoorT ← {N,W,H,VH,EH}
IndoorT ← {L,N,H}

Humidityrel ← {L,N,H}
Prate ← {L,N,H}
Occ← {A,P}

ISPs ← {L,N,H}
ForHumidityrel[1] to Humidityrel[n] do
  ForOutdoorT[1] to OutdoorT[n] do
    ForIndoorT[1] to IndoorT[n] do
     ForPrates[1] to Prates[n] do
      ForISPs[1] to ISPs[n] do
    ForOcc[1] to Occ[n] do
     ComputeS
     IfS=0orS=1then
     EC=VL,
     elseifS=2orS=3then
     EC=L,
     elseifS>=4orS<=7then
     EC=N,
      elseifS=8orS=9then
     EC=H,
     else
     EC=VH,
     Endif
  Endfor
   Endfor
 Endfor
 Endfor
 Endfor
Endfor

5. Simulation and Discussion
The proposed model’s simulation analysis is discussed in this section to demonstrate

the effect of the FIS feedback loop and the impact of adding an occupancy parameter. Due
to the nature and behavior of the building occupancy, this study considered a 10 kWHVAC
system for a small room. For testing and validation, air flow should be from the higher
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pressure zone to the lower pressure zone in the room, the fresh air intakemust be calculated
for each HVAC cycle, the average air velocity of laminar flow should be 90 ± 20%, and
openings such as doors or windows should be closed (not to exceed more than 15 min) to
allow room comfort levels to recover properly.

The case study incorporated an innovative lightweight structure approach utilizing a
stick‑built timber frame and a cassette floor‑building system. The thermal properties and
thicknesses of the building materials are shown in Table 1. These attributes are useful for
assessing occupant dynamics and steady behavior.

Table 1. The thermal properties and thicknesses of the building materials.

Properties Material c (J/Kg·K) (W/m·K) Thickness (cm)

Wall
Tuff 650 1.5 10
Brick 1000 0.11 18

Polystyrene 1600 0.028 8

Ground Floor

Concrete 650 0.43
Stoneware
flooring 650 1.25 1.3

Igloo 650 0.07 8
Gravel 1.1 1

Screed ordinary
concrete 650 1 5

Ceiling

Hollow‑core
concrete 650 0.7 25

XPS polystyrene
panel 650 0.4 8

Bricks tuff 650 0.5 5

It is important to note that ethical approval was obtained from the Monash Univer‑
sity Research Ethics Committee. Subsequently, informed consent was obtained from all
participants involved in this research.

5.1. Impact of Using Feedback Loop
In this scenario, the proposed controller aims to respond to a change in the electric‑

ity tariff using the RTP scheme and change the initialized setpoint based on defining FIS
rules. The proposed controller is designed to respond appropriately under the three sce‑
narios considered in this study, though any additional scenario can be incorporated by
simply modifying the fuzzy rules. The three scenarios include (a) when the occupants are
concerned about the cost of energy usage and are keen to engage in the demand control
strategy; (b) when the occupants are concerned with comfort requirements and are willing
to bear the cost of electricity at any hour of the day; and (c) when the occupants try to bal‑
ance comfort and energy usage and are willing to compromise the comfort level when the
energy tariff is at its peak rate.

A temperature of 24 ◦C is within the acceptable indoor comfort level and is cho‑
sen as the initial setpoint throughout the experiments. Note that the temperature val‑
ues used in the figures are in degrees Celsius throughout the study. Similarly, the study
adopts ASHRAE Standard 55 for Thermal Environmental Conditions for Human Occu‑
pancy throughout the study [60].

Figure 10 represents the hourly indoor temperature in Johor Bahru, Malaysia. From
8:00 a.m. to 9:00 a.m. and from 4:00 p.m. to 8:00 p.m., the temperature was “hot.“From
9:00 p.m. to 11:00 a.m. and from 3:00 p.m. to 4:00 p.m., the temperature was considered
“very hot.”
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Figure 10. Temperature from 8:00 a.m. to 5:00 p.m.

Figure 11 represents the state of indoor temperatures from 8:00 a.m. to 5:00 p.m.. The
goal of the controllers is to bring the room temperature to a satisfactory level under the
initialized temperature (24 ◦C). The operation patterns indicate that both the existing and
proposed controllers achieved fairly cool room temperatures except during peak energy
demand periods. One of the reasons is that the occupants were worried about the cost
of energy during these hours. In this setup, the feedback loop control did not show any
impact during these hours, causing a predicted percentage of dissatisfaction (PPD) of 20%
and 37% at 24.9 ◦C and 25.8 ◦C, respectively. Similarly, to maintain a healthy comfort level,
no room should go beyond 20% PPD.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 20 
 

 
Figure 11. Scenario 1. 

The pattern of indoor temperature control in the second scenario is the same as the 
state of the first scenario for the existing method, while the proposed approach reflects 
excellent temperature control during very hot periods, as indicated in Figure 12. This in-
dicates that the proposed approach can manage indoor comfort through feedback loop 
control, resulting in an overall minimum and maximum PPD of 4.4% and 10% occurring 
at 24.1 °C and 24.3 °C, respectively, keeping indoor comfort satisfactory. One of the limi-
tations of the existing approaches [26,52,57,58] is the lack of feedback loop control to re-
spond to undesired comfort situations, especially in the afternoon when the temperature 
is not stable. 

 
Figure 12. Scenario 2. 

As can be seen in Figure 13, from 11:00 p.m. to 3:00 p.m., the temperature was “ex-
tremely hot.” However, the proposed controller brought the temperature down as much 
as possible to ensure a satisfactory comfort level while accounting for the cost of energy 
consumption.  

8:0
0 A

M

9:0
0 A

M

10
:00

 A
M

11
:00

 A
M

12
:00

 P
M

1:0
0 P

M

2:0
0 P

M

3:0
0 P

M

4:0
0 P

M

5:0
0 P

M

24

25

26

27

28

29

30

31

Te
m

pe
ra

tu
re

Time

 Proposed Approach
 IoFClime

8:0
0 A

M

9:0
0 A

M

10
:00

 AM

11
:00

 AM

12
:00

 PM

1:0
0 P

M

2:0
0 P

M

3:0
0 P

M

4:0
0 P

M

5:0
0 P

M

24

25

26

27

28

29

30

31

Te
m

pe
ra

tu
re

Time

 Proposed Approach
 IoFClime

Figure 11. Scenario 1.

The pattern of indoor temperature control in the second scenario is the same as the
state of the first scenario for the existing method, while the proposed approach reflects
excellent temperature control during very hot periods, as indicated in Figure 12. This in‑
dicates that the proposed approach can manage indoor comfort through feedback loop
control, resulting in an overall minimum and maximum PPD of 4.4% and 10% occurring
at 24.1 ◦C and 24.3 ◦C, respectively, keeping indoor comfort satisfactory. One of the lim‑
itations of the existing approaches [26,52,57,58] is the lack of feedback loop control to re‑
spond to undesired comfort situations, especially in the afternoon when the temperature
is not stable.
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Figure 12. Scenario 2.

As can be seen in Figure 13, from 11:00 p.m. to 3:00 p.m., the temperature was “extremely
hot.” However, the proposed controller brought the temperature down as much as possible to
ensure a satisfactory comfort level while accounting for the cost of energy consumption.
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Figure 13. Scenario 3.

Similarly, in the third scenario, unlike the existing approach, the proposed approach
reflects moderate temperature adjustment during very hot and extreme hours. This indi‑
cates that the proposed approach can manage indoor comfort levels through a feedback
loop according to the state of the electricity tariff (see Figure 13). During peak hours, the
cost of electricity tends to be higher than the rest of the day because of high energy demand.
This is a strategy applied by energy providers to lower their energy loads and avoid power
imbalances.

5.2. Energy Consumption
Because thermal comfort was given more consideration in both Scenario 2 and Sce‑

nario 3 (see Section 5.2), the controller had to keep the thermostat operating continuously to
maintain the desired comfort level. Consequently, HVAC energy consumption increased.
Whenever the room temperature reaches the desired comfort level, the thermostat shuts
off the compressor for a while before the room temperature deviates from the desired level.
This process will continue as long as the occupants are in the space.
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As shown in Figure 14, the HVAC energy consumption is 18.6328 kW for Scenario
1, 32.4284 kW for Scenario 2, and 25.6724 kW for Scenario 3. In comparison with existing
approaches [26] (IoFClime), the proposed approach can reduce energy consumption by up
to 45% with the help of feedback loop control.
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Figure 14. Comparison of energy consumption under three settings.

5.3. Impact of Occupancy Variation
This section provides thermal comfort analysis with respect to the varying number

of occupants in the conditioned zone using three different established scenarios. The pro‑
posed controller’s primary goal is to achieve changes in indoor parameters that influence
the level of thermal comfort. In this case, the controller is expected to respond to variations
in the occupancy number through the feedback loop operation.

The interpretation of thermal comfort analysis with respect to the variation of occu‑
pancy is presented in Figure 15. This analysis was performed under the same indoor tem‑
perature and humidity settings as in Figures 11 and 12. The initial setpoint of 24 ◦Cwas set
for 10 occupants. Every fiveminutes, 10 occupants were added to the zone, and a feedback
loop was expected to update the controller with the current state of thermal comfort each
time occupants were added.
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 Figure 15. Analysis of occupant thermal comfort perception for the proposed approach.

HVAC operation is one of the primary factors that ensure a healthy living environ‑
ment, which many studies claim can improve occupant productivity at work. This study
adopted the Fanger thermal comfort scale to assess the potential of the proposed controller
to manage room temperature. Figure 15 represents the analysis of the thermal comfort of
the proposed controller examined for three different scenarios (Scenario 1, Scenario 2, and
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Scenario 3). In all scenarios, the controller is expected to maintain a room temperature of
19–24 ◦C regardless of weather conditions or the number of occupants in the room. The
controller was designed to assess thermal conditions and notify the thermostat to increase
or decrease HVAC operation through feedback loop control every 30 min.

Thermal perception information in Figure 15 indicates that in Scenario 1, 10% of the
participants reported normal (comfortable) temperature, 35% of the participants reported
a warm temperature, 40% of the participants had no report, and 15% of the participants
reported feeling very hot.

In Scenario 2, 88% of the participants reported a normal (comfortable) temperature
and only 12% reported a warm feeling. Similarly, in Scenario 3, 78% of the participants
reported a normal temperature, with only 22% of the participants reporting a warm tem‑
perature.

Our analysis demonstrates that Scenarios 2 and 3 produced the most satisfactory re‑
sults, which were within the defined comfort bounds. Conversely, Scenario 1 produced
the least satisfactory results.

6. Conclusions
Occupancy number and desired comfort level are essential parameters in modeling

thermal comfort control, but they are often ignored or inappropriately applied. To attain
higher energy savings and satisfactory comfort, the occupancy number and desired com‑
fort parameters must be considered. This study added occupancy and desired comfort
parameters to the existing FIS to improve the user experience with regard to energy sav‑
ings and thermal comfort. Consequently, the defined fuzzy rules were modified to deal
with various scenarios. Compared with the existing fuzzy approaches, the results indi‑
cate that our study performed better in maintaining the desired comfort level with lower
energy consumption.

Themajor limitations of the proposed controller include difficulty in setting appropri‑
ate temperatures as the number of occupants increases in the building and difficulty setting
appropriate temperatures in buildings exposed to external factors that modify the original
atmosphere of the building (e.g., laboratories, kitchens, etc.). In the future, we will inves‑
tigate adding other input parameters to the proposed approach to account for real‑world
scenarios, determine the estimated energy consumption during peak hours, and provide
occupants with options for energy consumption. Because the proposed system only al‑
lows occupants to specify their comfort preference level without presenting the current
electricity tariff, occupancy prediction can also be improved through the machine learning
technique. This is because using carbon dioxide to predict the number of occupants before
and during the ventilation process is quite subjective. Another possible improvement in
this study is the use of an “early” temperature, which could significantly improve energy
consumption and thermal comfort by predicting occupant arrival and departure.
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