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Abstract: In complex two-dimensional monitoring environments, how to enhance network efficiency
and network lifespan while utilizing limited energy resources, and ensuring that wireless sensor net-
works achieve the required partial coverage of the monitoring area, are the challenges of optimizing
coverage in wireless sensor networks.With the premise of ensuring connectivity in the target network
area, an enhanced multi-objective salp swarm algorithm based on non-dominated sorting (EMSSA) is
proposed in this paper, by jointly optimizing network coverage, node utilization, and network energy
balance objectives. Firstly, the logistic chaotic mapping is used to maintain the diversity of the initial
salp swarm population. Secondly, to balance global and local search capabilities, a new dynamic
convergence factor is introduced. Finally, to escape local optima more effectively, a follower updating
strategy is implemented to reduce the blind following of followers while retaining superior individual
information. The effectiveness of the strategy is validated through comparative experiments on ZDT
and DTLZ test functions, and the proposed algorithm is applied to coverage optimization in WSNs
in complex environments. The results demonstrate that the algorithm can adjust coverage thresholds
according to different application requirements, providing various effective coverage optimization
configurations. With the same preset requirements for partial coverage achieved, both network
efficiency and lifespan have been significantly improved.

Keywords: wireless sensor networks; multi-objective optimization; non-dominated sorting;
multi-objective salp swarm algorithm; coverage optimization

1. Introduction

Wireless sensor networks (WSNs) is a multi-hop self-organizing network composed
of a large number of sensor nodes used for monitoring physical events [1]. Due to their
outstanding performance advantages, they play a crucial role in various fields such as
environmental monitoring, healthcare, agriculture, and urban traffic [2–5], contributing
significantly to the development and application of Internet of Things (IoT) technology.

Coverage optimization is an important research direction in the field of WSNs. The dis-
tribution of nodes within the monitoring area, among other factors, determines the sensing
coverage capability of WSNs. Additionally, the sensing and monitoring capabilities within
the monitoring area determine whether the WSNs can provide effective monitoring services.
In practical applications, when deploying wireless sensor nodes in complex environments
such as forests or oceans that are difficult for humans to access, the typical approach is to
deploy them in a random manner, which can lead to issues such as decreased network
performance and resource wastage. Deploying mobile nodes is a commonly used coverage
optimization method to improve network coverage, but this approach significantly in-
creases deployment costs. Therefore, designing appropriate node deployment strategies is
crucial for effectively enhancing the monitoring performance and data transmission quality
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of WSNs while keeping energy consumption at an acceptable level. This plays a pivotal
role in the future development of the entire WSNs application landscape.

The application of swarm intelligence algorithms and their improved algorithms in the
field of WSNs coverage optimization is quite common. Scholars continuously analyze and
research swarm intelligence algorithms and have proposed various bio-inspired algorithms.
These include the Particle Swarm Optimization (PSO) [6] algorithm, which simulates the
foraging behavior of bird flocks; the Flower Pollination Algorithm (FPA) [7], which mimics
the pollination process of flowering plants in nature; the Fruit Fly Optimization Algorithm
(FOA) [8], which is based on the foraging behavior of fruit flies; the Firefly Optimization
Algorithm (FA) [9], which imitates fireflies’ aggregation through bioluminescence; the Grey
Wolf Algorithm (GWO) [10], inspired by the hierarchical hunting behavior of wolf packs; the
Whale Optimization Algorithm (WOA) [11], derived from the behavior of whales capturing
food; The salp swarm algorithm, inspired by the aggregative behavior of salp swarm [12];
and various related improved or hybrid algorithms. However, existing research on coverage
optimization for network coverage can only ensure a more reasonable distribution of
nodes, with relatively limited improvements in network performance. Comprehensive
coverage optimization studies for WSNs, considering objectives such as network coverage,
connectivity, and node energy consumption, are more practically valuable. Typically,
multiple-objective optimization algorithms are used to comprehensively optimize these
multiple objectives.

Most existing research on WSNs coverage optimization has overlooked the variability
in coverage requirements within the monitoring target area [13–17]. It generally assumes
that the monitoring area has uniform coverage requirements. However, in real-world
scenarios where different levels of monitoring coverage are needed, this assumption may
not hold. This can lead to partial coverage issues when users specify their required
coverage thresholds based on their actual business needs. Nonetheless, in many cases,
partial coverage is sufficient to meet business requirements and can be achieved with fewer
active nodes, thus extending the network’s lifespan.

To address the challenge of balancing network coverage, node utilization, and node
energy consumption in WSNs coverage optimization, this paper introduces an enhanced
multi-objective salp swarm algorithm (EMSSA). The MSSA algorithm [12] for solving multi-
objective problems has some drawbacks, such as premature convergence and susceptibility
to getting stuck in local optima. Therefore, further improvements are needed for the MSSA
algorithm. The enhanced algorithm (EMSSA) is then applied to the study of sensor node
deployment in complex environments. The primary contributions of this research are
summarized as follows.

• Considering network coverage, node utilization, and network energy balance, a multi-
objective optimization deployment model is proposed for WSNs coverage optimization.

• To deploy sensor nodes in effective positions, we propose a grid-based approach for
monitoring areas with obstacles.

• Based on the multi-objective optimization model proposed in this paper, we have
designed an enhanced multi-objective salp swarm algorithm (EMSSA) based on multi-
ple strategies.

• Finally, we applied the proposed algorithm in a complex environment, providing dif-
ferent effective coverage optimization configurations by adjusting coverage thresholds
for node deployment.

The remaining of the paper is organized as follows. Recent relevant works in the
literature are discussed in Section 2. In Section 3, we provide a detailed description of our
proposed multi-objective optimization deployment model. The algorithm is explained
in Section 4. Subsequently, we discuss our simulation experiments and their results in
Section 5. while the Section 6 concludes the paper and provides future research directions.
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2. Related Works

In recent years, researchers have conducted extensive work on coverage optimization
in WSNs, achieving significant advancements.

Swarm intelligence optimization algorithms possess several advantages, such as strong
search capabilities and inherent randomness. Utilizing intelligent optimization algorithms
in coverage optimization, based on these algorithms, has become increasingly common
across various domains, including the optimization deployment of wireless sensor nodes.
In order to enhance the Quality of Service (QoS) in WSNs and extend network lifespan,
Ying et al. [13] improved the classical multi-objective Ant Lion Optimization (MOALO)
algorithm and proposed an enhanced MOALO algorithm based on fast non-dominated
sorting (NSIMOALO). Yao et al. [14], addressing the issue of nodes deviating from the
optimal deployment positions in complex monitoring areas like battlefields and disaster
zones, resulting in coverage holes, introduced a WSNs coverage enhancement strategy
based on Virtual Force-directed Ant Lion Optimization (VF-IALO). Experimental results
demonstrated the effectiveness of the proposed improved algorithms. Yao et al. [15],
addressing the optimization problem of maximizing coverage. Inspired by the predation
behavior of Army Ants, this paper introduces a novel swarm intelligence (SI) technique
called the Army Ant Search Optimizer (AASO) to tackle the problem of maximizing
coverage. Simulation results demonstrate that WMSNs (Wireless Multimedia Sensor
Networks) enhanced with AASO exhibit superior coverage performance. To balance
coverage and average node movement distance, Wang et al. [16] combined Virtual Force
Algorithm (VFA) with Grey Wolf Optimizer (GWO) and proposed the VFA-based Lévy
Flight GWO for coverage optimization in WSNs. Simulation experiments demonstrated the
algorithm’s strong applicability as the number of nodes and monitoring area size varied.
Addressing the issue of heterogeneous node deployment optimization in WSNs with
obstacles in the monitoring area, Wang et al. [17] introduced two new Flower Pollination
Algorithms (FPA) for network deployment. Simulation experiments indicated that both
improved algorithms could provide better solutions for WSNs deployment.

Bouzid et al. [18] proposed a novel approach for optimizing node placement, referred
to as MOONGA (Multi-Objective Optimization for WSNs using Genetic Algorithms). It can
generate optimal deployments based on topology, environment, specifications of different
applications, as well as the preferences of network designers and users. Khalaf et al. [19]
introduced a Bee algorithm to maximize network coverage area, significantly expanding
the area covered while reducing coverage gaps. However, the algorithm exhibits poor
convergence. Zain Eldin et al. [20], in response to the issues of network coverage gaps
and high deployment costs, proposed an improved Genetic Algorithm-based dynamic
deployment technique that achieves maximum target area coverage with the fewest nodes.
Addressing the problems of high coverage costs and node failures leading to inadequate
monitoring, Al-Fuhaidi et al. [21] presented an efficient deployment model based on a
probabilistic sensing model and the Harmony Search algorithm. This model balances
coverage performance and deployment costs. Elhoseny et al. [22] introduced a novel model
combining Genetic Algorithms to meet WSNs coverage requirements. This model aims
to monitor targets for as long as possible with limited energy, but it has a relatively high
algorithmic complexity. Syed et al. [23] proposed a strategy based on weighted distance lo-
cation updates, known as the Weighted Salp Swarm Algorithm (WSSA). Simulation results
have confirmed the improved performance and convergence speed of WSSA. Furthermore,
the WSSA method has been applied to a probabilistic sensor model to maximize coverage
range and to a wireless energy model to minimize energy consumption.

WSNs coverage optimization can be categorized into two types based on the number
of optimization objectives: single-objective optimization and multi-objective optimization.
Multi-objective optimization problems can further be classified into two major categories.
One category is linear weighting, where the idea is to integrate the solutions to multiple
objectives into a single objective for optimization. For example, to achieve the goal of
minimizing energy consumption and sensor node overlap area, Céspedes-Mota et al. [24]
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used a Multi-Objective Differential Evolution Algorithm (MODEA) to optimize the distri-
bution of sensor nodes in regular and irregular regions. Different weights were assigned to
each objective, transforming the multi-objective optimization into a single optimization
problem. The other category is Pareto-based, where direct optimization of multiple objec-
tives is performed. Benatia et al. [25], for instance, proposed a multi-objective deployment
strategy that considers sensor node positions and network cost. They then used a multi-
objective evolutionary algorithm to search for global optimal solutions. Harizan et al. [26]
proposed the use of the multi-objective evolutionary algorithm NSGA-II to address the
multi-objective problem of coverage and connectivity. They linearly programmed the
multi-objective problem and introduced chromosome crossover and mutation methods to
enhance the algorithm’s performance. In order to increase coverage while reducing node
energy consumption, Xu et al. [27] utilized the MOEA/D-I and MOEA/D-II algorithms
to jointly optimize network coverage, energy consumption rate, and energy balance rate.
Wang et al. [28] aimed to optimize network coverage, energy consumption rate, and energy
balance rate, and they integrated these three optimization objectives into a single objective
using linear weighting. They then employed an improved Whale Algorithm to optimize
this single objective function.

3. Multi-Objective Optimization Deployment Model
3.1. Perception Model

The Boolean model overlooks the influence of real-world factors on wireless sensor
nodes, and a simplified model may have some impact on the research. In actual monitor-
ing environments, the sensing capability of sensor nodes can be disrupted by obstacles
within the monitoring range, leading to a gradual decrease in the detection probability for
monitoring targets beyond a certain range. In a probabilistic sensing model, the perception
probability of sensor nodes for the monitoring area is set to be distance-dependent and
follows an exponential relationship.

In WSNs, assuming a set of wireless sensor nodes s = {s1, s2, · · · , si, · · · , sn}, a set of
grid points P = {P1, P2, · · · , Pj, · · · , Pn}, (xi,yi) and (xj, yj) corresponding to the 2D spatial
coordinates in their respective sets of si and Pj, the Euclidean distance between two nodes
is given by

d(si, Pj) =
√

(xi − xj)
2 + (yi − yj)

2 (1)

According to the definition of the probability perception model, the probability of
monitoring point Pj being sensed by node si is given by

Pcov(si, Pj) =


1

e−λαβ

0

d(si, Pj) ≤ R− r
R− r < d(si, Pj) <

d(si, Pj) ≥ R + r
R + r (2)

where R represents the sensing radius of the sensor node, and r is the reliability monitoring
parameter of the sensor node, with the typical value being 0 < r < R. The variables α and
β are the attenuation coefficients of the sensing capability of the sensor node, and λ is an
input parameter derived by

λ = d(si, Pj)− (R− r) (3)

3.2. Determining the Multi-Objective Deployment Model
3.2.1. Coverage Model

For the specific scenario of deploying nodes in complex environments with obstacles
in this paper, we can make the following assumptions:

• Sensor nodes are of the same type and have identical physical characteristics, with a
communication radius set to twice the sensing radius.

• Sensor nodes can determine their own positions and can move to specified locations
based on the algorithm [29,30].
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• The positions of obstacles within the monitoring area are known in advance.

Node coverage rate is one of the important metrics for assessing the overall monitoring
quality of WSNs. In this paper, we first gridify the monitoring area, considering the center
of each grid as a target monitoring point. Subsequently, the number of target monitoring
points covered by the grid representation of the monitoring area is used as the coverage
area of the sensor nodes in the monitoring area.

The probability of node si perceiving monitoring point Pj is represented in Formula (2).
sall represents all the nodes in the monitoring area, so the joint perception probability of all
sensor nodes for point Pj is defined as

Cp(sall , Pj) = 1−∏
si⊆s

(1− Pcov(si, Pj)). (4)

The coverage rate of sensor nodes in an environment with obstacles is represented by

Cov(Xi) =

G
∑

j=1
CP(sall , Pj)

G− K
(5)

where G represents the total number of target monitoring points after the gridding of
the monitoring area, and K indicates the number of vertices in the grid cells occupied
by obstacles.

3.2.2. Node Utilization Model

Due to the limited energy and processing capacity of nodes, the number of nodes is
also constrained. In practical applications, to maintain the normal operation of the entire
network within a specified working time, it is often necessary to minimize the number of
active nodes as much as possible and extend the lifespan of sensor nodes. Node utilization
rate is defined as

Uη =
∑ ei
N

(6)

where ei represents the number of active and effective nodes, and N represents the total
number of sensor nodes. A smaller value of Uη indicates lower node utilization, indicating
that there are more sleeping nodes, thus extending the network’s lifespan. Conversely,
with fewer sleeping nodes, the network’s operational time is shorter.

3.2.3. Energy Consumption Model

Sensor nodes are typically powered by batteries and cannot replenish energy after
deployment in the monitoring area. Therefore, energy efficiency is an important evaluation
metric in the field of coverage technology for WSNs.

Definition 1. Energy of Zone Ek
Ek is obtained by dividing the monitoring area into K equal grids, where k within the range

[1, M]. The energy of the k-th grid is defined as the ratio of the cumulative remaining energy of all
nodes within this grid to the total number of nodes in this grid, given by

Ek =
∑mk

i=1 Eki

mk
(7)

where mk represents the number of nodes in the k-th grid, and Eki denotes the remaining energy of
node i in the k-th grid.

Definition 2. Energy of Zone Ea
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Ea is defined as the difference between the maximum and minimum values of the grid energy
divided by the maximum grid energy, representing the current energy balance level of the network in

Ea =
max(Ek)−min(Ek)

max(Ek)
(8)

where Ea reflects the overall balance of energy consumption in the network, where a larger value
indicates a more uneven energy consumption. Therefore, a smaller Ea corresponds to better net-
work performance.

3.2.4. Description of Multi-Objective Problem

The ultimate optimization goal of this paper is to ensure coverage that meets the
requirements of the monitoring area while using as few sensor nodes as possible and
extending the overall network lifespan. The lower the energy consumption, the longer the
network’s lifespan. The multi-objective sensor network deployment problem described in
this paper can be characterized as

f1(O) = Max(Cov(O))
f2(O) = Min(Uη(O))
f1(O) = Min(Ea(O))

s.t s = {s1, s2, · · · , si, · · · sN} ∈ H

(9)

where the constraint A(si) ∈ H that each node’s position (si) must be within the monitoring
area (H). Here, O represents a matrix containing the coordinates, remaining energy, sensing
radius, and communication radius of a set of sensor nodes.

3.3. Obstacle Handling Description
3.3.1. Approximate Grid-Based Obstacle Handling

The gridding of obstacles within the monitoring area is subject to two specific assumptions:

• The locations of obstacles can be obtained in advance.
• The grid size should be significantly smaller than the size of the obstacles, as the grid

size directly affects the accuracy of obstacle detection and coverage range estimation.

The method of gridding obstacles is illustrated in Figure 1. When an obstacle covers
an entire grid or when the boundaries of an obstacle fall within a grid, that grid is marked
as an obstacle grid.

Figure 1. obstacle gridization.
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3.3.2. Obstacle Handling

In this paper, diamond and triangular obstacles are introduced within a square moni-
toring area, as shown in Figure 2. When optimizing the deployment algorithm, the nodes
that fall within the obstacles need to be processed as follows:

• When a node is located within a diamond-shaped obstacle (e.g., Node A): To minimize
power consumption caused by excessive node movement distance, a vertical line
is drawn from Node A to the nearest boundary of the diamond-shaped obstacle.
The intersection point between the perpendicular line and the boundary is denoted as
point A’. Node A is then repositioned at point A’ as its corrected location.

• When a node falls within a triangular obstacle (e.g., Node B): A vertical line is drawn
from Node B to the slant side of the triangle. The intersection point between the
perpendicular line and the slant side is denoted as point B’. Node B is then repositioned
at point B’ as its corrected location.

Figure 2. obstacle boundary handling.

3.4. Network Connectivity Description

WSNs are task-oriented networks that revolve around data and sense the monitoring
area, with nodes transmitting data through single-hop or multi-hop wireless communica-
tion. For the sake of computation, it is assumed that 2R = Rc. A directed graph adjacency
matrix M is established, which is used to store the connectivity status between any two
nodes. Connectivity is determined based on Formula (10), where M[i][j] = 1 indicates that
node i can transmit information to node j. Subsequently, the overall network connectivity
is determined using the matrix Sv calculated according to Formula (11)

M[i][j] =
{

1 i f d
(
si, sj

)
≤ Rc

i
0 otherwise

(10)

Sv = M + M2 + M3 + · · ·Mn−1 (11)

where n is the number of sensor nodes, if all elements in the vector Sv are 1, it indicates that
the network is connected; otherwise, it indicates that the network is disconnected. On the
basis of WSNs connectivity, the Kruskal algorithm mentioned in [31] is used to generate
the Minimum spanning tree.



Appl. Sci. 2023, 13, 11252 8 of 17

4. Enhanced Multi-Objective Salp Swarm Algorithm (EMSSA)
4.1. Description of the Mathematical Model for Moving Salp Chains

The Salp Swarm belongs to the family Ascidiidae and has a transparent barrel-shaped
body. It establishes a chain model for solving optimization problems, dividing the salps
into two groups: leaders and followers. Leaders are the salps located at the front of the food
chain, while the rest are considered followers. The population is initialized as shown in

XN×d = rand(N, d)× (ub− lb) + lb (12)

where N is the population number and d is the dimension, ub and lb respectively denote
the upper and lower bounds of the search space, and rand(N, d) is a random array of N
rows and d columns between [0, 1].

The position update formula for leaders is as follows

X1
d =

{
Fj + c1((ubj − lbj)c2 + lbj)
Fj − c1((ubj − lbj)c2 + lbj)

c3 ≥ 0.5
c3 < 0.5

. (13)

where X1
d represents the position of the first leader in the j-th dimension, Fj represents the

position of the food source in the j-th dimension, ubj and lbj are the upper and lower bounds
of the j-th dimension, respectively. The coefficient c1 is the most important parameter in
SSA, as it balances exploration and exploitation, and it is defined as follows

c1 = 2e−(4t/T)2
(14)

where t represents the current iteration, T represents the maximum number of iterations.
The parameters c2 and c3 are random numbers uniformly generated within the interval
[0, 1].

The update of the follower’s position, as shown in

Xi
d =

1
2
(Xi

d + Xi−1
d ). (15)

where i ≥ 2, and Xi
d represents the position of the i-th follower in the j-th dimension.

4.2. Enhanced Multi-Objective Salp Swarm Algorithm (EMSSA)

The solution to multi-objective problems is a set of solutions known as the Pareto
optimal set. The SSA algorithm can drive salps toward food sources and update them
during the iteration process. However, this algorithm cannot solve multi-objective problems.
In 2017, Mirjalili et al. proposed a Multi-Objective Salp Swarm Algorithm (MSSA) [12]
to address multi-objective optimization problems. Although it has high convergence
and coverage, it still has some shortcomings, such as susceptibility to local optima and
relatively slow convergence speed. To enhance MSSA’s convergence speed, exploration
and exploitation capabilities, and escape from local optima, this paper presents further
improvements to the MSSA algorithm.

4.2.1. Logistics Chaotic Mapping

The initialization of the salps population is crucial for the convergence speed and
optimization accuracy of MSSA. In order to increase the likelihood of obtaining good initial
solution positions and accelerate the convergence of the population, this paper adopts
the Logistics chaotic mapping method, which has better traversal uniformity and faster
iteration speed. This method improves the coverage space of initial solutions, and the
calculation is as follows

xi
j+1 = µxi

j

(
1− xi

j

)
, xi

j < 0.5 (16)
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In this paper, µ is set to 4, where µ ∈ [0, 4] is the chaotic parameter, and a larger µ cor-
responds to stronger chaos. i = 1, 2, · · ·, N represents the population size, and j = 1, 2, · · ·, d
represents the index of the chaotic variable.

4.2.2. Dynamic Convergence Factor

To balance the global and local search capabilities of MSSA, a new dynamic conver-
gence factor is introduced during the leader’s position update. This dynamic convergence
factor draws inspiration from PSO and introduces an inertia weight strategy. It also em-
ploys a sine function to control the variation of the inertia weight. This function allows
the salp swarm to explore the optimal solution at a relatively high speed at the beginning,
and then gradually stabilizes the local search with a smoother rate of change towards the
end, facilitating the discovery of the best solution. The Formula (17) is modified as follows

c′1 = sin(π + π ∗ ( t
2T

)) +
wmax + wmin

2
(17)

When the inertia weight varies between 0.4 and 0.9, the algorithm exhibits relatively
good optimization performance. As the iterations progress, the inertia weight is nonlinearly
decreased from 0.9 to 0.4, achieving dynamic weight changes. This allows for a better
balance between global exploration and local exploitation in the algorithm and, to some
extent, increases the probability of escaping local optimal regions [32]. Therefore, in this
paper, the value of wmax is set to 0.9, and wmin is set to 0.4.

The updated equation for the leader position is shown in Formula (18).

X1
d =

{
Fj + c′1((ubj − lbj)c2 + lbj)
Fj − c′1((ubj − lbj)c2 + lbj)

c3 ≥ 0.8
c3 < 0.8

(18)

where c′1 represents the new dynamic convergence factor, with the meanings of the other
parameters remaining the same as in Formula (13).

4.2.3. Follower Updating Strategy

In the original formula for follower position update, the movement of followers has a
certain degree of randomness and is only related to the position of the previous individual.
It lacks the ability to exchange information with other individuals, which can lead to
the algorithm getting stuck in local optima. To address these shortcomings, this paper
introduces a new formula for follower position update, which is expressed as follows

L = 1− t
T

(19)

where t represents the current iteration count, T represents the maximum number of
iterations, and the value of L decreases from 1 to 0 as the iteration t progresses.

Xi
d =

{
(Xi−1

d + LXi
d)/2

Xi−1
d − sin(Xi

d)

f (Xi−1
d ) ≤ f (Xi

d)

f (Xi−1
d ) > f (Xi

d)
(20)

where L is added in front of the individual in the better position to reduce the influence of
individuals in poorer positions. Conversely, a sine mechanism is used to control the range
of individual movement. This approach significantly reduces the randomness of followers,
enhances information exchange between individuals, and ensures population diversity.

4.2.4. Enhanced Multi-Objective Salp Swarm Algorithm (EMSSA)

Based on the description of MSSA and the three improvement measures mentioned
above, the pseudo code for EMSSA can be seen in Algorithm 1. The EMSSA algorithm first
initializes the population of salps with Logistics chaotic mapping. Then, it calculates the
objective values for each salp and finds the non-dominated solutions. These non-dominated
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solutions are updated to the repository based on the repository update mechanism. Next, a
food source is selected from the non-dominated solutions in the repository with the least
crowded neighborhood. The next step involves updating the position of leading/follower
salps using the respective formulas. If a salp goes out of bounds during the position update
process, it is brought back within the boundary. Finally, all the above steps, except for the
initialization step, are repeated until the termination condition is met.

Algorithm 1: Pseudo code of the EMSSA algorithm.
Data: Population size N, maximum number of population iterations T.
Result: repository

1 Initialize the salp population xi(i = 1, 2, · · ·, n) with Logistics chaotic mapping
2 while (t < T) do
3 Calculate the fitness of each search agent (salp swarm);
4 Determine the non-dominated salp swarms;
5 Update the repository
6 if the repository becomes full then
7 Call the repository maintenance procedure to remove one repository

resident ;
8 Add the non-dominated salp to the repository
9 end

10 Choose a source of food from repository: Fd = SelectFood(repository)
11 Update c′1 by Equation (17)
12 for each salp (xi) do
13 if xi = 1 then
14 Update the leader position by Equation (18)
15 else
16 Update the follower position by Equation (20)
17 end
18 end
19 Amend the salps based on the upper and lower bounds of variables
20 end
21 Return repository

5. Results and Discussion

The simulation experiments in this paper were conducted using Matlab 2021a, with
identical parameters set for all simulations. To effectively demonstrate the performance
of the EMSSA algorithm proposed in this paper, this section conducts convergence tests
on this algorithm, the original MSSA [12] algorithm, and the multi-objective optimization
genetic algorithm (NSGA-II) [33] on four different test functions. A comparative analysis
is performed among the three different algorithms. Subsequently, coverage optimiza-
tion is carried out using these three algorithms at various coverage thresholds to derive
experimental conclusions.

5.1. Performance Analysis of the Proposed Algorithm

To validate the effectiveness of the EMSSA algorithm, four challenging multi-objective
test functions were selected for benchmarking. Due to the complexity of these multi-
objective test functions, a larger number of search agents (60) and a higher maximum
iteration limit (1000) were employed. It is worth noting that the maximum archive size for
both MSSA and EMSSA was set to 100 in Table 1, and the parameter settings for the test
functions are shown in Table 2. After running the algorithm for 30 iterations, quantitative
results were calculated using the IGD measure, as shown in Table 3. The obtained Pareto-
optimal fronts are illustrated in Figures 3–6.
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Table 1. Parameter Setting.

Algorithm Parameters

NSGA-II pc = 0.9, pm = 1/n, ηc = ηm = 20
MSSA c2 ∈ [0, 1], c3 ∈ [0, 1], repository = 100

EMSSA c2 ∈ [0, 1], c3 ∈ [0, 1], repository = 100

Table 2. Test Function Parameter Settings.

Function
Dimension Pareto Front

Variables Objectives Number of Samples

ZDT1 30 2 1000
ZDT2 30 2 1000
ZDT3 30 2 536

DTLZ7 22 3 4700

Table 3. Results of the three algorithms (using IGD) on the test functions employed.

Algorithm
ZDT1

Ave Std. Best Worst

NSGA-II 6.25× 10−3 5.21× 10−3 6.05× 10−4 2.16× 10−2

MSSA 3.15× 10−3 8.99× 10−4 2.19× 10−3 6.28× 10−3

EMSSA 1.06× 10−4 9.69× 10−5 5.51× 10−4 7.21× 10−4

Algorithm
ZDT2

Ave Std. Best Worst

NSGA-II 1.35× 10−2 1.22× 10−2 6.15× 10−4 4.29× 10−2

MSSA 3.58× 10−3 1.66× 10−3 2.08× 10−3 9.51× 10−3

EMSSA 6.01× 10−4 7.81× 10−5 4.58× 10−4 8.46× 10−4

Algorithm
ZDT3

Ave Std. Best Worst

NSGA-II 9.52× 10−3 7.03× 10−3 8.32× 10−4 2.25× 10−2

MSSA 6.67× 10−3 2.78× 10−3 3.92× 10−3 1.75× 10−2

EMSSA 1.02× 10−3 1.60× 10−4 7.70× 10−4 1.61× 10−3

Algorithm
DTLZ7

Ave Std. Best Worst

NSGA-II 2.12× 10−3 1.56× 10−3 1.14× 10−3 7.75× 10−3

MSSA 2.25× 10−3 9.51× 10−4 4.23× 10−3 9.62× 10−4

EMSSA 1.34× 10−3 1.57× 10−4 1.07× 10−3 2.05× 10−3

“Ave” and “Std.” respectively denote the average and standard deviation of the
algorithm’s performance on the test function after running independently 30 times. “Ave”
reflects the average performance of the EMSSA algorithm, while “Std.” represents the sta-
bility of EMSSA across all runs. By observing Table 3, we can see that the EMSSA algorithm
achieves the optimal IGD values in the test functions, indicating that the EMSSA outper-
forms the MSSA and NSGA-II algorithms in most ZDT and DTLZ7 test problems. This
suggests that the IMSSA algorithm exhibits good diversity and convergence performance.

From the Pareto front obtained in Figure 3, it can be observed that EMSSA and MSSA
exhibit better convergence performance compared to NSGA-II. Additionally, their solution
distributions are nearly uniform, indicating their high coverage capability.
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Figure 3. Best Pareto front determined by NSGA-II, MSSA, and EMSSA on ZDT1.
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Figure 4. Best Pareto front determined by NSGA-II, MSSA, and EMSSA on ZDT2.

The Pareto-optimal solutions obtained from Figure 4 reveal that NSGA-II exhibits low
coverage and performs worse than the EMSSA and MSSA algorithms. The Pareto front
obtained by the MSSA algorithm also exhibits a gap.
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Figure 5. Best Pareto front determined by NSGA-II, MSSA, and EMSSA on ZDT3.

ZDT3 exhibits a Pareto front with common region separations often seen in practical
problems. As shown in Figure 5, EMSSA outperforms MSSA and NSGA-II in both conver-
gence and coverage. The results indicate that EMSSA is effective in locating all the separate
regions of the Pareto front with higher distribution on each region.

Figure 6. Best optimal front determined by NSGA-II, MSSA, and EMSSA on DTLZ7 with 3 objectives.
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For problems with three objectives, the Pareto-optimal solutions obtained from Figure 6
indicate that the EMSSA algorithm exhibits the best convergence and coverage, while
NSGA-II shows the poorest convergence and coverage. These results suggest that the
EMSSA algorithm is also capable of approximating the true Pareto front of three-objective
optimization problems.

5.2. WSNs Coverage Optimization Analysis

To assess the performance of the proposed algorithm in terms of target area coverage,
simulation experiments were conducted on the algorithms presented in this paper. It was
assumed that WSNs was deployed within a 50 m × 50 m target area, which included a
diamond-shaped obstacle and a triangular-shaped obstacle. Sensor nodes were randomly
scattered within this target area, and the simulations were verified using Matlab 2021a
software. Based on references [12,33], it is known that the simulation parameters provided
in Table 4 yield the best algorithm performance. The simulation parameters are as shown in
Table 4.

Table 4. Simulation Experiment Parameter Settings.

Parameter Value

Number of nodes 200
Population size 60

T 300
α 0.2
β 2

5.2.1. Boxplot Comparison Analysis

In this section, a box plot is used to compare the accuracy and consistency performance
of solution sets obtained by three different algorithms. In Figure 7, f1, f2, and f3 represent
network coverage optimization, node utilization, and network energy balance, respectively.

NSGA-II MSSA EMSSA
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(c)

Figure 7. Boxplot of Optimal Solution. (a) network coverage. (b) node utilization. (c) network
energy balance.

The results from the boxplot evaluation reveal that, in terms of coverage, NSGA-II and
EMSSA outperform MSSA. For node utilization, EMSSA performs well, while NSGA-II
exhibits the poorest performance. In the context of network energy balance, EMSSA demon-
strates relatively good performance, while MSSA performs the worst. In summary, under
the condition of meeting the predetermined coverage requirements, the EMSSA algorithm
utilizes fewer working nodes and maintains a more balanced network consumption, result-
ing in a longer network lifetime. In other words, NSGA-II and MSSA do not perform well
under the deployment model considered in this chapter, while EMSSA shows relatively
better performance.
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5.2.2. Comparison of Coverage Schemes for Different Algorithms at Various
Coverage Thresholds

Considering that the coverage requirements for different monitoring objectives may
vary, and in most cases, partial coverage may suffice to meet these requirements, users
specify the desired coverage thresholds based on actual coverage requirements. The Pareto
solution set obtained through the optimization of this coverage control strategy consists of
multiple non-dominated solutions, allowing decision-makers to flexibly choose solutions
according to the specific requirements of the problem.

Figures 8–10 respectively illustrate network coverage solutions achieved by the three
algorithms under the condition of network connectivity in the monitoring area, with pre-
defined coverage thresholds set at 90%, 95%, and 100%. Each selected solution represents
a non-dominated solution within the Pareto set, with coverage closest to the predefined
coverage threshold.
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Figure 8. Coverage scheme with a coverage threshold of 90%. (a) NSGA-II: 90.04%, 38 nodes.
(b) MSSA: 89.88%, 42 nodes. (c) EMSSA: 90.68%, 36 nodes.
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Figure 9. Coverage scheme with a coverage threshold of 95%. (a) NSGA-II: 94.79%, 58 nodes.
(b) MSSA: 94.48%, 50 nodes. (c) EMSSA: 95.03%, 44 nodes.
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Figure 10. Coverage scheme with a coverage threshold of 100%. (a) NSGA-II: 98.61%, 74 nodes.
(b) MSSA: 98.04%, 67 nodes. (c) EMSSA: 99.08%, 50 nodes.
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From Figures 8–10, it can be observed that EMSSA achieves higher coverage with
fewer nodes for different predefined coverage thresholds. Additionally, compared to the
coverage deployment solutions obtained by the MSSA and NSGA-II algorithms under
the same coverage threshold, the EMSSA algorithm achieves a more evenly distributed
deployment of sensor nodes.

The non-dominated solutions obtained by each algorithm for different predefined
coverage thresholds are presented in Table 5 as follows.

Table 5. Simulation Experimental Result.

Objective Algorithm
Coverage Thresholds

90% 95% 100%

f1

NSGA-II 0.9004 0.9479 0.9861
MSSA 0.8988 0.9448 0.9804

EMSSA 0.9068 0.9503 0.9908

f2

NSGA-II 0.19 0.29 0.37
MSSA 0.21 0.25 0.335

EMSSA 0.18 0.22 0.25

f3

NSGA-II 0.6342 0.6245 0.6193
MSSA 0.6769 0.6353 0.6103

EMSSA 0.6029 0.6051 0.5892

Ensuring network connectivity, lower values of node utilization and network energy
balance indicators at the same coverage threshold correspond to better network perfor-
mance. Observing Table 5, it is evident that when the predefined coverage threshold is set
at 90%, EMSSA achieves higher coverage with fewer nodes and a more even distribution
of nodes. At a predefined coverage threshold of 95%, EMSSA achieves a 7% reduction
in node utilization, significantly reducing the use of redundant nodes, and lowering the
overall network energy consumption. When the predefined coverage threshold is set at
100%, EMSSA reduces node utilization by 12% and appropriately extends the network’s
lifespan. These experimental results indicate that this coverage control strategy effectively
reduces the use of redundant nodes, ensuring coverage requirements while maintaining
balanced energy consumption.

6. Conclusions

The coverage optimization, considering multiple objectives such as network connec-
tivity, coverage, and energy consumption, is a focal point in current research on WSNs
coverage optimization. In this paper, we have designed a multi-objective coverage optimiza-
tion model and proposed an enhanced multi-objective optimization algorithm (EMSSA)
based on non-dominated Sorting-based. We applied the proposed algorithm to coverage
optimization in complex environments with obstacles. Different optimization configura-
tion schemes were obtained by adjusting the coverage threshold according to different
application requirements, improving the applicability of WSNs in different scenarios. It is
evident that the proposed algorithm performs well and is better suited for the deployment
model considered in this paper compared to the MSSA and NSGA-II algorithms. However,
there are still some issues that need further investigation and exploration in this research.
For example, in this paper, we employed a grid-based approximation to handle obstacles,
which might enlarge the actual obstacle areas, leading to errors in the actual coverage range
of the monitoring area. Our next steps will involve exploring more reasonable methods
for obstacle handling, minimizing node coverage errors, and striving for alignment with
actual deployment requirements as much as possible.
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