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Abstract: Zhaotong City in Yunnan Province is one of the largest apple growing bases in China.
However, the terrain of Zhaotong City is complicated, and the rainy weather is more frequent, which
brings difficulties to the identification of apple orchards by remote sensing. In this paper, an improved
spectral angle feature is proposed by combining the Spectral Angle Mapper and Sentinel-1 data.
Based on the Google Earth Engine and Sentinel image, a random forest classifier was used to extract
apple orchards in the Ganhe Reservoir area, Zhaoyang District, Zhaotong City, which provides a
theoretical basis for extracting the spatial distribution and sustainable development of the local apple
industry. The classification results show that the improved spectral angle characteristics can improve
the overall accuracy and F1 score of apple orchards. The RGB band combined with NDVI, GLCM,
and improved spectral angle features obtained the most favorable results, and the F1 score and
overall accuracy were 88.89% and 84.44%, respectively, which proved the reliability of the method in
identifying apple orchards in Zhaotong City.

Keywords: crop classification; Google Earth Engine; random forests; spectral angle mapper;
time-series analysis

1. Introduction

Remote sensing technology can provide important data for crop monitoring. This
can help guide agricultural production and management [1]. Zhaotong City, located in
southwestern China, boasts the largest apple production area. By 2022, its apple cultivation
area had exceeded 800,000 acres, establishing it as a vital component of the local apple
industry [2]. However, because of the complex topography of the Zhaotong City area, apple
orchards are scattered, and field surveys are difficult to conduct. Simultaneously, with the
implementation of the western rural revitalization strategy, sustainable development of the
apple industry in the Zhaotong City area needs to be implemented. Therefore, it is very nec-
essary to study the remote sensing identification method of apple orchards in the Zhaotong
area. This can provide a theoretical basis for the sustainable development of the Zhaotong
apple industry, which is of great significance to local and national economic development.

Scholars worldwide have mostly researched crops, such as wheat, corn, and rice, all
of which have achieved good results [3–6]. However, little research and corresponding
progress have been made in apple orchard extraction [7–9]. While monitoring crops via
remote sensing in southwestern China, it was observed that the critical growth period
is frequently obstructed by clouds and rain, significantly impacting the accuracy and
timeliness of monitoring and hindering the acquisition of optimal temporal optical crop
images [10]. Furthermore, the complex and fragmented terrain in the southwest of China
is often affected by information, such as brightness and shadows, which exacerbates the
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“pepper and salt” phenomenon and leads to misclassification. Therefore, it is necessary to
build a remote sensing method to identify apple orchards to solve these problems.

During the classification of apple orchards, the precision of the classification is greatly
influenced by the samples selected and the input features. The spatial homogeneity of the
sample selection allows it to be representative. The selection of input features that enable
the classification algorithm to learn characteristics specific to apple orchards is the key to
improving the accuracy of apple orchard recognition.

Numerous studies have shown that time-series data, as an input feature, can effectively
deal with the “same spectrum and different objects” problems and positively impact the
final classification results. For example, based on the GaoFen-1 image data of time series,
Li et al. adopted the time-series remote sensing image classification method of DTW-
K Means to classify tree species in the Harbin experimental forest farm, and achieved
good results [11]. Belgiu et al. evaluates how a time-weighted dynamic time warping
(TWDTW) method that uses Sentinel-2 time series performs when applied to pixel-based
and object-based classifications of various crop types in three different study areas [12].

With the continuous development of radar technology, Synthetic Aperture Radar
(SAR) technology has been developed and has wide applications in crop monitoring due
to its all-weather, all-day observation and independence from clouds and rain. Erasmi
et al. demonstrate the synergy of optical and radar satellite data for land cover mapping in
tropical regions [13]. Gebhardt et al. analyzed the usefulness and potential of SAR data for
vegetation characterization and plant physiological parameter estimation [14].

Meanwhile, the spectral angle mapper classifies features based on their spectral prop-
erties [15], focusing on the differences among bands in the image, and does not rely on
prior knowledge. To a certain extent, this method reduces the influence of factors, such
as the “same spectrum and different objects.” Grzegozewski et al. used MODIS-EVI data
to identify soybean and corn using the Spectral Angle Mapper [16]. Li et al. used multi-
temporal Landsat 8 OLI images, combined with spectral Angle mapping and decision tree
classification, to extract the distribution of main crops in the study area [17]. These studies
show that the spectral angle Mapper is less affected by terrain in the classification process,
which reduces the influence of factors, such as “foreign objects in the same spectrum”,
to a certain extent. However, image classification tasks with numerous samples and in-
put features incur significant labor and time costs. Google Earth Engine (GEE), with its
powerful data processing and analysis capabilities, can directly invoke preprocessed mass
images and multiple algorithms and effectively address these problems [18,19]. Several
studies have recently been conducted on image classification using GEE [20–23]. These
studies show that GEE can provide massive data and cloud-computing support for remote
sensing research.

To effectively identify apple orchards in Zhaotong City, an improved spectral Angle
mapper method is proposed in this paper. Based on the GEE platform and Sentinel-1 and
Sentinel-2 images, apple orchards, cultivated land, artificial surface, water body, and other
land types were selected, and the improved spectral angle features and other features were
integrated to achieve accurate identification of apple orchards in the Ganhe Reservoir area
of Zhaoyang District, Zhaotong City, by the random forest (RF) classification method.

The structure of this article is as follows: Section 2 details the study area and data
sources, including remote sensing and sample data. Section 3 details the research meth-
ods for apple orchard identification, including the sample selection methods, principles
of the spectral angle mapper, improved spectral angle features, input feature selection,
classification experimental design, RF classification methods, and accuracy evaluation.
Section 4 describes the apple orchard extraction results and accuracy evaluation. Section 5
summarizes the discussion, and Section 6 summarizes the conclusions.
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2. Study Area and Data Sources
2.1. Study Area

Zhaotong City is located in the hinterland of the Wumeng Mountains in the north-
eastern Yunnan province, at the junction of Yunnan, Sichuan, and Guizhou provinces, and
has a complex topography with undulating terrain [24], and it has many local climate
types and significant vertical variation, with an average annual temperature of 11.6 ◦C, an
average annual minimum temperature of 7.3 ◦C, an average annual maximum temperature
of 18.3 ◦C, and an annual frost-free period of about 220 days. Additionally, the sum of daily
temperatures greater than or equal to 10 ◦C during the year is 3, 217 ◦C, the average annual
sunshine hours is 1902 h, and the average annual rainfall is 738.2 mm. It is a great national
base for apple cultivation in the south.

The study area (Figure 1) is located next to Ganhe Reservoir, southeastern Zhaoyang
District, Zhaotong City (103◦43′55′ ′ E–103◦45′17′ ′ E, 27◦16′50′ ′ N–27◦17′41′ ′ N), which is
one of the best apple growing areas in Zhaoyang District. The study area had numerous
crop species and was large and highly representative; therefore, it was chosen as the study
area. The study area was divided into five categories, according to land use characteristics:
apple orchards, croplands, artificial surfaces, water bodies, and other land. Most of the
apple orchards in the study area were in full bloom, with apple trees starting to bud from
March to April and the stable growth period from June to August, with high vegetation
cover in the orchards and fruit ripening in September to October.
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Figure 1. Sentinel-2 images of the study area.

The image size of the study area was 251 rows and 157 columns, with a total area
of 3.94 km2. According to the visual interpretation, the proportions of apple orchards,
croplands, artificial surfaces, water bodies, and other lands were 9.77%, 13.56%, 8.46%,
62.11%, and 6.1%, respectively. The presence of thin clouds in the October Sentinel-2 images
and the complex topography of the study area made it challenging to distinguish apple
orchards using RGB Bands alone.
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2.2. Data Sources
2.2.1. Remote Sensing Data

The Sentinel-1 (5–20 m) and Sentinel-2A (10~60 m) data used in this study were
obtained from GEE.

For the GRD data of Sentinel-1, backscattering coefficients of vertical–horizontal (VH)
polarization and vertical–vertical (VV) polarization are used. Average images for each
month in 2021 were collected, totaling 12 images. Average processing can reduce the
pollution caused by noise.

For the surface reflectance data of Sentinel-2, there are 13 spectral bands. And only B2,
B3, B4, B7, and B8 are selected in this paper. September to October is the fruiting period
of the apple orchard, and the characteristics of the apple orchard are more prominent [25].
Therefore, the monthly average Sentinel-2 image for October 2022 was selected. Although it
is affected by the number of images and cloud cover, it still covered most of the study area.

The geographic coordinate system of all the data used in this study was GCS_WGS_1984.
The band information of the remote sensing image data is described in Table 1.

Table 1. Remote sensing image waveform information.

Sensor Used Bands Descriptions Resolution

Sentinel-1
VV 5.405 GHz 10 m
VH 5.405 GHz 10 m

Sentinel-2

Blue 496.6 nm (S2A)/492.1 nm (S2B) 10 m
Green 560 nm (S2A)/559 nm (S2B) 10 m
Red 664.5 nm (S2A)/665 nm (S2B) 10 m
NIR 835.1 nm (S2A)/833 nm (S2B) 10 m

Red Edge 3 782.5 nm (S2A)/779.7 nm (S2B) 20 m

2.2.2. Samples

Since thin clouds partially obscured the October 2022 Sentinel-2 image, this study
used GEE as the basis for visual interpretation based on the October 2022 Sentinel-2 image,
with the March 2022 Sentinel-2 and Google Earth images as secondary references, to obtain
five types of sample areas: apple orchards, croplands, artificial surfaces, water bodies, and
other lands. An unbalanced number of samples will affect the accuracy of the classifier.
Therefore, this paper uses the random point tool in ArcGIS 10.6 software; random samples
were generated in the sample area, according to the area share of each site obtained from
visual interpretation. A total of 1098 samples were generated, of which 770 were training
samples and 328 were validation samples, as listed in Table 2.

Table 2. Training and validation samples.

No. Land Type Training Samples/Pixels Validation Samples/Pixels

1 Apple Orchards 137 58
2 Croplands 435 186
3 Artificial Surfaces 95 41
4 Water Bodies 60 25
5 Other Lands 43 18

Total 770 328

3. Methods

The overall workflow of the apple orchards in the study area is shown in Figure 2. The
specific steps include (1) sample selection; (2) improved spectral angle features; (3) input
features; (4) experimental design; and (5) classification and accuracy evaluation.
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Figure 2. Flow chart of remote sensing identification of apple orchards.

Based on GEE, this study first conducted a visual interpretation of high-resolution
images; determined five types of sample selection ranges, including apple orchards; and
randomly generated 1098 sample points within the sample selection range, according to
the area share of each location obtained from visual interpretation. The VV and VH bands
in the monthly average Sentinel-1 images over 12 months were then calculated using a
spectral angle mapper to generate the corresponding spectral angle features, SAM_VV and
SAM_VH.

To analyze the applicability of different features for apple orchard extraction in the
Zhaotong City area, we designed 12 feature combinations based on the RGB band, red-edge
feature, NDVI, texture feature, and improved spectral Angle feature. The reasons for
selecting these features are that the RGB band can provide basic spectral information for
classification, NDVI and red-edge features can better reflect the characteristics of vegetation,
and texture features [26] can provide spatial information.

Among them, NDVI is calculated directly from the Sentinel-2 image of October 2022,
while texture feature needs to calculate the gray image of the Sentinel-2 image of October
2022. Then, the gray-level co-occurrence matrix (GLCM, window size: 3 × 3 pixels) was
used to obtain four texture features: contrast (CON), entropy (ENT), angular second
moment (ASM), and correlation (COR). These features are computed on the GEE platform.

Finally, an RF classifier in GEE was used to extract the apple orchard distribution
information, and the apple orchard extraction and overall accuracy of the different methods
were evaluated.

3.1. Sample Point Selection

The following samples selection process was used to identify apple orchards in the
study area:

3.1.1. Visual Interpretation to Obtain the Samples Selection Range

The study area mainly includes five land types: apple orchard, cultivated land, artificial
surface, water body, and other lands. Due to the difficulty of field sampling, visual
interpretation was used to identify features in the study area. As the apple orchards from
the October 2022 Sentinel-2 imagery were difficult to distinguish from croplands, and there
was a thin cloud contamination, we used the March 2022 Sentinel-2 imagery and Google
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Earth imagery as secondary references for apple orchards, cultivated land, and water bodies.
Based on the October 2022 Sentinel-2 imagery of apple orchards, vectorization operations
were carried out on apple orchards, croplands, artificial surfaces, and water bodies, and the
land types that were still difficult to distinguish were classified as other land types. The
final vectorized images of apple orchards, croplands, artificial surfaces, water bodies, and
other lands were identified as sample candidates areas, as shown in Figure 3.
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Figure 3. Candidate areas for sample points based on visual interpretation.

3.1.2. Random Generation of Samples

To make the samples more representative, reasons for the differences should be con-
sidered when selecting the samples to obtain sample diversity and comprehensiveness and
improve the quality of the training dataset, which can effectively ensure the accuracy of algo-
rithm learning and prediction [27]. The sampling points were selected randomly. This study
used the random point creation tool in ArcGIS 10.6 to generate random points based on the
sample candidate areas obtained from visual interpretation to obtain a high-quality sample.

To randomly place a specified number of points in each polygon, the Create Random
Points tool uses a standard polygon-partitioning algorithm to partition the polygon into
multiple triangles of varying sizes. A triangle is randomly selected for this polygon. The
two legs of the triangle become the two axes on which a random point is placed. A value
is selected randomly along the axis. The same procedure is then performed for the other
axis or leg of the triangle. These two random values are used to place the points. This
point lies within the parallelogram created by the two axes of the triangle. If a point fell
outside the triangle, it was mirrored in the defined triangle. This process was repeated
until the specified number of points was placed in the polygon and was repeated for each
polygon [28].

The distribution of the random sample points generated based on the sample point
candidate area is shown in Figure 4.

Finally, each category of randomly generated samples is assigned the attribute “label”
and the corresponding label value (0 Apple Orchards; 1 Croplands; 2 Artificial Surfaces;
3 Water Bodies; and 4 Other Lands).
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3.2. Spectral Angle Mapper
3.2.1. Principle of the Spectral Angle Mapper

The spectral angle mapper (SAM) treats the n bands in an image as an n-dimensional
space, where each band is treated as a vector, and the value of each band is simply the
length of the vector corresponding to that band. The SAM first generates a standard
reference spectrum using the mean value of k known feature samples as a standard, which
is then matched to the original spectrum of the image element. The image is classified
by calculating the generalized angle θ between the standard reference spectrum and the
original spectrum of the image element (Figure 5). The smaller the angle θ, the more likely
the image element belongs to a known feature class. Since the angle between two vectors is
independent of the vector length and is unaffected by factors such as solar illumination [29],
SAM can suppress shadowing effects and highlight the reflective properties of the target; it
is a simple, fast, and effective classification method.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 
Figure 5. Principle of the spectral angle mapper. 

3.2.2. Improved Spectral Angle Features 
The traditional SAM uses different bands in a single time-phase image as inputs to 

construct a spectral angle feature. Although this type of spectral angle feature can sup-
press the shadow effect to a certain extent and highlight the target reflectance, it has limi-
tations in the Zhaotong City area, where the terrain is complex and cloudy. Therefore, we 
propose an improved spectral angle feature based on the SAM. Compared to the tradi-
tional SAM, this method uses the VV and VH bands of Sentinel-1 images of multiple time 
phases as inputs to obtain two spectral angle features with time-series characteristics that 
are unaffected by clouds and rain. 

As the growth cycle of apple trees is different from that of other crops in a year, the 
VV and VH bands of the monthly average Sentinel-1 images from January to December 
2021 were used as the basis for this study to obtain two characteristic images, SAM-VV 
and SAM-VH, through the SAM. 

Using SAM-VV as an example, the steps are as follows: 
(1) The VV bands of monthly averaged Sentinel-1 images from January to December 

2021 were obtained. 
(2) Ten randomly selected image elements were used as standard image elements. 
(3) In the same month, the VV values of the ten standard image elements were averaged 

to obtain the reference mean values of the VV bands from January to December 2021. 
(4) Using the SAM, the VV band from January to December 2021 was used as the input 

to calculate the original spectrum α


 of the individual image elements. 

(5) Using the SAM, we constructed a reference spectrum β


 of the VV using the VV 
averages from January to December 2021 as input. 

(6) The angle between the original spectrum α


 and reference spectrum β


 of a single 
image element to obtain the spectral angle coefficient θ  of a single image element 
was calculated using the following formula: 

1cos ( ), (0, )
2

α β πθ θ
α β

− ⋅= ∈
⋅

 

   (1)

Finally, the operation in Step (6) was performed for each image element, and the cal-
culated spectral angle coefficients constituted the SAM-VV features. 

Figure 5. Principle of the spectral angle mapper.



Appl. Sci. 2023, 13, 11194 8 of 17

3.2.2. Improved Spectral Angle Features

The traditional SAM uses different bands in a single time-phase image as inputs to
construct a spectral angle feature. Although this type of spectral angle feature can suppress
the shadow effect to a certain extent and highlight the target reflectance, it has limitations in
the Zhaotong City area, where the terrain is complex and cloudy. Therefore, we propose an
improved spectral angle feature based on the SAM. Compared to the traditional SAM, this
method uses the VV and VH bands of Sentinel-1 images of multiple time phases as inputs
to obtain two spectral angle features with time-series characteristics that are unaffected by
clouds and rain.

As the growth cycle of apple trees is different from that of other crops in a year, the
VV and VH bands of the monthly average Sentinel-1 images from January to December
2021 were used as the basis for this study to obtain two characteristic images, SAM-VV and
SAM-VH, through the SAM.

Using SAM-VV as an example, the steps are as follows:

(1) The VV bands of monthly averaged Sentinel-1 images from January to December 2021
were obtained.

(2) Ten randomly selected image elements were used as standard image elements.
(3) In the same month, the VV values of the ten standard image elements were averaged

to obtain the reference mean values of the VV bands from January to December 2021.
(4) Using the SAM, the VV band from January to December 2021 was used as the input

to calculate the original spectrum
→
α of the individual image elements.

(5) Using the SAM, we constructed a reference spectrum
→
β of the VV using the VV

averages from January to December 2021 as input.

(6) The angle between the original spectrum
→
α and reference spectrum

→
β of a single

image element to obtain the spectral angle coefficient θ of a single image element was
calculated using the following formula:

θ = cos−1(

→
α ·
→
β

‖→α‖ · ‖
→
β‖

), θ ∈ (0,
π

2
) (1)

Finally, the operation in Step (6) was performed for each image element, and the
calculated spectral angle coefficients constituted the SAM-VV features.

The improved spectral angle features of SAM-VV and SAM-VH are shown in Figure 6.
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3.3. Selection of Input Features

Five types of features were selected for this study to compare the impacts of different
features on the classification results: RGB Bands, Red-edge, NDVI, texture, and improved
spectral angle features.

(1) Feature 1: RGB Bands (B4, B3, and B2) of Sentinel-2 images from October 2022.
(2) Feature 2: Red-edge feature B7 of the October 2022 Sentinel-2 image.
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(3) Feature 3: NDVI image made from the October 2022 Sentinel-2 image.
(4) Feature 4: Textural features (GLCM) from the October 2022 Sentinel-2 image, including

CON, ENT, ASM, and COR.
(5) Feature 5: SAM-VV and SAM-VH were obtained from the 12-month averaged Sentinel-

1 images for 2021.

The red-edge feature B7 of the October 2022 Sentinel-2 image, the NDVI image ob-
tained from the October 2022 Sentinel-2 image, and the GLCM textural features are shown
in Figure 7.
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3.4. Experiment Design

To better compare the effects of different input feature combinations on the classi-
fication effect, 12 feature combinations were designed to participate in the classification
experiments for features Feature 1–Feature 5, as described in Section 3.3. The 12 feature
combinations are listed in Table 3. (1) G1–G4 were used to explore the recognition ability
to compare RGB Bands, NDVI, textural features, and improved spectral angle features
of apple orchards during the hanging stage. (2) G5–G8 were designed to compare the
improved spectral angle features with the red-edge band B7, NDVI, and textural features
to recognize apple orchards at the hanging stage. (3) G9–G12 aims to explore the ability of
different feature combinations to improve the distinguishability of apple orchards from
other land types.

Table 3. Input feature combination design table.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

G1 √
G2 √
G3 √
G4 √
G5 √ √
G6 √ √
G7 √ √
G8 √ √
G9 √ √ √

G10 √ √ √
G11 √ √ √ √
G12 √ √ √ √
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3.5. Random Forest Classification
3.5.1. Principle of Random Forest Classifier

Random Forests (RF) [30] is a machine learning method for classification and regres-
sion. It is an integrated model consisting of multiple independent decision trees. Each
decision tree predicts the classification result, and the classification result of the random
forest is determined by these decision trees together.

The RF algorithm has superior accuracy, can process large batches of data quickly
and efficiently, and has strong noise immunity to noisy datasets, and has the ability to
process high-dimensional features while ranking variables by importance [31–33], which is
a significant advantage over other algorithms. Therefore, this study used an RF model to
classify the input features.

3.5.2. Random Forest Classifier Based on GEE

Due to the large number of input features and samples, this study classifies the
input features by calling the random forest classifier ee.Classifier.smileRandomForest on a
high-performance GEE, where the ee.Classifier.smileRandomForest classifier contains the
following parameters:

(1) NumberOfTrees: The number of decision trees to create.
(2) VariablesPerSplit: The number of variables per split. Unless otherwise specified, the

square root of the number of variables was used.
(3) MinLeafPopulation: Only creates nodes whose training set contains at least this

many points; default:1.
(4) BagFraction: The fraction of input to the bag per tree.
(5) MaxNodes: The maximum number of leaf nodes in each tree. If unspecified, it

defaults to no limit.
(6) Seed: The randomization seed.

Algorithm 1 describes a specific algorithm for RF classification based on GEE.

Algorithm 1 Random forest classification based on GEE

Input: The randomly generated samples in Section 3.1; The combination of features InputBands;
The number of decision trees Number of Trees. Original image composed of InputBands
Output: Classification results; four types of accuracy evaluation indicators for OA, kappa, UA and PA
1 Train_points = 70% samples; // Division of the training set
2 Test_points = 30% samples; // Division of the test set
3 Train_label = [Train_points.label]; // Get the vector of label values for the training set
4 Test_label = [Test_points.label]; // Get the vector of label values for the test set
5 for each InputBands do:
6 Train RFclassifier = RandomForest(Number of Tree, Train_label, InputBands); // Training RFclassifier
7 Result = RFclassifier(image, InputBands); // Classify with classifier and get results
8 RFclassifier (Test_label).errorMatrix; // Get Confusion Matrix
9 Calculation Accuracy with errorMatrix; // Calculate OA, kappa, UA and PA
10 end for

To consider both the accuracy and computational efficiency of the random forest
algorithm and to prevent the algorithm from overfitting, this study conducted a control
experiment based on RGB Bands, and the number of decision trees with high overall
accuracy was determined as the number of optimal decision trees between 10 and 200.
The experimental results showed that when the number of decision trees was 50 or 70, the
overall accuracy (OA) obtained by RF classification was higher. The experimental results
are described in Figure 8. The number of decision trees in the classifier was set to 70, and
the other parameters were set to their default values.
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3.6. Accuracy Evaluation

To evaluate the accuracy of remote sensing in identifying apple orchard distribution,
this study calculated the OA, kappa coefficient, user accuracy (UA), and producer accuracy
(PA) of the classification results based on the confusion matrix and conducted an accuracy
evaluation. The overall accuracy and kappa coefficient were used to compare the overall
accuracy, and the UA and PA were used to evaluate the classification accuracy of a particular
target within a multi-classification target, as shown in the following equations:

Overall Accuracy =
TP + TN

FN + TP + FP + TN
(2)

kappa =
(TP + FP)× (TP + FN)× (FP + TN)× (FN + TN)

(FN + TP + FP + TN)2 (3)

UA =
TP

TP + FP
(4)

PA =
TP

TP + FN
(5)

where TP is the number of pixels for which positive categories were judged as positive,
FP is the number of pixels for which negative categories were judged as positive, FN is
the number of pixels for which positive categories were judged as negative, and TN is the
number of pixels for which negative categories were judged as negative.

To evaluate the recognition accuracy of apple orchards individually, this study used the
combined PA and UA [34,35] to evaluate the apple orchard categories in the classification
results, which are defined by the following formula:

F1 Score =
(β2 + 1)× PA×UA

β2 × PA + UA
(6)

where β is the weight of PA and UA. When β > 1, UA is more important than PA. Conversely,
when β < 1, PA is more important than UA. In this study, we used β = 1 to equalize the
weights of UA and PA.
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4. Results and Analysis
4.1. Comparison of Apple Orchard Extraction Results for Different Feature Combinations

To compare the classification results of different feature combinations, a total of
12 groups of feature combinations designed in Section 3.4 were used to conduct RF classifi-
cation experiments, compare the classification results of these 12 feature combinations, and
produce a graph of the classification results in the study area, as shown in Figure 9.
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Comparing the classification results of G1 to G12, the G1 classification results (Figure 9a)
could better identify apple orchards. However, identifying artificial surfaces was poor, and
there was slight confusion between water bodies and apple orchards. The classification
results for G2 (Figure 9b) identified apple orchards. However, there was a clear “Salt and
pepper phenomenon” when the other land types were identified. G3 (Figure 9c) did not
distinguish apple orchards from water bodies. G4 (Figure 9d) showed a significant im-
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provement in the confusion between apple orchards and water body boundaries compared
to G1 and improved the recognition of artificial surfaces. However, apple orchards and
other cultivated land could not be distinguished.

G5 and G6 (Figure 9e,f) could identify apple orchards and still exhibited the phe-
nomenon of mixing apple orchards and cultivated land. However, there was still a lack of
accuracy in identifying apple orchards and croplands, and the identification of artificial
surfaces was insufficient. G7 (Figure 9g) identified the types of features contained in the
thin cloud-covered areas of the study area, although there was still a clear mixing of apple
orchards and water bodies. Compared to G5, G6, and G7, G8 (Figure 9h) was better at
identifying the features contained in the apple orchards and the thin cloud-covered area in
the study area and better recognized other features. Nevertheless, its recognition was still
more fragmented.

The classification of G9 to G12 (Figure 9i–l) still contained fragmented image elements.
However, the number of fragmented image elements in G12 was lower and more consistent
with the range of features obtained by visual interpretation in Section 3.1. The above
analysis shows that the extraction of apple orchards by combining RGB Bands, NDVI,
textural features, GLCM, and improved spectral angle features is optimal and can be
applied to the extraction of apple orchards in the Zhaoyang District, Zhaotong City.

4.2. Analysis of Apple Orchard Extraction Accuracy for Different Feature Combinations

To further verify the apple orchard extraction accuracy of different feature combina-
tions, the RF classification accuracy of different classification feature combinations was
analyzed, and the accuracy of different classification feature combinations is shown in
Table 4.

Table 4. Results of random forest classification using different features.

Combination of Features OA/% Kappa UA/% PA/% F1 Score/%

G1 80.56 66.95 93.88 75.41 83.64
G2 70.83 52.65 76.27 73.77 75.00
G3 56.67 29.18 45.83 18.03 25.88
G4 67.78 45.29 60.71 55.74 58.12
G5 80.56 66.41 88.68 77.05 82.46
G6 80.56 66.63 88.89 78.69 83.48
G7 78.06 63.61 91.84 73.77 81.82
G8 80.83 67.17 92.16 77.05 83.93
G9 79.44 66.33 88.68 77.05 82.46

G10 83.06 70.70 92.45 80.33 85.96
G11 82.78 70.55 92.73 83.61 87.93
G12 84.72 74.69 92.86 85.25 88.89

Analysis of Table 4 shows that:
Comparing the accuracy of feature combinations G1 to G4, G1 had an OA of 80.56%,

an F1 score of 83.64%, and a kappa coefficient of 66.95%. G2 had an OA of 70.83%, an F1
score of 75%, and a kappa coefficient of 52.65%. G3 had an OA of 56.67%, an F1 score of
25.88%, and a kappa coefficient of 29.18%. G4 had an OA of 67.78%, an F1 score of 58.12%,
and a kappa coefficient of 45.29%. All classification accuracies for G1 were higher than
those for G2, G3, and G4, indicating that the overall classification of RGB Bands in the study
area in October 2022 was better, whereas using only the improved spectral angle features
or texture features distinguishing all land use types in the study area was less effective and
had lower OA and F1 scores.

Comparing the classification accuracies of feature combinations G5 to G8, the OA and
F1 scores of G5, G6, and G8 were greater than 80% when the RGB Bands were combined
with other features, achieving a relatively good classification result. Although the results of
G4 (improved spectral angle features) were not good when classified alone, the OA, kappa
coefficient, and F1 score of G8 (RGB Bands + improved spectral angle features) were the best
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for the combination of features G5–G8, reaching 80.83%, 67.17%, and 83.93%, respectively,
indicating that the combination of RGB Bands with improved spectral angle features
can effectively improve the separability of the feature space, which in turn improves the
classification accuracy and is more suitable for apple orchard extraction in the Zhaotong
City area.

Comparing the classification accuracies of feature combinations G9 to G12, we ob-
served that G10 outperformed G9 in terms of OA, kappa coefficient, and F1 score, indicating
that the improved spectral angle feature was more effective than NDVI in identifying apple
orchards. The OA, kappa coefficient, and F1 score of G12’s feature combinations were the
highest at 84.72%, 74.69%, and 88.89%, respectively. Among the 12 feature combinations,
G11 had a slightly lower OA, kappa coefficient, and F1 score, indicating that the addition of
texture features could improve the separability of features in the study area to a certain ex-
tent and that the combination of RGB Bands, NDVI, texture features, GLCM, and improved
spectral angle features could effectively identify apple orchards.

5. Discussion

The complex topography and cloudy and rainy weather in Zhaotong City are impor-
tant reasons for the difficulty in accurately identifying apple orchards. Selecting samples
and features are two important factors affecting the classification results during the classifi-
cation process. However, during sample selection, the influence of human and objective
factors prevents effective manual sampling. Therefore, based on visual interpretation, to
obtain the sample selection area of the study space, we used the random generation of
samples through the Create Random Points Tool in ArcGIS 10.6, which attempts to solve
these problems regarding feature selection.

This study proposes an improved spectral angle feature using the VV and VH bands of
12 months of SAR images as the input of the Spectral Angle Mapper and obtains a spectral
angle feature with time-series characteristics that is unaffected by clouds [36,37]. Based on
the GEE platform, a series of features were constructed, and the Ganhe Reservoir area in
Zhaoyang District of Zhaotong City was classified by random forest classification. From
the results and accuracy of apple orchard identification, it is poor at distinguishing all
land use types in the study area only by using improved spectral angle features or texture
features. The feature combination of the RGB band and improved spectral angle feature
can effectively improve the separability of the feature space, and compared with the feature
combination of RGB and NDVI, the combination of RGB and the improved spectral angle
feature has a better recognition effect for apple orchards. The experimental results show
that the method of combining texture features, such as Song et al. [7], has poor accuracy
in the study area. The combination of spectral angle features and spectral features has
obvious advantages in identifying different ground features, and can identify the types of
ground features contained in the thin cloud coverage area to a certain extent.

However, there are a few ‘broken pixels’ in the classification result. The reason for
this may be that in October, some of the cultivated land pixels in the study area are highly
similar in spectrum and space. In addition, the improved spectral angle features of this
paper are calculated from 12 months of monthly average SAR images. This will cause these
pixels to have a certain similarity to the apple orchard pixels in the improved spectral angle
features, resulting in a “broken pixels”. Therefore, in the case of similar spectral and spatial
information, using the monthly average SAR image with a large pixel value difference
between apple orchards and other cultivated land to calculate the improved spectral angle
features can alleviate the problem of “broken pixels”. Most of the classification results
for other lands were classified as croplands, which differs significantly from the results
obtained from visual interpretation; this is an important factor affecting the OA of the
RF classification.

In subsequent work on identifying apple orchards in the entire Zhaotong City area, it
was not easy to interpret visually because of the large scope of the images. Therefore, we
could use other data products with higher accuracy to complete the selection of samples
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without manual intervention, which could effectively avoid the misclassification of land
classes due to visual interpretation. Meanwhile, there are numerous mixed pixels present
within the study area. Therefore, it is possible to use the hybrid pixel decomposition
technique [38] for the decomposition of pixels within the study area, which allows for an
increase in the accuracy of the classification. In addition, when producing such special
spectral angle features, the effects of SAR images on apple orchards and other land classes
in particular months can be considered to obtain better quality spectral angle features.
In addition, as apple orchards require special light intensity, topographic factors can be
considered as one of the input features when performing apple orchard identification for the
entire Zhaotong City area, which is conducive to fully learning the topographic features and
thus reducing the error and omission rates of apple orchards and other vegetation types.

6. Conclusions

In this study, an improved spectral angle feature based on SAM was proposed. The
apple orchards in the study area were classified using GEE, which is computationally
powerful and has strong online visualization and computational analysis capabilities. The
classification results showed that this feature could effectively improve the identification
accuracy of apple orchards in the study area. In summary, the improved spectral angle
feature proposed in this study can effectively identify apple orchards in the Zhaotong
City area under conditions of complex terrain topography with cloudy and rainy terrain
by combining RGB Bands, NDVI, and texture features (GLCM). The specific findings are
as follows:

(1) In this study, using Sentinel-1 and Sentinel-2 images as data sources, the RGB
Bands, red-edge features, NDVI, texture features, and improved spectral angle features
were used in the GEE platform to identify apple orchards in the study area using the RF
algorithm. By comparing the classification accuracy of different classification features, this
study observed that the texture features facilitated the identification of apple orchards and
could not effectively identify other land classes. The combination of the RGB band and
spectral angle features can effectively improve the extraction accuracy and overall accuracy
of apple orchards, which are 80.3% and 67.17%, respectively, compared to the single RGB
band classification. When the RGB Bands were combined with NDVI, GLCM, and spectral
angle features, the apple orchard extraction accuracy and overall accuracy reached their
best values of 88.89% and 84.44%, respectively.

(2) The research method used in this study can provide a reference for recognition
tasks in complex terrains and has practical value. However, when constructing the spectral
angle features, the VV and VH bands of the 12 months of SAR images have a certain
redundancy, and the study area contains many mixed image elements, resulting in the
“pretzel phenomenon” in the study results, which has a certain impact on the extraction
accuracy of apple orchards. Therefore, the VV and VH bands, which have more obvious
differences from other land types, can be considered in constructing spectral angle features
to reduce redundancy, reduce computational effort, and improve the separability of spectral
angle features. Concurrently, in subsequent work on identifying apple orchards in the entire
Zhaotong City area, other data products with higher accuracy can be used to complete the
selection of samples without manual intervention to avoid misclassification of land types
due to visual interpretation.
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