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Abstract: Digital fitness has become a widely used tool for remote exercise guidance, leveraging
artificial intelligence to analyze exercise videos and support self-training. This paper introduces a
method for self-training in golf, a sport where automated posture analysis can significantly reduce the
costs associated with professional coaching. Our system utilizes a pose refinement methodology and
an explainable golf swing embedding for analyzing the swing motions of learners and professional
golfers. By leveraging sequential coordinate information, we detect biased pose joints and refine the
2D and 3D human pose estimation results. Furthermore, we propose a swing embedding method
that considers geometric information extracted from the swing pose. This approach enables not only
the comparison of the similarity between two golf swing poses but also the visualization of different
points, providing learners with specific and intuitive feedback on areas that require correction. Our
experimental results demonstrate the effectiveness of our swing guide system in identifying specific
body points that need adjustment to align more closely with a professional golfer’s swing. This
research contributes to the digital fitness domain by enhancing the accuracy of posture analysis and
providing a specialized and interpretable golf swing analysis system. Our proposed system offers a
low-cost and time-efficient approach for users who wish to improve their golf swing, paving the way
for broader applications of digital fitness technologies in self-training contexts.

Keywords: digital fitness; self-training; human pose estimation; explainable representation; golf
swing analysis

1. Introduction

Recently, the development of human pose estimation (HPE) technology has stimulated
research in the field of digital fitness. Digital fitness is garnering attention because it
allows for exercise guidance remotely through automated systems, even when face-to-face
interactions between instructors and learners are challenging. In particular, there has been
an active pursuit of research [1–7] in which artificial intelligence analyzes exercise videos
and supports self-training for exercise without communication with a sports instructor.

Self-training is a learning method where individuals observe professional athletes’
movements and mimic those actions to improve their own sports abilities. Learners observe
actual sports players’ movements, apply those movements to their own exercise routines,
and analyze areas where they fall short. Through this process, they can self-correct and
ultimately achieve movements that are similar to those of professional athletes. Systems
that support this process automatically compare the movements of professional athletes and
learners, and, by highlighting differences in movement, enable the learners to self-correct.
Self-training is attracting attention, especially in high-cost sports fields, because it offers a
more affordable way to learn. Particularly in the golf lesson market, where high costs were
previously required, automated golf pose analysis technology has been introduced through
image processing and human pose estimation research. This technology allows learners to
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self-study the movements of professional golfers, thus making it possible to receive golf
lessons at a lower cost. The introduction of such technology has the effect of reducing the
cost burden for those starting golf.

In automated golf lesson systems, the key feature of self-training is utilizing human
pose estimation technology to extract the swing postures of professional golfers and learners
and identifying the differences in their movements to provide feedback to the learner. In this
process, the swing movements of professional golfers are transformed into embedding
vectors, and algorithms are used to detect discrepancies between movements.

Conventional golf posture correction studies have extracted the joint positions of
golfers through HPE technology and presented the differences in movements to learners
by comparing similarities between the embedding vectors of golfer swings represented
through a CNN (Convolutional Neural Network). However, there are two problems with
this approach.

Firstly, as golf swing movements tend to be performed at high speeds, there is a
high likelihood of obtaining blurry or ambiguous images. As a result, the accuracy of
the extracted coordinates in the pose estimation process may be compromised. There-
fore, it is necessary to improve the accuracy of the extracted coordinates through a pose
refinement process.

Secondly, the conventional image embedding representation method does not contain
enough information to compare golf swing movements. The golf swing should consider
geometric elements, such as shoulder rotation angle, the angle between the shoulder and
elbow, and pelvic angle, as well as the physical differences of the golfer performing the
swing. In prior research [2], CNNs have been utilized to embed images of golf swings,
facilitating the identification of discrepancies through the computation of similarity against
reference embeddings. Nonetheless, this methodology presents problems. The derived
similarity might be influenced by extraneous variables, such as background variations in
images or disparities in the physical stature of the subjects under comparison. Consequently,
the embedding vector’s similarity can be affected by factors beyond the mere golf swing
dynamics. Furthermore, while the system can detect a frame-wise deviation between two
motions, it lacks the precision to identify the specific joints responsible for the discrepancy.
This leads to the problem of being able to tell the user in which frame the mismatch occurs
but not being able to give them direction for improvement.

In this study, we introduced a method that applies a coordinate correction network to
enhance the accuracy of joint coordinates obtained through pose estimation. Our approach
focuses on proposing an embedding method to accurately represent a golfer’s swing,
utilizing features such as geometric analysis, physical characteristics, and swing style.
We aim to offer a comprehensive golf analysis system that suggests improved postures
to learners using template-based image and video generation. The detailed benefits and
unique aspects of our approach, including specialized information representation and the
provision of interpretable insights, will be expanded upon in the Method section. The key
contributions of our research are as follows:

• We introduce a coordinate correction network to improve the performance of the joint
coordinates extracted through human pose estimation technology, thereby enhancing
the accuracy of posture analysis.

• We propose a golf swing embedding technique that allows for more accurate repre-
sentation of golf swing movements, enabling specialized golf swing analysis.

• Unlike previous learning methods, we can provide specific advice for user movement
correction through interpretable embedding analysis.

2. Related Works
2.1. Pose Estimation Research

In [8], the field of two-dimensional (2D) human pose estimation research was cat-
egorized into Single Person Pose Estimation models and Multi-Person Pose Estimation
models. Additionally, each was further divided into regression and heatmap methods,
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as well as bottom-up and top-down detection methods. Single Person Pose Estimation
using the regression method detects joints by regressing joint coordinates directly from
the feature map of the image. This method is fast, direct, and trained in an end-to-end
fashion. Because of this, it can be applied to three-dimensional (3D) joint estimation with-
out any change. However, it is difficult to train joint positions, and it is not applicable to
multiple person pose estimation. BlazePose [9] used the regression method and employed
tracking to utilize previous coordinate information for predicting the next coordinates. It
is an extended model that can estimate 3D coordinates, obtaining x, y, and z coordinates.
However, when using motion as input, the lower the image quality, the more non-detection
issues occur in all coordinates. Single Person Pose Estimation using the heatmap method
infers joint coordinates through heatmap prediction of the expected joint positions. It is
easy to visualize and applicable to complex cases. However, it requires much memory
to obtain heatmaps and is difficult to extend to 3D coordinate estimation. HRNet (High-
Resolution Network) [10] uses the heatmap method and applies multiple resolutions in
parallel during training to learn models that capture both global and local contexts. This
model extracted human joint coordinates with higher performance than other models
used in the experiments, but issues of false detection and coordinate inversion still existed.
Bottom-up coordinate detection for multi-person estimation is a method that estimates
the joint coordinates of people in a video and then distinguishes individuals. It detects
coordinates quickly by first finding coordinates and then detecting individuals, but it has
the disadvantage of lower performance. OpenPose [11], a bottom-up coordinate detection
model, distinguishes individuals through features of body parts, thus improving accuracy.
However, non-detection issues occurred when using golf swing motion data. Top-down
coordinate detection for multiple person estimation is a method that first detects a person
and then iteratively estimates the joint coordinates of the single person. It detects more
accurate coordinates but is slower since it detects the person first and then iteratively
estimates their pose. To improve coordinate estimation performance, both the human
detection and detected human pose estimation parts need refinement. Geometric and
spatial transformation processes using STN (Spatial Transformation Network) and SDTN
(Spatial Detransformer Network) were suggested in [12]. This network [12] extracts high-
quality human candidate frames and shows features that improve recognition performance.
Moreover, ref. [13], currently a state-of-art model, significantly improved pose estimation
performance through the Vision transformer. However, the current model size ranges from
1 million to 1 billion, which requires high computational costs.

2.2. Pose Refinement Research

Pose refinement research aimed at improving coordinate accuracy in human pose
estimation models can be categorized into end-to-end methods and pose-processing meth-
ods [14]. This research [14] has focused on enhancing the accuracy of the coordinates
estimated by human pose estimation models, which is one of the main topics of this paper.
Models in [15–21] are studied using an end-to-end learning approach. Although the imple-
mentation methods differ among models, they share the characteristic that pose estimation
and refinement occur together within the model. In the case of [19], a method was used
that employs iterative error feedback, transferring errors step-by-step within the model
and incrementally improving the pose by correcting the model’s estimation results. Similar
to other models, the step-by-step pose refinement processes are implemented together with
the pose estimation process within the model. In [20], a PRM (Pose Refine Machine) is
used to improve the estimated pose within the model at the last step of the pose estimation
process. In this study [20], PRM makes more precise pose estimation possible by using
high-level discriminative semantic information and low-level spatial information. In [21],
a structure was used to estimate human pose through a two-step process. A GPR (Graph
Pose Refinement) module in the second step was used to obtain an improved pose. The GPR
module was designed as a refinement module with a graph structure that considers the
relationship between joints. These kinds of end-to-end refinement modules rely on the
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estimation results of the pose estimation model for their output values, which does not
guarantee that the refinement module will work successfully within the model.

The models that use a post-processing method in performance refinement research are
in [14,22,23]. These models have a network structure that corrects the coordinates by receiv-
ing the coordinates output by the human pose estimation model. Similar implementation
methods are shown in [14,22], but the method proposed in [14], which showed higher per-
formance, used a method that obtains corrected coordinates by passing the input image and
coordinates through a CNN (Convolutional Neural Network) backbone + upsampler struc-
ture. In [23], research was conducted to recognize actions using extracted joints, correcting
coordinates through a PRM (pose refinement module), and then utilizing them. The PRM
used in [23] was designed as a structure that obtains corrected poses by passing through
a GCL (Graph Convolutional Layer) and TCL (Temporal Convolutional Layer). Unlike
the end-to-end methods that operate within the model, these post-processing methods
are applied after the model estimates the coordinates, which reduces model dependency.
However, they also present the problem of increased computational requirements due to
the additional coordinate correction process.

2.3. Self-Training Research

Digital fitness can be classified in three ways depending on the participation of the
user and the instructor (Figure 1). First, there is the passive approach [24], which occurs
through an online assessment by a human instructor. This method involves evaluating the
student’s movements through real-time video calls or video submissions and providing
feedback, following the model of traditional offline fitness coaching. The advantage of
this approach is that it allows for expert guidance. However, it has the drawback of being
dependent on human resources, as it requires the assistance of a human instructor.

Figure 1. The branches of digital fitness research. Each approach is depicted in a unique color for
differentiation: passive in green, hybrid in teal, and self-training in orange. Digital fitness research is
divided into passive approaches, hybrid approaches, and self-training approaches. Passive methods
involve learners learning exercises through live or recorded videos. Hybrid methods involve a
combination of human instructor intervention and automated system analysis. Self-training methods
involve learners watching and learning from experts without human intervention.

Second, the hybrid approach [25] allows users to receive help from both a human
instructor and an automated system. This approach offers the advantage of unrestricted
learning through an automated system and the ability to receive expert assessments. This
method allows for more precise and varied perspectives on information, but it has the
limitation of still requiring human expert participation in terms of cost savings.

Lastly, the self-training approach [1–7] is based on learners following expert move-
ments or standardized movements on their own without the intervention of a human
instructor. In this approach, learners can learn on their own through expert workout
videos, and there is an approach that uses automated systems to compare the postures of
experts and learners, analyze the differences, and provide guidance. The advantage of this
approach is that it does not require human resources, making it cost-effective and allowing
for training without time constraints. However, this method heavily relies on the learner’s
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will and the system’s performance, so the effectiveness of the exercise can vary depending
on the individual.

3. Method

In this section, we detail our methodology designed to compare a user’s golf swing
with that of a professional golfer. All of the process is illustrated in Figure 2. Our approach
consists of two stages. The first stage revolves around pose estimation and its pose-
processing refinement for accurate pose guidance illustrated in the HPE and PRN of
Figure 2a. To achieve this, we produced pose error data by simulating incorrect poses based
on real-world data. These data then inform a sequential model, which detects errors in
pose joints extracted from our primary pose estimation model. In the next stage, which
is illustrated in the Norm and Vector Representation of Figure 2a, we translate the swing
motion into a vector form that consists of explainable feature values, such as gender, ratio,
angle, etc., allowing for a direct comparison between two distinct golf swing motions. We
compare the user’s swing embedding vector with the pro’s embedding to be aware of most
similar pro golfers and to detect the discrepancy joint for self-learning. By visualizing the
differences between these motions, we aim to facilitate the user’s self-guided learning.

Figure 2. Overall process of proposed methods. (a) is the overview of the system that illustrates the
input video to output result. XorgUser is a pose coordinate extracted from the HPE, and Xre f User is
a refined pose where XnormUser is normalized and synchronized pose information for comparison
to the professional golf swing. Luser is a representation vector including swing information, such as
physical state, golf swing style, etc., and Lpro is a matrix that consists of swing representations of a
pro golfer. (b) is an illustration of how to calculate the similarity between a professional golfer and a
learner. (c) shows the process of calculating the importance of each joint feature to extract where the
mismatch occurs when the most similar golfer is found. In (c) the impact of each feature, the red bars
indicate that removing the feature had a negative impact on the overall similarity, while the blue bars
indicate a positive impact.

3.1. Pose Refinement Process

In the pose estimation process for a golf swing video, there are some problems in
detecting joint coordinates because of the fast motion. For instance, as shown in Figure 3,
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when the swing movement is fast, coordinate estimation errors occur more frequently.
These coordinate errors can generate inaccurate guidance during posture analysis and
error calculation. To address this problem, we propose a method to effectively remove
outliers with a rule-based outlier detection method and low computational cost by training
a network using a single-layer Bi-LSTM (Bidirectional Long Short-Term Memory). The
Bi-LSTM model for removing outliers is trained on data mimicking outlier coordinates that
occur during the pose estimation process of a pose estimation model and outputs whether
outliers occur in each joint’s frame. We suggest an outlier detection algorithm that can be
used in some body parts that cause several pose errors in golf swing motion by utilizing
features of the golf swing posture. By removing the joint coordinates of the frames with
outliers, we interpolate the missing coordinates through interpolation methods. Figure 4
shows the overall structure of the pose refinement process.

Figure 3. The cases of pose error in the pose estimation process. A white circle indicates that there
is no problem with joint coordinate extracted by pose estimation model, and a red symbol means
that there is a problem with joint coordinate. A yellow cross sign indicates where the problem occurs.
The first image displays a correct or exemplary pose. The second image depicts an incorrect pose due
to occlusion. The third image highlights a pose error in the right hand, resulting from image blurring
due to rapid motion.

Figure 4. Pose refinement process. (a,c,d) are the algorithms for detecting outliers in a few specific
joints using the feature of golf swing motion. (b) is the trainable model for detecting outliers in all
joints. (e) is an algorithm for interpolation of the missing coordinates that are deleted by an outlier
detecting model and algorithms.
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3.1.1. Data Generation Technique for Learning Pose Errors

The proposed algorithm includes steps to remove outliers from estimated coordinates
and interpolate missing coordinates. For outlier data collection, we used a data generation
technique that mimics outliers based on data containing the correct joint coordinate labels.
As illustrated in Figure 3, outliers in existing pose estimation models show a tendency for
joint coordinates to be estimated to be a certain arbitrary distance, x, y, away from the actual
correct coordinates. To mimic this, we applied amplification or attenuation to arbitrary x-
and y-values from the actual correct joint coordinates to generate data mimicking actual
outliers. The amplification and attenuation of the coordinates are applied to randomly
selected frames so that the model can capture changes in consecutive frames.

3.1.2. Outlier Detection Model and Correction Algorithm

The outlier detection model uses a single-layer Bi-LSTM (Bidirectional Long Short-
Term Memory) network and, when an outlier is detected, it is indicated in the output
value of the corresponding frame. This model can be used for all joints of the body to
detect outliers. Figure 5 shows the changes in coordinates by frame and visualizes the
spike point on the graph. This graph confirmed that when outliers occur, the coordinate
changes are abnormally large compared to previous frames. As seen in Figure 3, poses can
be estimated at a certain level of accuracy in actions with slower speeds, but the proportion
of inaccurate coordinate estimations increases as the action speed increases. The data input
into the Bi-LSTM network is the coordinate change amount for each frame, calculated as
joint coordinate distance changes between frames using the Euclidean distance method.
Each piece of data contains a change amount for one joint. As the change amount value
range differs depending on the video size, it is divided by the maximum value of each piece
of data for normalization between 0 and 1. The network’s maximum input length is also
set, with padding values of 0 provided for shorter cases. The proposed algorithm includes
steps to remove outliers from estimated coordinates and interpolate missing coordinates.
The (b) network is a frame-by-frame outlier detection model using the Bi-LSTM model,
which outputs the occurrence of outlier data in the coordinates estimated by the pose
estimation model. For outlier data collection, we used a data generation technique that
mimics outliers based on data containing the correct joint coordinate labels. Outliers in
existing pose estimation models occur when the joint coordinates are estimated to be a
certain arbitrary distance x, y away from the actual correct coordinates. To mimic this,
we used the generated data in the previous step. The amplification and attenuation of
the coordinates was applied to randomly selected frames so that the model could capture
changes in consecutive frames.

3.1.3. Rule-Based Outlier Detection

The algorithms in Figure 4 are designed for rule-based outlier detection, specifically
tailored to the unique features of a golf swing. The coordinate used in this paper is (0, 0)
at the top left, with the y-value increasing as you go down, and the x-value increasing
as you go to the right. At impact, the ball flies towards the upper right. Algorithm
(a), termed the ‘Inversion Detector’, identifies instances where the left and right pose
coordinates are swapped. Throughout the entire swing motion, the x-coordinate of the right
ankle should never exceed that of the left ankle. Based on this observation, the Inversion
Detector flags any instance where the right ankle’s x-coordinate surpasses the left ankle’s x-
coordinate. Similarly, algorithm (c) identifies outliers in the lower body by examining the
distance between the two ankles. If this distance becomes less than half of the expected
separation, the swing is flagged as having an anomaly. Lastly, algorithm (d) focuses on
wrist coordinates. A golf swing video shows a motion of holding a golf club with both
hands from the beginning to the end of the swing, raising it clockwise, and then swinging
it counterclockwise towards the ball. During the golf swing, both hands are always holding
the golf club. Since the distance between the two wrists remains constant throughout the
swing, any deviation in this distance range is considered an error, and the swing is flagged
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accordingly by this detector. The flags generated by algorithm (a) are addressed by directly
converting the left and right joint coordinates, and the flags generated by algorithms (c)
and (d) are deleted.

Figure 5. A graph depicting the coordinate changes in 7 (Right Wrist), with a highlighted visualization
of the spike point on the graph. In the graph, each red dot records a frame-by-frame change
in coordinates, and the red dashed line is a visualization of spike point. In the visualization, the
problematic joints are circled in red. The x-axis is the frame, and the y-axis is the change in coordinates
per frame, normalized to a value between 0 and 1. The adjacent frames, the previous frame (a), and
the next frame (b) display the variations between two consecutive frames.

3.1.4. Interpolating Missing Coordinates

The algorithm for interpolating missing coordinates after outliers are removed through
the outlier detection model is represented in Figure 4e. There are interpolation methods,
such as Linear, Next, Previous, and Nearest, and, through performance comparisons of
each method, it was found that the Linear method shows high performance. The Next and
Previous methods fill the missing space by duplicating the values from the subsequent
and preceding data points, respectively. The Nearest method fills the missing space by
duplicating the value from the data point that has the closest x-value. However, these
approaches simply duplicate the existing value, so these do not reflect the changes between
two data points. Linear Interpolation is a method used to estimate the value of f(x) for an
x-value between two given points. This method allows for more accurate interpolation of
values because it takes into account the movement path and changes over time, reflecting
the variations in each frame.

3.2. Golf Swing Analysis Algorithm

This section discusses the process of comparing a professional’s swing with a learner’s
swing to identify differences and create a guide based on these insights. To compare two
different swing actions, both temporal and spatial alignment are required.

Firstly, spatial alignment involves applying pose normalization to standardize the
coordinate sizes of both the expert’s swing videos and the learner’s swing videos, which
have been shot at various resolutions. Secondly, temporal alignment entails dividing the
swing actions according to the categorization of golf actions, assigning corresponding
actions to each frame, and synchronizing the swings of the expert and learner, which may
proceed at different speeds.

Next, to find the most similar expert, an embedding vector is constructed using infor-
mation such as the angles of each joint, shoulder information, gender, and body proportions.
By comparing the expert’s embedding and the learner’s embedding, the most similar expert
is selected. Subsequently, feature importance analysis is conducted to identify the features
needing correction, and these features are converted into human-understandable concepts,
such as left elbow angle, shoulder angle, etc. Finally, the information requiring correction is
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used to create guide text and videos through a template-based generation module. Detailed
descriptions of each step are provided below.

3.2.1. Spatial and Temporal Alignment

In this section, we introduce an algorithm for spatially and temporally aligning coor-
dinates to compare golf swing poses that were gathered in various environments. Spatial
alignment refers to adjusting coordinates estimated at different resolutions to the same size
and location. To do this process, we define the standard coordinate s(xs, ys) and height hs

for normalizing the size and location of the pose. We first calculate the ratio r by dividing
the standard height hs by the target height ht, which is calculated as the distance between
the head and foot coordinates of the target pose. Then, we calculate the distance between
the standard coordinates s(xs, ys) and the resized root joint t(xrootr, yrootr) of the target pose
to derive the required coordinate shift distances dx = xs − xrootr and dy = ys − yrootr for
each axis. Finally, we can acquire the normalized X of each target joint i by:

Xi
SpatialNorm = ((xir) + dx, (yir) + dy) (1)

Temporal alignment involves the use of a posture segmentation algorithm to divide
the swings of both learners and experts into stages based on the eight distinct actions in golf.
The primary goal of this algorithm is to adjust temporal differences between two videos
by recognizing each segment of the swing action through action segmentation. In this
study, golf positions were categorized into Address, Takeback, Backswing, Backswing-top,
Downswing, Impact, Follow, and Finish. We annotated the joint coordinates manually using
standard swing posture images representing each posture and calculated the similarity
of the user’s entire swing and each action using Euclidean distances. However, due to
the nature of golf swing actions, the Address, Takeback, and Backswing positions display
similar motions to the Impact and Downswing positions. This similarity causes irregular
posture segmentation and prevents the adjustment of the temporal differences between
positions by reversing the temporal flow of the swing. In this study, we proposed an
algorithm that divides golf swing positions into two segments based on the Backswing-top
and Finish positions to distinguish each action. The proposed algorithm is detailed in
Algorithm 1, and the flow chart is illustrated in Figure A1 in Appendix A.

Algorithm 1 analyzes changes in the y-coordinates of both wrists to detect the
Backswing-top and Finish actions in a golf swing, where the wrist has the highest value.
When the y-value increases from the preparatory action, the action is considered to have
started, and the search for the highest height begins. The algorithm tracks changes, updates
the highest y-value, and determines that the Backswing-top action has been found when
the value no longer increases and begins to decrease. Afterward, the y-value is updated
again until the Finish action appears. Through this process, the golf action is divided into
two sections based on the Backswing-top, and the Euclidean distance measurement is used
to determine the reference frames for the Address, Takeback, and Backswing actions in the
first section and the remaining actions in the second section. In this way, the posture data
containing the action segmentation markers for the temporal alignment of golf swing video
frames can be obtained. Finally, we are able to obtain the normalized data’s XNorm through
the spatial and temporal alignment algorithms.
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Algorithm 1 Pose Division Algorithm

1: Input: Pose keypoints k
2: Output: The two dividing point list div, The height of two top point h
3: function POSEDIVISION(k)
4: Initialize: Im_stack, stck_distance← 0
5: h← [∞, ∞]; div← [0, 0]; hist_list← [False, False]
6: for each frame, user_joint in enumerate(k) do
7: wrist_height← user_joint[7][1] + user_joint[8][1]
8: if length(lm_stack) > 0, stck_distance ≥ t, and hist_list[1] == False then
9: hist_list[0]← True

10: end if
11: if h[0] 6= ∞ and stck_distance ≤ −t then
12: hist_list[0]← False
13: hist_list[1]← True
14: end if
15: if hist_list[0] == True and h[0] > wrist_height then
16: h[0]← wrist_height
17: div[0]← f rame
18: end if
19: if hist_list[1] is True and h[1] > wrist_height then
20: h[1]← wrist_height
21: div[1]← f rame
22: end if
23: lm_stack, stck_distance← limited_queue(lm_stack, wrist_height)
24: end for
25: return div, h
26: end function

3.2.2. Swing Similarity Calculation

We detail a method for comparing the actions of professional golfers and learners
using golf swing embedding to find the most similar pro golfer. To accurately represent the
golf swing, we employ swing embedding, using the swing style and physical features of
the golfer. The swing style is inspired by golf styles classified as hitter and swinger and is
characterized by elements that can distinguish each style. We utilize four features of golfer
and swing motion: gender, body proportion, the ratio of y-values of two top positions
(Backswing-top, Finish), and the body angle at the impact position. To separate two genders
in a large difference of similarity, we assign gender values of 0 and 103 in the embedding.
The body proportions are calculated to divide all 15 edges of the joints by the height of
the golfer. To acquire the relative speed of swing, we calculate the ratio of five positions
to the total frame. Because the Impact and Finish positions are fixed motions, Takeback,
Backswing, Backswing-top, Downswing, Impact, and Follow are used in the representation
of the swing speed. Furthermore, we represent the swing style by calculating the ratio
of the y-values of the two top positions and the right knee and right elbow angle at the
impact. The generated 24-dimensional embedding is used to compare the swing actions
of professional golfers and a learner by their cosine similarity scores and select the most
similar pro golfer. This allows learners to refer to the swing of a pro golfer similar to their
own swing and proceed with the necessary joint correction.

3.2.3. Golf Swing Pose Correction

After finding a similar golfer, the system identifies joints that need correction to
improve the swing action of learners using explainable golf swing embedding. The posture
correction algorithm measures core elements of the golf swing, such as shoulder and hip
rotation angles, for each action and creates a joint angle embedding. The angle embedding
is represented as a 10-dimensional vector, including the angles of both shoulders, hips,
elbows, and knees, and the rotation angles of shoulders and hips. Based on this embedding
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that represents the geometric information of the pose, a cosine similarity score with the
most similar pro golfer is calculated for each swing position. To identify the specific
points of body parts that show the discrepancy, the impact of each feature of embedding is
observed by sequentially removing each embedding element. If the similarity increases
when an element is removed, that element has a negative impact on similarity and needs
improvement. Conversely, if the similarity decreases, that element has a positive impact on
the similarity and needs to be maintained. We can easily convert each feature to a location
of the body because the elements of the feature have the semantic information of body
parts. By detecting and presenting specific angles that need improvement in the user’s
actions in this way, the algorithm supports self-training by users.

3.2.4. Generation of Swing Guide for Self-Training

We created template-based guide texts and videos to help users clearly analyze their
swings. The text generation process begins with a brief greeting and presents a summary
of the pro player most similar to the user, the similarity scores, the most similar posture,
and the actions that need improvement. In addition, for actions that need correction,
the guide video sequentially shows the footage of a pro golfer and the user for each
segmented action and visualizes the skeleton of the joints that need correction, making
it easy to understand at a glance. Figure 6 presents an example of the generated video.
To simplify the differentiation of poses, the pose information is displayed at the top-
left corner of the video. Additionally, the video highlights specific joints that require
adjustments to align with the swing motion of a professional golfer.

Figure 6. An example of a generated golf guide video. The image on the left is the generated text that
will appear as the intro to your guide video. The text includes a brief greeting and provides a brief
summary of the overall similarity score, the most similar joints, and the joints that need correction.
The image on the right is a visual representation of the pro’s movement and the learner’s movement,
showing where improvement is needed. The red circles in the image are automatically generated by
the guide system to indicate areas that need to be corrected.

4. Prototype Implementation

We implemented the prototype of the proposed system utilizing the Python Qt5
library version 5.15.9. The implemented system includes simple login functionality, video
upload, and guide video creation processes. Through this system, users can upload their
golf swing videos and visually compare which parts differ from a professional’s motion.
This allows users to self-learn to achieve a swing more similar to that of a professional.
Figure 7 illustrates the prototype where the proposed method is applied.

Users can create an account using basic information (account details, gender, etc.).
Upon logging in with the created account, the main page for golf swing diagnosis is
displayed. On the main page, users can diagnose their golf swing, view past records,
and set options. Options allow users to decide whether they want to strictly view the swing
differences between the pro and the learner, view them in a balanced manner, or view them
conventionally. Additionally, settings related to the pose estimation model and coordinate
interpolation can be adjusted.
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After setting the options and pressing the swing diagnosis button, users are directed to
the video upload page. Upon setting the file path for the user’s swing video, swing analysis
is initiated. In this process, the proposed method identifies the swing of a professional
golfer that is most similar to the user’s swing and demonstrates, through video and
text generation, which parts need correction to achieve a more similar swing. The text
generation offers a template-based presentation of an overall evaluation of the swing, which
actions were most similar to those of the pro golfer, and which actions need improvement.
The generated video aids the user by visually marking which joints differ, helping users
easily understand the required corrections. The created guide videos are accessible through
the history page, allowing users to easily access and review past records in the future.

Figure 7. Prototype of proposed system. This figure begins with the top-left image as the first and
concludes with the bottom-right image as the last. The first and second figures show the sign-in
and main page view. The third figure shows the option of swing guide system. The fourth and fifth
figures indicate the swing guide video and generated text. The last figure is the user history view
that shows the user’s entire swing guide history.
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5. Experiments

In this section, we present detailed evaluation results to assess the efficacy of our
proposed approach. Firstly, we analyze the quantitative improvement in performance
during the pose refinement process, accompanied by various visual aids supporting our
findings. Moreover, we demonstrate that our suggested enhancement method is effective
not only for 2D coordinate refinement but also for 3D coordinate improvement. Through
a qualitative evaluation, we describe the intuitive characteristics of the enhanced pose.
Finally, we provide examples of text and videos generated using the proposed self-training
posture comparison algorithm, illustrating the effectiveness of our approach. The joint
coordinates and their indices used in this paper are depicted in Figure 8.

Figure 8. Joint index for swing analysis. The numbers in the figure represent the index of each joint,
with grey representing the area near the face, purple the arms, green the legs, and black the root joint.

5.1. Dataset

To assess performance, we gathered golf swing motion data, manually annotating
joint labels on golf swing videos. The collected data encompasses a total of ten distinct
swing motions, of which five were used for training and the remaining five for evaluation.
For measuring the enhancement performance of 3D coordinates, we utilized the publicly
available 3DPW [26] dataset. Out of the data in the 3DPW dataset featuring individual
subjects, ten instances were used for training, and four instances were deployed for test-
ing. To build a database of professional golfers, we collected swing data from 16 players
listed on the World Ranking provided by the PGA TOUR [27]. These data came with-
out joint annotations. Therefore, joint labels were automatically generated using a pose
estimation model.

5.2. Metric

To verify performance improvements, we employed the mAP (mean Average Pre-
cision) score as a metric. The mAP score is a commonly used evaluation metric in joint
detection tasks, assessing the accuracy of the estimated joint coordinates. The AP score
utilizes OKS (Object Keypoint Similarity), a normalized distance measurement criterion
between the predicted and actual key points. In OKS measurements, threshold values
exist; values closer to 1 entail a stricter evaluation, whereas values closer to 0 offer a more
lenient assessment. We adopt a standardized approach, averaging the results tested at
threshold values of 0.5, 0.05, and 0.95. Additionally, for evaluating 3D coordinates, we
also measure the MPJPE score. With the mAP accuracy measurement in 3D coordinates,
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there is a tendency for the accuracy to significantly drop as the number of prediction axes
increases. To counter this, our performance measurement calculates the accuracy using the
error between the estimated pose’s root joint distance to the target joint and the ground
truth pose’s root joint distance to the target joint.

5.3. The Result of 2D Golf Pose Refinement

In this section, we evaluated our pose refinement method using 2D golf swing data.
For our baseline model, we utilized BlazePose [9]. Through a total of five golf swing
motion datasets, we assessed the effectiveness of our proposed method. Table 1 displays
the evaluation results. The higher performance values are bolded. Our experimental results
indicate that adding our proposed pose refinement module to the baseline model enhances
performance. The notations (a), (c), and (d) in the table represent the rule-based outlier
detection methods that utilize the characteristics of golf swings. When we removed the rule-
based method and experimented, there were instances in which the performance improved.
However, the overall performance declined. This shows that, while our proposed method
effectively improves the actual performance, relying on a rule-based approach can result in
performance degradation when the scenario deviates from the proposed conditions.

Table 1. Experimental result of 2D golf pose refinement module. This experiment compares the
results of applying our pose refinement method to the baseline model, BlazePose. The evaluation
score is based on mAP(%), which represents the average precision across different recall levels. (a),
(b), and (c) are the algorithms in Figure 4. The “w/o” represents “without”.

Model Swing 2 Swing 4 Swing 5 Swing 6 Swing 7 Mean

BlazePose 67.11 59.49 57.24 66.66 40.09 58.12
BlazePose + Our 67.11 66.66 66.30 66.66 41.54 61.66
BlazePose + Our
w/o (a), (c), (d) 67.11 58.64 66.66 66.66 41.54 60.12

5.4. The Result of 3D Pose Refinement

We evaluated the applicability of our proposed model in 3D coordinates using images
from the 3DPW dataset where only a single person appears. Table 2 presents our experi-
mental results. The data used for evaluation include “courtyard_bodyScannerMotions_00”,
“courtyard_jumpBench_01”, “courtyard_relaxOnBench_00”, and “outdoors_freestyle_01”,
represented as Pose 3, 6, 9, and 12, respectively. Due to the length constraints of the trained
model, each dataset was truncated to 180 frames for evaluation. In the 3D coordinate
improvement evaluation, we did not apply the rule-based outlier removal technique that
is only applicable to golf motions. In the MPJPE scores, we observed performance im-
provements in most evaluation results when using our post-process coordinate refinement
module. Notably, for Pose 9, we observed a roughly 9% reduction in the MPJPE score.
Previous studies faced limitations in the refinement of 3D coordinates because of using
an image process approach. On the other hand, our proposed method demonstrates that
improvements in three-dimensional coordinates are achievable by leveraging coordinate
sequence information.
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Table 2. Experimental result of 3D pose refinement module. This experiment compares the results
of applying our pose refinement method to the baseline model, BlazePose. The evaluation score is
based on MPJPE, which measures the average Euclidean distance between predicted and ground
truth 3D joint positions in human pose estimation tasks. (a), (b), and (c) are the algorithms in Figure 4.
The “w/o” represents “without”.

Model Pose 3 Pose 6 Pose 9 Pose 12 Mean

MPJPE

BlazePose 135.98 112.93 200.44 157.04 151.59
BlazePose + Our w/o (a), (c), (d) 136.97 112.59 182.79 150.61 145.74

mAP

BlazePose 2.96 11.29 15.74 0.37 7.59
BlazePose + Our w/o (a), (c), (d) 3.51 10.92 16.11 0.18 7.68

5.5. The Impact of Interpolation Method

The interpolation methods compared in this experiment are Linear, Cubic, Nearest,
Previous, and Next. We conducted the experiment based on the model with the best
performance in Table 2. Table 3 shows the average interpolation performance comparison
for each method with MPJPE score. The Cubic method uses a polynomial to interpolate
values. It is sensitive to outliers, meaning that the inclusion of even a single outlier
has the potential to significantly decrease the overall performance. In our performance
experiments, the interpolation performance was lower than those of the other methods.
The other methods performed similarly, but Previous and Next simply copied values,
which is not the purpose of this study, and Nearest performed well, but not as well as
Linear Interpolation. The Linear Interpolation method is stable in the sense that outliers do
not bring down the overall performance, and it has the highest interpolation performance.

Table 3. The comparison result of the interpolation method in 3D pose. The method contains the
experiments “w/o interpolation” (without interpolation) and the interpolation methods used in the
comparison experiments. The evaluation was conducted with the MPJPE score, and the average score
was used to measure the overall interpolation performance.

Method Mean of MPJPE

w/o Interpolation 151.59
Linear 145.74
Cubic 149.31
Nearest 146.61
Previous 146.53
Next 146.97

5.6. Impact of Coordinate Change Rate Adjustment

The pose refinement method proposed in this paper identifies abnormal changes, not
typical joint trajectories, in the frame-by-frame coordinate change rate and considers them as
outliers for removal. To understand the impact of this approach on performance improvement,
we compared the coordinate change rate graphs before and after refinement. Figure 9 displays
the change rate graphs of each joint before and after refinement. The red graph represents
the change rate before refinement, and the blue graph shows the change rate after refinement.
Each graph starts with joint 0 at the top and ends with joint 15 at the bottom. We compared
the change rates of Pose 3, which showed an increase in the MPJPE score, and Pose 9, which
demonstrated the most significant reduction in the MPJPE score. The proposed results reveal
that Pose 3 still had many spikes in the change rate after refinement, indicating missed
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detection in regions of abrupt change. In contrast, for Pose 9, the post-refinement change rate
showed significant stabilization. Consistently, Pose 9 achieved more substantial pose accuracy
improvement than Pose 3. Through these results, we confirmed that stabilizing the change
rate can contribute to enhancing the accuracy of coordinates.

Figure 9. Graph of coordinate changes for each frame interval. The red graph represents the change
rate of data estimated by the pose estimation model, while the blue graph shows the change rate
after refinement. The x-axis is the frame, and the y-axis is the amount of change in coordinates.
The top graph is at joint 0, and the bottom graph is at the last joint. The MPJPE score measures the
average Euclidean distance between the predicted and ground truth 3D joint positions in human pose
estimation tasks, and the mAP score represents the average precision across different recall levels.
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5.7. Swing Pose Analysis Results

Figure 10 illustrates the results of comparing the similarity between the swings of a
professional golfer and a user through a similarity comparison method (b) and measuring
the influence of each feature on the pose with the lowest similarity (c) with its visualization
shown in (a). From the results in (b), we can see that during the backswing phase, the user’s
swing motion has the least similarity to that of the professional. This similarity measure
can help determine which movements should be corrected first and which ones are most
similar. The influence of each joint feature during the backswing phase with the lowest
similarity is presented in (c). By removing each feature and measuring its impact, if a
feature has a negative value, it implies that it has a significant influence on pose similarity
and can be interpreted as being similar to the professional’s motion. Conversely, if a feature
has a positive value, it suggests that removing this feature angle improves the similarity,
indicating that corrections are necessary. The left shoulder angle with the highest positive
value is visualized in (a) with a yellow circular marker, showing a noticeable difference
from the actual motion of the professional. We can also observe positive values in the
shoulder and hip angles, signifying a difference in the shoulder and hip angles compared to
the professional. From these results, we can conclude that our Swing Embedding method
is intuitive and effective in identifying real swing differences.

Figure 10. Comparison and visualization of similarity for each swing pose through swing motion
embedding. (a) On the left is the user’s swing, and on the right is the pro’s swing. Visualization of the
user and pro’s action during Backswing. Yellow markers indicate the areas with the most differences.
(b) Similarity calculation results between the pro and user for each swing action. (c) Impact analysis
results of each embedding feature in Backswing, highlighting the least similar action. A red bar
indicates that removing the feature had a negative impact, while a blue bar indicates a positive impact.
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6. Limitations

In our study, we have proposed a method to enhance golf swing analysis. However,
there are inherent limitations that need to be addressed. One primary concern is the
distinct separation between our outlier detection and removal process and the interpolation
process. This separation means that if one module does not function optimally, it could
potentially compromise the efficacy of the entire system. For instance, accurate outlier
detection, when followed by a sub-optimal interpolation, might lead to results that are not
as reliable as when no interpolation is used. An integrated approach that combines both
outlier removal and interpolation in an end-to-end framework may be more aligned with
the desired objectives.

Additionally, our system’s effectiveness is heavily reliant on the performance of the
pose estimation model. If this model does not produce accurate results, it could significantly
affect the quality of the guidance provided. Challenging conditions, such as low light or
situations where the subject does not contrast well with the background, can decrease the
precision of the joint coordinate detection. Such limitations can affect the user experience
with the swing guide. Future work should focus on refining the system to capture swing
motions effectively in diverse environments.

7. Conclusions

In this paper, we introduced pose refinement methodology and a golf swing analysis
system based on explainable swing embedding for self-training. Our approach for pose
refinement utilizes the changes in coordinates per frame for detecting biased pose joints.
Because this method uses sequential coordinate information of the coordinates, we can
apply it not only to 2D poses but also to 3D poses. Additionally, we demonstrated through
these findings that we can refine the human pose estimation result by reducing the sharp
changes in coordinates. Furthermore, we proposed a swing embedding method using the
geometric information extracted from the swing pose. Our embedding method not only
can compare the similarity of two golf swing poses but also can visualize the different
points because the features of the embedding vector consist of intuitive information, such
as the angle of the shoulder. Consequently, the case study showed that our swing guide
system for self-training can appropriately suggest the specific body point that needs to
be fixed to become more similar to the pro golfer’s swing. Our proposed system can be
utilized in an application service for a user who wants to study golf swing with a low-cost
and time-efficient approach.
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Appendix A

Figure A1. Flow chart of algorithm 1 for golf swing pose division.
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