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Abstract: A novel compound multi-jet impingement system for enhanced cooling of a flat surface by
augmenting its area with cylindrical protrusions (CPs) equipped with coaxial guide vanes (CGVs)
and reducing deflection of jets by crossflow has been developed for high-heat removal applications.
The cooling performance of coaxial circular jets impinging on the top faces of CPs placed in hexagonal
configuration on a flat plate is evaluated by three-dimensional (3D) computational fluid dynamics
(CFD) simulations. Jets impinging on the top faces of the protrusions are directed to their lateral
faces and then to the base plate by the CGVs around the protrusions, resulting in up to 62.8%
improvement in heat transfer rate with a minor increase in pressure drop. Effects of protrusion height
and diameter on the pressure drop and cooling performance are studied for jet Reynolds (Re number
range of 5000–20,000. Due to both shortened jet impingement lengths as the height of protrusions is
increased and directing the expended fluid away from the impinging jets by CGVs, adverse effects
of jet–crossflow interactions on cooling performance and fluid pumping power are significantly
reduced. Performance evaluation criterion (PEC) of the novel compound multi-jet impingement
cooling system (CMJICS) can be as high as 1.52.

Keywords: enhanced heat transfer; multi-jet impingement cooling; crossflow; performance evaluation
criterion; cylindrical protrusions; guide vanes; computational fluid dynamics

1. Introduction

In electronics and power electronics devices [1], personal computer central processing
units [2], blades and casings of gas turbines [3–10], combustion chamber liners of gas tur-
bine engines [11,12], and magnetically confined plasma fusion reactors [13,14] macroscale
and microscale multi-jet impingement and impingement-effusion high-heat flux cooling
systems are utilized. To enhance heat transfer, a very high, nearly uniform heat transfer coef-
ficient (HTC) distribution can be obtained at the stagnation zones of immersed jets injected
from multiple orifices or nozzles having a one-dimensional (1D) or two-dimensional (2D)
configuration, located over a smooth or roughened impingement surface. Protrusions or
dimples having various shapes can be constructed on the flat or curved surface to increase
roughness. Fluid discharge ports may be located on either the orifice (or nozzle) plate or the
impingement surface by interspersing them between the jets, or the edge (s) or periphery
of the system (depending on the 1D or 2D configuration of the jets). The main parameters
of the multi-jet impingement cooling problem for a specified jet configuration with certain
cross-sections on a selected impingement surface are the positions of the jets, their orien-
tation, Reynolds (Re) and Mach (Ma) numbers, and the shape of the target surface and
its position relative to the impingement surface. Rotational effects may influence the flow
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development and cooling performance. Enhanced heat transfer studies focus on increasing
the average HTC, improving HTC uniformity, and elevating the system performance evalu-
ation criterion (PEC), which is the ratio of proportional enhancement in heat transfer rate
(

.
Q) to the proportional increase in fluid pumping power (

.
W). In the literature, the effects

of various geometric or configuration changes, such as the shape and arrangement of the
jets, the roughened jet or target surface, the number, location, shape, and orientation of
the discharge ports interspersed on the jet or target plate or placed around the system, are
investigated. For instance, the effects of corrugated jet plates, immersed nozzle lengths,
variable diameter jet orifices, various crossflow schemes, target plate roughness, film hole
shapes and orientations, etc. are explored. By interacting with, deflecting, reducing normal
momentum of, and deforming and spreading the jets, respectively, crossflow increases fluid
pressure drop, shortens the necessary distance between the jet inlet and the target surface
for effective cooling, decreases cooling performance, and deteriorates cooling uniformity in
the stagnation zones.

Nozzles [15–17], protrusions [18–33], cavities, and discharge ports [29,33–37] in vari-
ous shapes, topologies, and configurations have been proposed for laminar or turbulent,
liquid or gas multi-jet impingement cooling systems (MJICSs). Multiple jet nozzles or
orifices and target surface protrusions may be arranged in an in-line, staggered, or hexago-
nal configuration [38–41]. Single-phase impinging jet array cooling may be enhanced by
constructing macro- or microscale structures such as conical or prismatic pin fins with a
triangular, rectangular, pentahedral, circular, elliptical, or hydrofoil base, or their combina-
tions [18–24,42]; continuous or interrupted, monolithic or slotted ribs of various forms and
inclinations [25–30] as protrusions; and/or circular, elliptical, rectangular dimple, or spiral
indentations [31–33], or a metal porous foam [30] on the target surface. Therefore, turbulent
convective heat transfer to fluid is augmented due to increased heat transfer area, interrup-
tion of boundary layer growth, elevation of turbulence intensity (I), and flow mixing. In
systems having fountains rising from the target surface after the impingement of jets, if the
crossflow Re number is high, the cooling performance can be improved by placing vortex-
forming delta-shaped winglet pairs on the target surface to control boundary layers and
increase the jets’ impact velocities and turbulence intensities [43–46]. Impingement cooling
of a target surface by multiple, immersed, or single-phase jets in a confined space can be
studied by experimental [18–25,28,30,31,33,36,37,43,45–48], computational [15,49–52], or
both methods [26,27,32,38].

Experimental and computational studies on enhancing the performance of MJICSs
using pin fins also exist in the literature. In an experimental and computational study, the
highest

.
Q and the average Nusselt (Nu) number are obtained in the minimum crossflow

scheme for both flat and micro cubic pin fin roughened target plates [48]. For minimum and
maximum crossflow schemes compared with a flat plate, the Nu number on the roughened
plate decreases by 10% and 6%, respectively, the

.
Q increases by 35% and 42%, while the

pressure drop penalty is 8% and 14%. In a computational study on a high aspect ratio air
jet array impingement cooling channel in a maximum crossflow scheme, compared with a
uniform jet array and elongated pin fins arrangement, both the efficiency and effectiveness
of the system having circular pin fins and more jets on the upstream are higher [53].

In MJICSs where fluid is discharged in either the transverse or opposite direction of
the jets, the interaction of wall jets formed by impingement of neighboring immersed jets
on the target plate generates fountains. Vortices formed in the shear layers between the
immersed jets and fountains deteriorate convective heat transfer by reducing the normal
momentum of impinging jets. The cooling performance of MJICSs with fluid discharging
in the transverse direction of the jets degrades more since not only normal components of
momentum of jets decrease further due to deflection, deformation, and spread of immersed
jets by the crossflow, but also boundary-layer thickness increases toward the exit ports.
While the cooling performance of a moderate crossflow scheme deteriorates gradually
toward both side discharge ports due to increasing deflection, deformation, and spread
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of jets, that of a maximum crossflow system having a single side discharge port degrades
significantly due to excessive crossflow accumulation near the port [34,40,54–58].

According to the literature cited above, the effects of the geometric parameters of
protrusions and passive flow control structures having various shapes placed on a target
surface on the thermal-fluid performance of CMJICS have not been extensively studied
so far. Therefore, the objective of this study is to evaluate the effects of jet Re number and
geometric parameters of a novel CMJICS with hexagonally arranged coaxial jet-cylindrical
protrusion-guide vane (J-CP-GV) triplets on cooling performance and fluid pumping power
requirement through 3D CFD simulations. In this study, first, a novel compound multi-jet
impingement cooling system (CMJICS) involving multiple cylindrical protrusion–coaxial
guide vane (CP-CGV) pairs placed in a hexagonal configuration on a flat target plate
has been developed. In the proposed design, in a confined space, each immersed air
jet emanating from a coaxial circular orifice in a flat perforated plate above the target
plate impinges in the normal direction on the top face of the corresponding cylindrical
protrusion (CP) equipped with a suitably shaped coaxial guide vane (CGV). Due to the
smaller diameter of the orifices than that of the CPs, the stagnation zone of an impinging jet
and a wall jet formed after impingement enable concentrated highly effective cooling as it
spreads on the circular top face of the corresponding CP. A suitably shaped and positioned
CGV around a CP directs the wall jet from its top face to its lateral face and then onto the
flat target plate, both augmenting cooling with minimal flow separation and significantly
mitigating crossflow and fountains’ interaction with impinging jets. Increasing the height of
the CPs shortens the lengths of the impinging jets, reduces their deflection and deformation
due to crossflow, and improves the flatness of their core velocity profile and steepness
of their shear layer velocity gradients and, therefore, their cooling performance. As the
height of a CP increases, heat transfer is further enhanced due to the enlarging lateral face
area. Therefore, as the height of the CPs increases, the adverse effects of the interaction of
impinging jets with crossflow and fountains on system cooling performance and pressure
drop are significantly reduced, while the

.
Q increases significantly at the expense of slightly

increased
.

W due to the CGVs. The
.

Q can be further enhanced by increasing the diameter
of the CPs due to further enlargement of their lateral face area with a minor increase in

.
W.

Therefore, the system PEC can achieve exceptionally high values. Then, the performance
of the novel CMJICS, consisting of seven coaxial air jets impinging in the normal direction
on the top faces of CPs equipped with CGVs placed in a hexagonal configuration on a flat
target plate, was evaluated by three-dimensional (3D) computational fluid dynamics (CFD)
simulations. The effects of the diameter and height of the CPs on the air flow, overall

.
Q,

Nu number distribution on the cooled surfaces, Nu number,
.

W and PEC were analyzed for
the jet Re number range of 5000 to 20,000. Finally, the passive flow control strategy at the
target surface developed in this study can be applied to a MJICS or multi-jet impingement
cooling system (MJIECS) having any configuration of coaxial J-CP-GV triplets and suitably
located expended fluid outlet ports.

2. Geometry and CFD-Thermal Modeling
2.1. Governing Equations

CFD simulations were carried out by solving the incompressible Reynolds-averaged
Navier–Stokes (RANS) equations with ANSYS Fluent® (version 2019R1) software [59].
Reynolds-averaged continuity, momentum, and energy equations for incompressible flow
are expressed as

∂ρ

∂t
+

∂(ρui)

∂xi
= 0, (1)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂P
∂xi

+
∂

∂xj

(
2µSij − ρu′iu

′
j

)
, (2)
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ρ
∂T
∂t

+ ρuj
∂T
∂xj

=
∂

∂xj

(
λ

cp

∂T
∂xj
− ρu′iT

′

)
, (3)

where, ρ, µ, λ and cp are the density, dynamic viscosity, thermal conductivity, and specific
heat at constant pressure of the fluid, respectively. The mean strain rate Sij is defined as

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, (4)

Reynolds stress tensor −ρu′iu
′
j and the turbulent heat flux vector −ρu′iT

′ are modeled
to close the system of governing equations. Reynolds stress tensor is expressed by the
Boussinesq hypothesis as

−ρu′iu
′
j = 2µtSij −

2
3

ρkδij, (5)

where eddy viscosity µt and the turbulent kinetic energy k are calculated by a turbulence
model. The turbulent heat flux vector is modeled with the simple gradient diffusion
hypothesis (SGDH) as

−ρu′iT
′ =

µt

Prt

∂T
∂xi

, (6)

The turbulent Prandtl number (Prt) in the SGDH equation is assumed to be constant as
0.85. To evaluate the cooling performance on the target plate, the Nu number is calculated as

Nu =
hD
λ

, (7)

where D denotes the orifice diameter. The convective HTC (h) is calculated as

h =

.
Q

A
(

Tw − T f

) , (8)

where
.

Q is the heat transfer rate from the cooled wall, A is the wall area, and Tw and T f
are the Reynolds-averaged cooled wall and fluid inlet temperatures, respectively.

2.2. Turbulence Modelling

The accuracy of jet impingement cooling performance predictions by various RANS
turbulence models against experimental data are studied by many researchers [60–68].
Some studies recommend the shear-stress transport (SST) kω turbulence model for im-
proved accuracy of results. However, in this study, the realizable k− ε turbulence model [69]
with enhanced wall treatment is preferred because of its numerical stability and faster
convergence features compared with the SST k−ω model for the 3D CFD simulations of
the novel CMJICS. Moreover, the realizable k− ε turbulence model has been extensively
validated for free, channel, boundary layer, and separated flows and resolves the turbulent
round-jet/plane-jet spreading rate anomaly. The turbulent kinetic energy (k) and eddy
viscosity (µt) are calculated by coupling the following transport equations for k and its
dissipation rate (ε), respectively,

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk − ρε, (9)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ ρC1Sε− ρC2

ε2

k +
√

ϑε
, (10)
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The turbulent kinetic energy production rate appearing in Equation (9) is defined

as Gk = µtS2, where the modulus of the mean strain rate tensor is S =
√

2SijSij. µt is
calculated as

µt = ρCµ
k2

ε
, (11)

where
Cµ =

1
A0 + As

kU∗
ε

, (12)

where A0 = 4.04, As =
√

6cos ϕ, where,

ϕ =
1
3

cos−1
(√

6W
)

, W =
SijSjkSki
∼
S

3 ,
∼
S =

√
SijSij, (13)

and

U∗ =

√
SijSij +

∼
Ωij
∼
Ωij,

∼
Ωij = Ωij − 2εijkωk, Ωij = Ωij − εijkΩk, (14)

where Ωij is the Reynolds-averaged rotation rate tensor viewed in a rotating reference

frame with the angular velocity ωk, and C1 = max
(

0.43, η
η+5

)
where, η = S k

ε , and the
model constants are specified as C2 = 1.9, σk = 1.0 and σε = 1.2.

Both standard and realizable k− ε turbulence models are applicable to high Re number
turbulent flows. In this study, the enhanced wall treatment for the ε equation available
in ANSYS Fluent® (version 2019R1) is applied, which combines a two-layer model with
enhanced wall functions to accurately solve for the viscosity-dominated near-wall region.
As suggested by [70], the two-layer model smoothly blends the µt determined by Wolf-
stein’s algebraic model in the near-wall region affected by viscosity [71] with its high
Reynolds number definition in the outer region given by Equation (11). Similarly, ε, which
is determined algebraically in the viscosity-affected near-wall region and calculated by
solving the transport equations in the outer region, is blended smoothly. The length scales
for the µt and ε appearing in the algebraic expressions are calculated according to the wall
distance and a wall-distance-based turbulent Re number [72]. The blending function is
determined as a transcendental function of the turbulent Re number [70]. Furthermore, the
unified laws of the wall for velocity and temperature profiles in wall coordinates obtained
by blending enhanced laminar and turbulent wall functions are applied throughout viscous
sublayer, buffer, and fully turbulent regions [73].

The Nu number distribution on the target plate predicted by the selected turbulence
model and near-wall modeling are verified by experimental data of Cadek [74] and Gardon
and Akfirat [75] for a confined, submerged 2D single turbulent air jet shown in Figure 1.
Slot width w is 6.2 mm, jet to target plate distance is 6w, and length of the target plate is
120w. At the jet slot, the jet velocity profile is flat, the Re number is 11,000 and I is 2%.
The target plate has a uniform temperature of 338 K and the air jet temperature at the slot
exit is 373 K. Thermophysical properties of air are taken as constant at room temperature
and 1 atm pressure. Spent fluid is discharged into the atmosphere. The no-slip boundary
condition is applied on all walls. The confinement plate is assumed to be adiabatic. The
pressure–velocity coupling algorithm and the pressure-based solver of ANSYS Fluent®

(version 2019R1) CFD software are utilized. Pressure, momentum, energy, turbulent kinetic
energy, and dissipation rate equations are discretized in space by a second-order accurate
finite volumes method.
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Cartesian mesh. 

Four cartesian meshes consisting of 60 × 90, 80 × 110, 100 × 140, and 120 × 160 cells, 
denoted as M1, M2, M3, and M4, respectively, are generated for grid independence study 
as shown in Figure 1b. The target plate local 𝑁𝑢 number distributions according to the 
dimensionless distance from the stagnation point (𝑥/𝑤) calculated on four meshes at var-
ious resolutions are compared in Figure 2. Convergence under grid refinement is achieved 
for M4 due to negligibly small differences between the results obtained on grids M3 and 
M4. For grid M4, the highest dimensionless distance from a wall to the centroid of the 
adjacent grid cell in wall coordinates (𝑦 +) on the target plate is 1.52. 

 
Figure 2. Local 𝑁𝑢 number distributions on the target plate calculated on four meshes with various 
resolutions. 

The local 𝑁𝑢 number distribution on the target plate calculated by CFD simulation 
on the grid M4 and experimental data are compared in Figure 3. The result obtained by 
the realizable 𝑘 − 𝜖 turbulence model with enhanced wall treatment satisfactorily agrees 

Figure 1. Confined, submerged 2D single air jet impingement problem: (a) solution domain; (b) Carte-
sian mesh.

Four cartesian meshes consisting of 60 × 90, 80 × 110, 100 × 140, and 120 × 160
cells, denoted as M1, M2, M3, and M4, respectively, are generated for grid independence
study as shown in Figure 1b. The target plate local Nu number distributions according
to the dimensionless distance from the stagnation point (x/w) calculated on four meshes
at various resolutions are compared in Figure 2. Convergence under grid refinement is
achieved for M4 due to negligibly small differences between the results obtained on grids
M3 and M4. For grid M4, the highest dimensionless distance from a wall to the centroid of
the adjacent grid cell in wall coordinates (y+) on the target plate is 1.52.
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Figure 2. Local Nu number distributions on the target plate calculated on four meshes with various
resolutions.

The local Nu number distribution on the target plate calculated by CFD simulation on
the grid M4 and experimental data are compared in Figure 3. The result obtained by the
realizable k− ε turbulence model with enhanced wall treatment satisfactorily agrees with
the experimental data. The biggest differences occur in the secondary peak region of the
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local Nu number distribution. In the remaining regions, the CFD result is in fair agreement
with the experimental data. Similar discrepancies of heat transfer characteristics in the jet
stagnation region due to the chosen turbulence model, turbulence production limiter, mesh
type, and near-wall grid resolution can be found in the literature [61,68,76,77].
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2.3. Solution Strategy

In the CFD simulations of this study, the pressure-based segregated solver of AN-
SYS Fluent® (version 2019R1) is applied. The semi-implicit method for pressure-linked
equations (SIMPLE) algorithm is preferred for pressure–velocity coupling. Incompressible
momentum, energy, turbulent kinetic energy, and dissipation rate transport equations as
well as the Poisson equation for pressure are discretized by second-order finite volumes in
space. Changes in both the maximum Nu number in the stagnation region and the scaled
residuals are recorded during the iterations until convergence is achieved. In CFD simu-
lations, at convergence, the scaled residuals for the continuity and energy equations are
1 × 10−6 and 1 × 10−8, respectively; those for the momentum, k and ε transport equations
are 1 × 10−4 and 1 × 10−5, respectively, for a flat target plate and for Hp/D of 1. For higher
Hp/D values, the scaled residuals are even lower.

2.4. Geometry and Boundary Conditions

The enhanced CMJICS developed in this study involves CPs with axisymmetric CGVs
around them, which are mounted in a hexagonal configuration on the flat base plate of a
confined space. An immersed jet of air emerging from a smaller diameter concentric orifice
in the confinement plate impinges on the top face of each CP. The wall jet formed on the
top face of each CP is deflected toward the base plate by the properly shaped CGV to flow
on the lateral face of the CP without separation. The CGV is extended toward the bottom
plate to maintain cooling effectiveness by preventing flow separation from the lateral face.
As the fluid reaches the base plate, it flows over it and interacts with other streams from
neighboring CPs, forming upward fountains, the momentum of which varies with position
depending on the strength of the interacting streams in the space between the CPs. The
crossflow then interacts with the immersed impinging jets before being discharged from
the exhaust ports on the flanks of the confined space. As the height of the CPs is increased,
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interactions of the crossflow with impinging jets weaken rapidly; thereby, their adverse
effects on the jet impingement cooling system performance are effectively mitigated. The
cooling performance and pressure drop of the enhanced CMJICS in a hexagonal prism
shape are calculated by 3D CFD simulations and compared with those obtained for the flat
target plate case. The system shown in Figure 4a consists of seven CP-CGV pairs having
an interaxial distance of 5D mounted on a hexagonal flat base plate with an inner tangent
circle radius of 8D and seven coaxial orifices with a diameter D of 4 mm drilled into a
parallel confinement plate. The upper flat confinement plate is located 5D away from the
base plate, while all side faces of the system are exposed to the atmosphere. A CGV is
placed around each CP that directs the wall jet formed on the top face of the CP to its
lateral face. A planar section view through the axis of a CP and its CGV is presented in
Figure 4b. The CGVs are modeled as zero-thickness baffles. The attachments of the CGVs to
the confinement plate are not modeled to avoid complexity. As the diameter (Dp) or height
(Hp) of a CP is varied, the position of the CGV relative to the CP is maintained. The inlet of
a CGV is located far enough from the immersed impinging jet to avoid its interaction with
the shear layer of the jet.
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Figure 4. Novel CMJICS design: (a) seven CP-CGV pairs in hexagonal configuration; (b) section view
of a CP-CGV pair.

In CFD simulations, the periodicity condition is applied to the planar boundary faces
normal to the azimuthal coordinate of the 60◦ cylindrical sector of the CMJICS shown
in Figure 5a. In simulations, the orifice exit velocity profile of a jet is assumed to be flat
and the jet Re number is varied between 5000 and 20,000. The Reynolds-averaged jet
velocity at the orifice (uJ) is calculated as uJ = (Reµ)/(ρD) where ρ and µ are the density
and dynamic viscosity of the fluid, respectively. It is assumed that the thermophysical
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properties of the cooling air are constant at 1 atm pressure and the Reynolds-averaged jet
inlet temperature (T J) is 293 K. The molecular Pr number of the air is 0.71. Turbulence
intensity at the orifice exit of a jet is calculated by I = 0.16Re(−1/8). The no-slip boundary
condition is applied to the walls. The confinement plate is modeled as an adiabatic wall.
Uniform Reynolds-averaged wall temperature (Tw) of 303 K boundary condition is applied
on the top and lateral face of each CP as well as on the base plate. The expended fluid is
discharged into the atmosphere at a pressure of 1 atm and a temperature of 293 K. The
geometric and operating parameters of CMJICS and the thermo-physical properties of air
are listed in Table 1.
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Table 1. The geometric and operating parameters of CMJICS and the thermo-physical properties
of air.

Parameter Description Value

D Jet diameter at the orifice exit 4 mm
Re Jet Reynolds number at the orifice exit 5000, 10,000, 15,000, 20,000

Hp/D Dimensionless protrusion height 1, 1.5, 2, 2.5, 3, 4, 4.5
Dp/D Dimensionless protrusion diameter 2, 2.5, 3, 3.5, 4

Pr Prandtl number of air 0.71
T J Jet temperature at the orifice exit 293 K
Tw Target plate temperature 303 K
ρ Air density 1.204 kg/m3

uJ Jet velocity at the orifice exit uJ = (Reµ)/(ρD)
I Jet turbulence intensity at the orifice exit I = 0.16 Re(−1/8)

µ Dynamic viscosity of air 1.813 × 10−5 kg/ms
.

Q Overall heat transfer rate (W)
.

Qo Heat transfer rate of the flat plate (W)
.

Q/
.

Qo Heat transfer ratio
Nu Area-averaged Nusselt number
Nuo Area-averaged Nusselt number of the flat target plate

Nu/Nuo Ratio of the area-averaged Nusselt numbers
PEC Performance evaluation criterion

2.5. Convergence under Mesh Refinement Study

A grid independence study is conducted for the highest jet Re number considered in
this study. Dp and Hp are selected as 3.5D and 1D, respectively. For 3D CFD simulations, a
hybrid grid consisting of triangular base prism layers and tetrahedrons was created due to
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the complex geometry of the CMJICS problem. Twenty layers of prisms with triangular
bases (wedge-shaped finite volumes) adjacent to the walls and a gradually expanding
tetrahedral mesh throughout the remainder of the solution domain are created. The total
height of the prism layers and the height ratio between layers, which is kept below 1.2 for
smoothness, were adjusted to accurately resolve the momentum and thermal boundary
layers on the walls. Therefore, the nonuniform hybrid meshes created in this study cluster
finite volumes in regions adjacent to walls. Prism layers cover the boundary layers on both
the cooled surfaces and the perforated confinement plate. Since the cell size varies across
the wall surfaces, the maximum aspect ratio of the first prism layer cells is limited to less
than 55, thus preventing them from becoming too large, especially toward the outlet. To
accurately resolve turbulent momentum and thermal boundary layers, the maximum y+
value of the centroids of cells adjacent to walls is kept close to unity on cooled surfaces.
Moreover, refined tetrahedral cells are generated in the immersed jet regions, above the
jet stagnation zones, around the CPs and CGVs as seen in Figure 5b. The tetrahedral
mesh is expanded toward the core region and the exit with a maximum growth rate of 1.2.
Four meshes of various resolutions named M1, M2, M3, and M4 are created, consisting of
2.66 × 105, 5.44 × 105, 1.68 × 106 and 2.59 × 106 cells, respectively. For the M1, M2, M3,
and M4 meshes, on the cooled surfaces, the calculated highest y+ values are 1.80, 1.68, 1.65,
and 1.29, and the Nu numbers are 50.94, 51.58, 52.16 and 52.32, respectively. The simulation
results obtained on M3 are presented in the following section due to only a 0.3% difference
between the Nu numbers calculated on M3 and M4.

3. Results

In this section, the effects of installing a larger diameter CP equipped with a CGV
under each orifice of a hexagonally configured CMJICS on the overall

.
Q, heat transfer

enhancement ratio (
.

Q/
.

Qo), Nu number, Nu number distribution, flow structure, pressure
drop, and PEC are analyzed. First, CFD simulations are performed for various dimension-
less CP heights (Hp/D) ranging between 1 and 4.5, while keeping the dimensionless CP
diameter (Dp/D) constant at 3.5, for jet Re numbers of 5000, 10,000, 15,000, and 20,000.
Then, the effect of Dp/D is analyzed by CFD simulations.

3.1. The Effect of Protrusion Height

In this study, each jet impinges on the top face of a single CP without directly inter-
acting with the target plate. Therefore, as Hp/D is increased, the concentrated effective
cooling in the jet stagnation zone on the top face of the CP improves due to the higher
core velocity profile coherency and shear layer velocity gradients of the jet. Furthermore,
effective cooling of the lateral face of a CP by the wall jet deflected by a CGV increases
due to the enlarged lateral surface area as Hp/D is increased. As Hp/D increases, the
heat transfer enhances significantly due to the elevated core velocity profile coherence and
shear layer intensity of the impinging jets, their reduced deflection and deformation due to
weakened crossflow interactions, and the enlarged lateral surface areas of the CPs.

3.1.1. Enhancement of Heat Transfer

The overall
.

Q is the sum of those from the top and lateral faces of both CPs and from
the base plate to the fluid in the computational domain presented in Figure 5a. For a Dp/D
of 3.5, the overall

.
Q according to Hp/D is presented for various jet Re numbers in Figure 6.

In Figure 6, Hp/D of 0 represents the flat target plate. The overall
.

Q increases with Hp/D
for any jet Re number considered. As seen in Figure 6, the rate of change of the

.
Q according

to Hp/D increases with the jet Re number. For any jet Re number, it decreases with Hp/D
until an Hp/D of 3.0 and rapidly increases for Hp/D exceeding 4.0. For any jet Re number

considered, the maximum
.

Q is obtained for an Hp/D of 4.5 where the top face of a CP is
0.5D below the jet orifice and the CGV almost touches the confinement plate.
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The ratio of the
.

Q of the protruding surface to that of the flat target plate (
.

Qo) according
to Hp/D for various jet Re numbers is presented in Figure 7. As seen in Figure 7, the

.
Q/

.
Qo

increases with Hp/D for all jet Re numbers considered. For a jet Re number of 5000,
.

Q
enhancement compared with the flat target plate is 18.1% at Hp/D of 1, while it is 62.9%

for Hp/D of 4.5. For a jet Re number of 10,000, the overall
.

Q is enhanced by 20.5% and
65% for Hp/D of 1 and 4.5, respectively. For a jet Re number of 15,000, the enhancement

in
.

Q is calculated as 17.9% and 62.1% for Hp/D of 1 and 4.5, respectively. Furthermore,

the corresponding enhancements in
.

Q are 16.2% and 58.8% for a jet Re number of 20,000.
Therefore, the biggest improvement in

.
Q compared with that of the flat target plate is

obtained for a jet Re number of 10,000 and Hp/D of 4.5. The
.

Q/
.

Qo rapidly increases for
Hp/D values ranging between 4 and 4.5 where the upper surface of a CP is at a smaller
distance away from the jet orifice than D, as seen in Figure 7. Another conclusion that can
be drawn from Figure 7 is that as the jet Re number increases,

.
Q/

.
Qo decreases except for a

few Hp/D values on lower jet Re number curves. For instance, while the improvement in
.

Q for Hp/D of 3 is 47.2% at a jet Re number of 5000, it decreases to 46.3%, 41.4%, and 38.6%

at jet Re numbers of 10,000, 15,000 and 20,000, respectively. In conclusion,
.

Q is significantly
improved by CPs equipped with CGVs compared with that of the flat target plate, while
the

.
Q/

.
Qo has a decreasing trend as the jet Re number is increased.
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Q/
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Nu number according to Hp/D for various jet Re numbers is presented in Figure 8. For
any considered Hp/D, the Nu number increases at a decreasing rate with the jet Re number.

Contrary to the overall
.

Q, the Nu number decreases as Hp/D is increased for all considered
jet Re numbers due to the bigger contribution of the less effectively cooled lateral surface of
the CP to the enhanced heat transfer. In other words, the decrease in the Nu number with
increasing Hp/D is due to the increased contribution of ordinary convective heat transfer
on the lateral faces of the CPs with smaller HTCs than the jet impingement cooling on the
upper faces. It has been reported in the literature that the Nu number of a MJICS decreases
as the heat transfer surface is augmented by protrusions having various shapes [48,78].
Weigand and Spring stated that the Nu number of a MJICS may decrease due to changes in
the flow field if the target surface is augmented by modifications and emphasized that the
main indicator to consider is the overall

.
Q [54]. The highest Nu numbers are obtained for

the flat target plate case for all jet Re numbers considered. For jet Re numbers of 10,000 and
20,000, the Nu number decreases slightly as Hp/D is increased from 4 to 4.5 due to intense
impingement cooling enabled by rapid deceleration of the jet in the small gap between the
jet orifice and the CP top face. For a jet Re number of 15,000, the Nu number remains almost
constant when Hp/D is increased from 4 to 4.5. Both the rapid increase in the overall

.
Q and

the almost constant Nu number of the cooled surfaces for very small impinging immersed
jet lengths are due to a rapid increase in the jet stagnation zone Nu number. However, for
a jet Re number of 5000, as Hp/D is increased from 4 to 4.5, a notable decrease in the Nu
number occurs due to the less effective cooling of the top faces of the CPs by the smaller
vortices generated at a shorter jet impingement distance by Kelvin–Helmholtz instabilities.
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Figure 8. For Dp/D of 3.5, Nu number according to Hp/D at various jet Re numbers.

Area-averaged Nu number ratios, the ratio of the Nu number of the protruding
surface to that of the flat target surface (Nu/Nuo) according to Hp/D for various jet Re
numbers, are presented in Figure 9. For jet Re numbers above 10,000, at any Hp/D, the
Nu/Nuo decreases with increasing jet Re number, while for a jet Re number of 5000, its
trend, compared with a jet Re number of 10,000, varies with Hp/D. For any jet Re number
considered, the Nu/Nuo decreases as Hp/D is increased due to bigger contribution of the
CP lateral surface to cooling. Therefore, for any jet Re number, the highest Nu/Nuo is
obtained for Hp/D of 1, which is the smallest among all CP heights considered in this study.
For Hp/D of 1, the biggest and smallest Nu/Nuos of 91.7% and 88.3% are obtained for jet
Re numbers of 10,000 and 20,000, respectively. For Hp/D of 4.5, for jet Re numbers of 5000,
10,000, 15,000, and 20,000, the Nu/Nuos are 0.645, 0.653, 0.642, and 0.629, respectively.
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For various jet Re numbers, Nu number contour plots on the target plate and CP top
faces as well as on unrolled lateral faces of CPs are presented in Figure 10. As the Hp/D
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is increased, the Nu number increases on the top faces of the CPs due to the flatter core
velocity profiles and steeper shear layer velocity gradients of the impinging jets and their
reduced deflections and deformations due to weakened crossflow interactions. On the
other hand, the Nu number decreases on both the lateral faces of CPs and the target plate
due to increased thermal boundary layer thickness. For instance, for a jet Re number of
20,000, while the Nu number on the top faces of the CPs is 94.49 for Hp/D of 2, it increases
to 98.23 for Hp/D of 4. On the other hand, the Nu number on the lateral faces of CPs and on
the target plate, for stated CP heights, decreases from 36.66 to 28.47 and from 36.12 to 29.74,
respectively. As Hp/D is increased by keeping the top face area of a CP constant, its lateral

face area increases. While the overall
.

Q is significantly improved by increasing Hp/D,
the surface heat flux distribution is nonuniform and the Nu number of all cooled surfaces
decreases, although that of the top faces of the CPs increases. The effect of a distance smaller
than D between an orifice and a CP top face on the local Nu number distribution can be
clearly seen in Figure 10. For a jet Re number of 15,000, the Nu number on the top faces
of CPs increases slightly from 79.39 to 81.82 as Hp/D is increased from 3 to 4. However,
the Nu number on the top faces of CPs rapidly rises to 94.47 for Hp/D of 4.5. The highest

overall
.

Q achieved for Hp/D of 4.5 is due to the very high Nu numbers in the stagnation
zone of the impinging jet. On the other hand, for a smaller Hp/D, as the stagnation region
deforms and enlarges, the momentum in the core of the impinging jet decreases compared
with its periphery. Therefore, the Nu numbers in the immediate vicinity of the jet axis are
lower than those in the surrounding oval or kidney-shaped region.

As presented in Figure 11, in the case of a flat target plate, the crossflow disrupts the
heat transfer in the stagnation zone by significantly deflecting and deforming the impinging
outer jet, reducing the coherence of its core velocity profile and steepness of its shear layer
velocity gradients. As seen in Figure 10, in the case of the flat target plate, the deformation
of the kidney-shaped Nu number contours appearing in the impingement zone of the outer
jet due to the interaction of the jet with the crossflow increases with the jet Re number.
The CP-CGV pairs installed on the flat target plate to enhance heat transfer influence the
crossflow as well. As Hp/D increases, velocities in the core of impinging jets increase and
shear layers become thinner due to less advection and diffusion of the jets in the lateral
directions. Because the spent fluid is directed further away from the jets, the reduced
interactions of the crossflow with the impinging jets decrease the deflection of the jets,
mitigating the displacement, deformation, and enlargement of the jet stagnation zones,
thereby improving impingement heat transfer. The overall

.
Q increases even further due to

the increased lateral surface area of the CPs. Stated effects are more pronounced at higher
jet Re numbers. As Hp/D is increased, the jet impingement region shape progressively
becomes oval and then circular. Increasing Hp/D shortens the impinging jets while CGVs
direct the wall jets away from the stagnation region down to the lateral faces and then
toward the base plate, ensuring that their momentum decreases as they move away from
the CPs, thus reducing the deflection of the impinging jets due to their interaction with
the crossflow.
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(h) flat target plate.
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top edges of the CPs need to be optimized in a future study to avoid flow separation. In 
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CPs is increased so that velocities in the core of impinging jets increase and shear layers 
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Figure 11. For Dp/D of 3.5, velocity magnitude contour plots in a planar section through the axes of
the CPs at various jet Re numbers, for Hp/D of (a) 4.5; (b) 4; (c) 3; (d) 2.5; (e) 2; (f) 1.5; (g) 1; (h) flat
target plate.

3.1.2. Flow Structure and Pressure Drop

Velocity magnitude contour plots in the section shown in Figure 10 are presented for
various Hp/D and jet Re numbers in Figure 11. The CGVs direct the wall jets formed on
the top faces of the CPs after the impingement of the immersed jets, first to the lateral faces
and then to the base plate. By leaving a sufficient clearance of 0.4D between both the top
and lateral faces of a CP and its CGV, flow splitting by the CGV and excessive pressure
drops are prevented in each case studied. The chosen values of the CGV and the CP upper
edge fillet radii may have caused flow separation from the upper portion of the lateral face,
thereby reducing heat transfer. The shapes and dimensions of both CGVs and filleted top
edges of the CPs need to be optimized in a future study to avoid flow separation. In this
study, CGVs are extended toward the target plate leaving a 0.5D clearance between them
to prevent premature flow separation from lateral faces of CPs.

In the case of a flat target plate, the outer jet is deflected and deformed by crossflow
at all jet Re numbers considered, as seen in Figure 11. On the other hand, as the height of
CPs is increased so that velocities in the core of impinging jets increase and shear layers
become thinner and the interactions of crossflow with the jets are mitigated, deflections and
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deformations of the impinging jets decrease significantly. Furthermore, due to the decreased
momentum of wall jets after being directed to the lateral faces of CPs by CGVs, the fountains
formed by interacting neighboring streams on the target plate weaken compared with much
more prominent ones in the case of a flat target plate.

The pressure drops between the jet orifices and the system outlet (∆P) according
to Hp/D for various jet Re numbers are presented in Figure 12. For any jet Re number
considered, at Hp/D smaller than 4, a minor rise in ∆P occurs compared with that of the
flat target plate, the largest difference being 2%. At Hp/D of 4, for jet Re numbers of 5000,
10,000, 15,000, and 20,000, ∆P are 6.5%, 6.8%, 7.3%, and 6.8% higher than those of the flat
target plate, respectively. At Hp/D of 4.5, due to the extremely high momentum of the
impinging jets, ∆P significantly increases by 40.9%, 45.5%, 49.7%, and 50.1%, respectively,
for the jet Re numbers of 5000, 10,000, 15,000, and 20,000.
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3.1.3. PEC

Since measures to improve heat transfer may increase ∆P, an important indicator of
the thermo-economic performance of an enhanced cooling system is the PEC, which is the
ratio of the proportional improvement in the overall

.
Q to the proportional increase in

.
W.

Therefore, the greater the PEC, which is calculated by dividing the ratio of the improved
.

Q
of the protruding surface to that of the flat target plate by the ratio of the corresponding

.
W requirements, the better the thermo-economic performance of the system. The PEC is
calculated as

PEC =

.
Q
.

Qo
.

W.
Wo

, (15)

.
Wo = ∆Po.

.
V, (16)

.
W = ∆P.

.
V, (17)

where
.

Qo,
.

Wo, and ∆Po are the overall heat transfer rate, fluid pumping power, and pressure
drop, respectively, for an MJICS with a flat target plate, and

.
Q,

.
W, and ∆P are those of a

CMJICS with a protruding surface for the same fluid volume flow rate
.

V. For various jet
Re numbers, the PEC according to Hp/D is presented in Figure 13. For any jet Re number,
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the PEC increases with Hp/D, reaching its peak value at Hp/D of 4. For jet Re numbers

exceeding 10,000, at any considered Hp/D, both
.

Q/
.

Qo and PEC decrease with increasing
jet Re number as seen in Figures 7 and 13, respectively. However, as seen in Figures 7,
9 and 13, for lower jet Re numbers between 5000 and 10,000, due to the varying effects
of the formation and advection of vortices generated by Kelvin–Helmholtz instabilities,
effects of the coherence of the core velocity profile of each jet, and effects of the steepness
of its adjacent shear layer velocity gradients on local HTCs and Nu numbers, the trends
of

.
Q/

.
Qo, Nu/Nuo and PEC vary according to Hp/D. For Dp/D of 3.5, among the Hp/D

and jet Re numbers considered, the largest PEC of 1.47 is obtained for Hp/D of 4 and a
jet Re number of 5000, while the smallest PEC of 1.39 occurs for the same Hp/D at the
highest jet Re number of 20,000. Since the PEC is greater than unity for all Hp/D and jet Re
numbers studied, enlarging the target surface with CPs equipped with CGVs in a hexagonal
configuration is a robust and highly effective design, given the enhanced thermo-economic
performance. For an Hp/D of 4.5, where the top face of a CP is only 0.5D away from the

corresponding orifice, although the
.

Q/
.

Qo increases rapidly for any jet Re number, PEC
decreases sharply due to excessive ∆P since the potential core of the jets prevail in the
impingement zones. For Hp/D of 4.5, the highest and lowest PEC values of 1.15 and 1.05
are obtained at jet Re numbers of 5000 and 20,000, respectively. Therefore, for any jet Re
number considered, the thermo-economic performance of the system having Hp/D of 4.5
significantly deteriorates compared with the peak PEC values obtained at Hp/D of 4.
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3.2. Effect of Protrusion Diameter

To analyze the effect of Dp/D on multi-jet impingement cooling, for fixed Hp/D of
4 where PEC peaks, the Dp/D of 2, 2.5, 3, 3.5, and 4 were considered at various jet Re
numbers of 5000, 10,000, 15,000, and 20,000.

3.2.1. Enhancement of Heat Transfer

For Hp/D of 4, at various jet Re numbers, the effect of five different Dp/D of 2, 2.5, 3,

3.5, and 4 on the overall
.

Q is presented in Figure 14. The flat target plate case is represented
by Dp/D of 0. Like Hp/D, increasing Dp/D enhances the overall

.
Q for any jet Re number

considered in this study. For a jet Re number of 20,000, the lowest enhancement in the
overall

.
Q of 28.3%, compared with the flat target plate case, occurs at Dp/D of 2. For the

same jet Re number, at Dp/D of 4, the overall
.

Q is enhanced by 54.3% compared with that
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of the flat target plate. Among all considered cases, the highest enhancement in the overall
.

Q, 62.8%, is obtained at Dp/D of 4 for a jet Re number of 10,000.
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Figure 14. For Hp/D of 4, the effect of Dp/D on the overall
.

Q at various jet Re numbers.

For Hp/D of 4,
.

Q/
.

Qo according to Dp/D at various jet Re numbers are presented in

Figure 15. For any jet Re number considered, the
.

Q/
.

Qo increases with Dp/D. As seen

in Figure 15, at any Dp/D, for the jet Re numbers exceeding 5000,
.

Q/
.

Qo decreases with
increasing jet Re number. At Dp/D of 4, approximately the same heat transfer enhancement
with respect to that of the flat target plate, 62.8%, is obtained for the jet Re numbers of 5000
and 10,000.
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For Hp/D of 4, the Nu numbers according to Dp/D at various jet Re numbers are
presented in Figure 16. For any Dp/D, the Nu number increases with jet Re number. As
seen in Figure 8, the Nu number decreases with increasing Hp/D. Similarly, as Dp/D
increases, the Nu number decreases but at a slower pace. As Dp/D increases, both top
and lateral face areas of CPs increase whereas the base plate area decreases. Since the
heat fluxes are highest on the top faces of the CPs, the Nu number obtained by increasing
their diameter, hence both the top and lateral face areas, decreases more slowly than that
obtained by increasing their height, hence the lateral face areas.
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Figure 16. For Hp/D of 4, Nu number according to Dp/D at various jet Re numbers.

For Hp/D of 4, the Nu/Nuo according to Dp/D at various jet Re numbers are pre-
sented in Figure 17. The Nu/Nuo decreases with increasing Dp/D and jet Re number.
For Dp/D of 2, 2.5, 3, 3.5, and 4, the lowest—72.3%, 66.5%, 63.9%, 63.4%, and 60.6%—
and highest—78.2%, 73.5%, 70.3%, 66.7%, and 63.7%—Nu/Nuos are obtained for jet Re
numbers of 20,000 and 5000, respectively.

For Hp/D of 4, local Nu number contour plots on the top faces of CPs and on the flat
base plate, as well as on the unrolled lateral faces of the CPs, at various Dp/D and jet Re
numbers are presented in Figure 18. The Nu numbers on the top and lateral faces of the
CPs and on the flat base plate decrease with increasing Dp/D. For instance, at a jet Re
number of 20,000, for Dp/D of 3 and 4, the Nu numbers on the top faces are 102 and 93.71,
respectively; on the lateral faces, 31.29 and 25.60; and on the flat base plate, 30.21 and 26.71.
For Dp/D of 3, the Nu number trace of the rising fountain formed by the collision of wall
jets on the flat base plate between the two CPs clearly indicates a secondary stagnation
zone. As the distance between the two CPs decreases due to an increase in Dp/D, the
Nu number contours on the lateral face of the outer CP for Dp/D of 4 take on a helical
shape due to the peripheral diversion of the flow directed toward the flat base plate by the
intensified crossflow.
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3.2.2. Fluid Flow and Pressure Drop

For Hp/D of 4, velocity magnitude contour plots in the planar section shown in
Figure 10 are presented for various Dp/D and jet Re numbers in Figure 19. As the spacing
between them decreases due to the increase in Dp/D, the fountains weaken and eventually
disappear due to the reduced momentum of the wall jets on the top faces of the CPs at
the inlet of CGVs, and consequently, those of the downflows on their lateral faces. While
the fountain structure between the two CPs is quite prominent for Dp/D values ranging
between 2 and 3, it is considerably smaller for Dp/D of 3.5 and almost disappears for
Dp/D of 4. For Dp/D of 4, the downflow on the lateral face of the outer CP is deflected
around its circumference by the intense crossflow resulting from the smallest distance
between the CPs that can be considered in this study. However, quite minor increases in ∆P
occur as Dp/D is increased despite quite significantly enhanced

.
Qs, which has important

ramifications in evaluating the thermo-economic performance of the system.
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3.2.3. PEC

For Hp/D of 4, the PEC values according to Dp/D at various jet Re numbers are pre-

sented in Figure 20. For any jet Re number considered, the overall
.

Q increases significantly
with Dp/D due to enhanced heat transfer on both the top and lateral faces of the CPs
thanks to controlled flow over the enlarged areas of both faces, while the PEC increases
substantially due to minor increases in ∆P. The highest PEC, 1.519, is achieved for Dp/D
of 4 at a jet Re number of 10,000. The lowest PEC, 1.198, occurs for Dp/D of 2 at a jet Re
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number of 20,000. As seen in Figure 16, at any jet Re number, the Nu number is higher for
Dp/D of 2, despite the lower overall

.
Q and PEC, than that for Dp/D of 4. However, at any

jet Re number, for Dp/D of 4, the highest overall
.

Q and PEC are achievable at the expense
of decreased Nu number.
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Comparison of the calculated
.

Q/
.

Qo, Nu/Nuo, and PEC of the novel flow-controlled
CMJICS with those of the systems having various protrusion shapes in the literature are
listed in Table 2.

Table 2. Performance comparison of various CMJICSs.

Literature Protrusion Type
.

Q/
.

Qo
—–
Nu/

—–
Nuo PEC

Present study Cylindrical protrusion
with guide vanes 1.65 0.606–0.917 1.05–1.519

Brakmann et al. [26] Detached ribs 1 1.04 -
Brakmann et al. [48] Cubic micro pin fins 1.34–1.42 0.89–0.94 -

Wan et al. [51] Square pin fins 1.25–1.35 0.784–0.82 -
Taslim et al. [79] Horseshoe shaped ribs 1.27 - -

Rao [80]
Full-height pin fins - 1.323 -

Mini pin fins - 1.747 -

4. Discussion

In this study, the flow structure,
.

W, overall
.

Q, and PEC characteristics of a novel, high-
performance CMJICS with passive flow control that can significantly reduce the adverse
effects of crossflow on heat transfer and pressure drop were analyzed through 3D CFD
simulations. By deflecting the air jets impinging in the normal direction on the top faces
of the hexagonally arranged CPs toward their lateral faces via CGVs, interactions of the
crossflow with jets are significantly reduced, and

.
Q is considerably enhanced compared

with a flat target surface, at the expense of a small increase in
.

W. Since the CPs have a larger
diameter than the jet orifices, the impingement cooling of the jets is focused on the top faces
of the CPs, and the wall jets formed thereafter are directed by CGVs to the lateral faces
of the CPs, effectively cooling them and reducing the interactions of crossflow with the
impinging jets. Therefore, the overall

.
Q and PEC of the novel cooling system developed in
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this study are higher than of a system without flow control, in which the jets impinge on
both the protrusions and the base plate or the base plate between the protrusions.

As a jet becomes shorter, its advection and diffusion in lateral directions and the en-
trainment of surrounding fluid decrease. Therefore, the overall

.
Q of the novel CMJICS can

be improved by heightening the CPs, both due to the increased magnitude and coherency
of the core velocities of the jets and the increased steepness of the shear layer velocity
gradients of the jets, as well as the enlarged lateral surface area of the CPs. Moreover,
reducing the deflections and deformations of the jets by the crossflow with passive flow
control improves the HTCs at the stagnation zones of the impinging jets, thus the

.
Q on the

top faces of the CPs. The PEC of the novel CMJICS improves with increasing height of the
CPs due to a minor proportional increase in

.
W compared with

.
Q. The

.
Q and PEC can be

further enhanced by increasing the diameter of the CPs, thereby the areas of their top and
lateral surfaces, without a noticeable effect on the morphology of the impinging jets.

A shape optimization study of both the top edge fillet and the CGV is needed to
achieve more effective cooling without flow separation on the lateral face of a CP.

The novel CMJICS developed in this study can be adopted to a system having any
configuration of coaxial J-CP-GV triplets and properly located spent fluid outlet ports,
including the maximum crossflow arrangement. Moreover, MJIECSs configured as a
coaxial J-CP-GV ternary array with interspersed effusion holes can be designed to enhance
heat transfer in high-flux cooling applications.

Finally, effective cooling of the lateral face of a cylindrical or truncated cone-shaped
protrusion can also be realized without a CGV by means of an optimally shaped Coanda-
effect rounding downstream of a step at the upper edge of the protrusion. Additionally, in
future studies, CMJICSs and CMJIECSs with truncated-projectile or inverted-bowl-shaped
protrusions with a step between the flat top and convex lateral faces can be designed and
optimized to ensure that wall jets formed on the top faces after jet impingement remain
attached to the lateral faces by the Coanda effect.

5. Conclusions

The effects of CP geometric parameters and jet Re number on the cooling performance
and

.
W requirement of a novel CMJICS were analyzed by 3D RANS simulations for respec-

tively seven and five values of CP height and diameter at jet Re numbers ranging between
5000 and 20,000. PEC values of the novel CMJICS evaluated by CFD simulations clearly
indicate its excellent thermo-economic performance. Accordingly,

•
.

Q increases with both Hp/D and jet Re number. The maximum heat transfer enhance-
ment with respect to the flat target surface of 65% is obtained for Dp/D and Hp/D of

3.5 and 4.5, respectively. The
.

Q/
.

Qo increases with Hp/D while decreasing with a jet
Re number.

•
.

Q increases with Dp/D and jet Re number. For Hp/D of 4, and a jet Re number of

20,000,
.

Q increases by 28.3%, 30.9%, 38.1%, 48.8%, and 54.3%, respectively, for Dp/D
of 2, 2.5, 3, 3.5, and 4. The

.
Q/

.
Qo increases with Dp/D while decreasing with a jet Re

number.
• The Nu number decreases with increasing Hp/D, while increasing with a jet Re

number. The Nu/Nuo decreases with increasing Hp/D and jet Re number. For high
Re number jets impinging on CPs with Hp/D above 4, minor changes in Nu/Nuo
occur.

• The Nu number decreases with increasing Dp/D.
• For Dp/D of 3.5, at any jet Re number studied, the PEC increases considerably with

Hp/D, reaching its peak values of 1.47, 1.45, 1.41, and 1.39 for jet Re numbers of 5000,
10.000, 15,000, and 20,000 at Hp/D of 4. Greater Hp/D values rapidly reduce the
PEC due to the significantly increased ∆P caused by an impingement distance shorter
than D.
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• PEC decreases with the increasing jet Re number for any studied Hp/D, except for a
jet Re number of 5000 with Hp/D smaller than 2 due to transitional effects.

• The PEC of the novel cooling system increases with Dp/D, while decreasing with the
increasing jet Re number. For Hp/D of 4, the highest PEC value of 1.519 is obtained at
Dp/D of 4, and a jet Re number of 10,000.
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Nomenclature

A Area (m2)
cp Specific heat at constant pressure (J kg−1 K−1)
D Orifice diameter (m)
Dp Protrusion diameter (m)
Gk Turbulent kinetic energy production rate per unit volume of the fluid

(kg m−1 s−3)
h Convective heat transfer coefficient (W m−2 K)
Hp Protrusion height (m)
I Turbulence intensity (%)
k Turbulent kinetic energy per unit mass of the fluid (m2 s−2)
Ma Mach
Nu Nusselt
Nu Area-averaged Nusselt
P Pressure (Pa)
PEC Performance evaluation criterion (-)
Pr Prandtl
.

Q Heat transfer rate (W)
Re Reynolds
S Modulus of the Reynolds-averaged strain rate tensor (s−1)
Sij Reynolds-averaged strain rate tensor (s−1)
T Reynolds-averaged temperature (K)
T J Reynolds-averaged temperature at an orifice (K)
Tw Reynolds-averaged wall temperature (K)
T′ Temperature fluctuations (K)
ui A Cartesian component of the Reynolds-averaged velocity vector (m s−1)
uJ Reynolds-averaged jet velocity at an orifice (m s−1)
u′i A Cartesian component of the velocity fluctuation vector (m s−1)
.

V Volume flow rate of the fluid (m3 s−1)
.

W Fluid pumping power (W)
w Slot width
x/w Dimensionless distance from the stagnation point of a slot jet (-)
y+ Dimensionless distance from a wall to the centroid of the adjacent grid cell in

wall coordinates.
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Greek Symbols:
δij Kronecker delta (-)
∆P The pressure drops between the jet orifices and the system outlet.
ε Turbulent kinetic energy dissipation rate per unit mass of

the fluid (m2 s−3)
εijk Alternating tensor or permutation symbol (-)
λ Thermal conductivity of the fluid (W m−1 K−1)
µ Dynamic viscosity of the fluid (kg m−1 s−1)
µt Eddy viscosity of turbulent flow (kg m−1 s−1)
ρ Density of the fluid (kg m−3)
ωk Angular velocity of a rotating reference

frame (s−1)
Ωij The Reynolds-averaged rotation rate tensor viewed in a reference

frame rotating with the angular velocity ωk (s−1)
−ρu′iu

′
j Reynolds stress tensor (kg m−1 s−2)

−ρu′iT
′ Turbulent heat flux vector (kg K m−2 s−1)

Subscripts:
f Fluid
j Jet at the orifice
o Flat plate
w Wall
Acronyms:
CFD Computational Fluid Dynamics
CGV Coaxial Guide Vane
CMJICS Compound Multi-Jet Impingement Cooling System
CP Cylindrical Protrusion
CP-CGV Cylindrical Protrusion—Coaxial Guide Vane
HTC Heat Transfer Coefficient
J-CP-GV Jet-Cylindrical Protrusion-Guide Vane
MJICS Multi-Jet Impingement Cooling System
MJIECS Multi-Jet Impingement-Effusion Cooling System
RANS Reynolds-Averaged Navier–Stokes
SGDH Simple Gradient Diffusion Hypothesis
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
SST Shear-Stress Transport
1D One-dimensional
2D Two-dimensional
3D Three-dimensional
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