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Abstract: The evaluation and estimation of the electric and magnetic field (EMF) intensity in the
vicinity of overhead transmission lines (OHTL) is of paramount importance for residents’ healthcare
and industrial monitoring purposes. Using artificial intelligence (AI) techniques makes researchers
able to estimate EMF with extremely high accuracy in a significantly short time. In this paper,
two models based on the Artificial Neural Network (ANN) have been developed for estimating
electric and magnetic fields, i.e., feed-forward neural network (FFNN) and cascade-forward neural
network (CFNN). By performing the sensitivity analysis on controlling/hyper-parameters of these
two ANN models, the best setup resulting in the highest possible accuracy considering their response
time has been chosen. Overall, the CFNN achieved a significant 56% reduction in Root Mean Squared
Error (RMSE) for the electric field and a 5% reduction for the magnetic field, compared to the
FFNN. This indicates that the CFNN model provided more accurate predictions, particularly for the
electric field than the proposed methods in other recent works, making it a promising choice for this
application. When the model is trained, it will be tested by a different dataset. Then, the accuracy
and response time of the model for new data points of that layout will be evaluated through this
process. The model can predict the fields with an accuracy near 99.999% of the actual values in times
under 10 ms. Also, the results of sensitivity analysis indicated that the CFNN models with triple and
double hidden layers are the best options for the electric and magnetic field estimation, respectively.

Keywords: artificial intelligence; cascade-forward neural network; field estimation; overhead
transmission line; feed-forward neural network

1. Introduction

Overhead transmission lines (OHTL) play a crucial role in transmitting electrical
power over long distances [1]. They consist of conductors carrying alternating current (AC)
from power generation sources to distribution centers and consumers. The generation
of electrical and magnetic fields in OHTL is a result of the current flowing through these
conductors [2]. The EMF generated by individual conductors in the transmission line
combines to form a complex pattern around the entire line [3]. Several reasons make EMF
estimation of paramount importance. The major reason is that the EMF has a significant
effect on the human’s body [4]. Many studies in recent decades have demonstrated that
EMF caused by OHTLs in residential areas is one of the main reasons for the increased
incidence of cancer, especially childhood leukemia [5]. Additionally, some studies have
reported an increased risk of brain tumors among individuals exposed to prolonged and
high-intensity EMFs [6]. Furthermore, it has an extensive effect on the corrosion of buried
metallic infrastructures including pipelines, cables, shielding conductors, and grounding
systems [7–10]. Therefore, health scientists, utility companies, and governments have to
set limits to prevent future health problems [10]. Many organizations consider 0.4 µT as
an acceptable level for long-term exposure to electromagnetic fields, while a few allow for
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a lower threshold of 0.2 µT as the critical point for leukemia risk [11–13]. The National
Institute of Environmental Health Sciences and the International Agency for Research on
Cancer (IARC), a part of the World Health Organization (WHO), have jointly identified
the range of 0.3–0.4 µT as a critical threshold for leukemia risk, categorizing it as Group-B
level [14–16]. In contrast, the International Non-Ionizing Radiation Committee (ICNIRP)
recommends a considerably higher limit of 200 µT for public exposure, which significantly
exceeds the recommendations of other reputable health organizations [17]. Also, for the
purpose of real-time monitoring of the systems, the engineers need to estimate the EMF
with exceptionally low latency [18].

There are some common methods among researchers for EMF estimation. Measuring
the EMF in an experiment using sensors is one of the most accurate ways [2]. That said, since
in real-world cases the load of OHTL varies, the experiment is not under fully controlled
conditions. Also, the change in temperature can affect the height of the conductor in the
long-term experiments which will result in changes in the measured fields. This can be
overcome by measuring seasonal datasets or annual ones and then creating large datasets
and using “big data” techniques and AI to estimate the field values. Moreover, it needs
precise instruments and skilled operators to avoid inaccuracies which turns it into an
expensive practice [19]. Another means of EMF evaluation is analytical equations which
can estimate the EMF with some simplifications in the boundary conditions, limiting them
to being merely useful for simple problems [20]. Moreover, EMF can be estimated using
numerical finite element methods (FEM). In this method, the entire analysis domain must be
divided into small elements where the governing equations will be solved numerically [21].
This means that an enormous number of equations have to be solved, leading to this method
being computationally intensive, expensive, and time-consuming [22]. Moreover, FEM
accuracy heavily relies on the quantity and quality of meshes that are used to discretize
the domain [7]. Achieving optimal mesh refinement requires careful consideration and
expertise to balance accuracy and computational costs. For complex real-world geometries
or high-resolution simulations, the mesh size should be adapted to consider every dynamic
change in the parameters, ensuring accurate results [23,24]. Furthermore, using FEM can
be challenging for time-dependent EMF simulations, particularly when dynamic effects
and transient behaviors are involved [25]. All these reasons hinder the implementation of
this method in certain EMF estimation scenarios and encourage researchers to explore or
develop alternative methods.

Artificial intelligence (AI) techniques have been promoted among engineering and
physics researchers since the early years of this century [26,27]. These techniques can be use-
ful for EMF estimation due to their ability to handle and learn from complex datasets, pro-
vide accurate predictions, and offer several advantages over traditional approaches [28,29].
They also can be retrained by more datasets to update the model to enhance various con-
ditions coverage or improve the accuracy of the model. One of the most renowned types
of AI for engineering and physics problems is artificial neural networks (ANN), which
has been inspired by the human brain’s learning and decision-making processes [19]. The
flexibility and adaptability of ANNs enable them to handle small and large datasets and
extract meaningful insights from vast amounts of data/information [30]. Also, ANN’s
capability of handling non-linear relationships makes them particularly advantageous
in addressing complex and dynamic problems [27]. Moreover, they are able to predict
the target parameters with remarkably high accuracy in a noticeably short timeframe.
Feed-forward neural network (FFNN) is one of the most common ANN methods among
researchers due to its simplicity and high accuracy [13]. Cascade-forward neural network
is a variant of ANN that is a more complex version of FFNN due to connecting the input
and hidden layers to all preceding layers [31,32]. Due to its naturally complex design, in
some cases, it can yield more accurate results than a simple FFNN [33].

In the most recent decade, researchers tried to implement AI methods to predict electric
or magnetic fields. In [34], Ekonomou et al. initially provided a setup to measure the EMF to
make a dataset for the AI model. Then, they developed a multilayer FFNN model to predict
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the EMF radiation via electrostatic discharges. The relative error between the predicted and
actual value for EMF was reported between 5.437% and 23.620%. In [13], Carlak et al. used
a simple multilayer perceptron (MLPNN) and a generalized regression neural network
(GRNN) model to predict electric and magnetic fields. They proposed several models
for both electric and magnetic fields, each one considering only one longitude position
of the conductor. The performance of MLPNN and GRNN models using the Root Mean
Squared Error (RMSE) value as the index was reported as 0.030855 and 0.053084 for the
electric field and 0.02719 and 0.03666 for the magnetic field, respectively. In [35], Salam et al.
implemented single and double-layer models based on FFNN to predict magnetic fields for
four substations in Brunei. They trained the models for each of these substations separately
and the results indicated that the R-squared value range of their models was from 70.9039%
to 98.881%.

In [20], Sivakami et al. suggested a model using a cuckoo search algorithm (CSA)
and neuro-fuzzy controller (NFC). First, they used the cuckoo search algorithm as an
optimizer to optimize the conductor spacing, which has a significant effect on the intensity
of EMF to make an input dataset with minimum electric field intensity for the NFC. This
is because they generated the training data using some base equations while considering
some simplifications to be able to use those formulas. Finally, by training the NFC with that
dataset, they reached a model that was able to estimate the intensity by 5–190% relative
error for different data points. In [30], Alihodzic et al. implemented two algorithms, namely
the charge simulation method and Biot–Savart law, to generate target values for the electric
field intensity and magnetic flux density datasets, respectively. After that, they developed a
FFNN model using a Scaled Conjugate Gradient (SCG) as the training function. In another
paper with the same process for data collection, Turajilic et al. implemented two FFNN
models for each of the magnetic and electric fields. Their models’ accuracy was reported
using RMSE and R-squared as indices. For the electric model, RMSE and R-squared were
0.6172 and 0.9121, while for the magnetic field, they were 0.3602 and 0.9471, respectively.
However, since these papers used analytical models with some simplifications, the final
model might not be accurate enough for real-world study cases [36].

While there have been efforts to estimate or measure EMF near the OHTLs, a significant
gap exists in the literature regarding the development of a fast, precise, and experimental-
based EMF estimation approach, as opposed to relying solely on conventional analytical
models. Recent research has predominantly focused on utilizing FFNN for EMF estima-
tion, resulting in suboptimal accuracy. Consequently, there is a pressing need for a more
advanced model capable of effectively handling highly non-linear data. One of the best AI
models is the CFNN, renowned for its ability to provide accurate predictions for complex
and non-linear problems. The CFNN’s sophistication lies in its capacity to update layer
parameters based on the outputs from preceding layers, enabling the model to derive more
optimal weight and bias factors, ultimately yielding higher accuracy results. This paper
aims to propose the CFNN models for estimating the electric and magnetic fields of OHTLs.
These models have been assessed through sensitivity analysis on the effective parameters,
ensuring that they are trained with the best setup to reach the most accurate and stable
results. In the following, first, the models will be introduced and explained in detail. Then,
the sensitivity analysis process will be discussed. In the Section 3, the results of each step
of sensitivity analysis will be presented and the performance of both FFNN and CFNN
models will be discussed. Finally, a brief conclusion will be made in the Section 4.

2. ANN Materials and Methods

As it has been discussed above, the ANN has been chosen for this case of study
as it is extensively flexible to the various datasets, either the large ones with lots of
data/observations and effective parameters or smaller ones with limited observations
which are not suitable for complex machine learning methods. One of the ANN variants is
CFNN, which has been chosen as the main approach for this study. The other method is
FFNN, which is immensely popular and commonly used among researchers, and here in
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this article, has been used for comparison purposes. In the following, these methods will
be discussed, and the differences will be highlighted.

2.1. FFNN
2.1.1. Architecture

The FFNN approach can be put into action by employing a multilayer ANN model
that comprises interconnected layers of neurons. The input layer receives EMF-related
features including the longitude and altitude of the conductor position. Within the hidden
layers, which can vary in number and size (the number of neurons), computations are
performed on the input data using weighted connections. Each neuron within the hidden
layers applies a non-linear activation function to its weighted inputs, enabling the network
to capture intricate relationships and non-linearity in the data. The output layer generates
estimated EMF values based on the computations conducted in the preceding layers.

The fundamental equations of this methodology are as follows [9]:

yp = f 0

(
n

∑
j=1

ω0
i xi f H

j

(
n

∑
i=1

ωH
ji xi

))
(1)

where f 0 and f H
j designate the output layer and the hidden layer activation functions,

respectively. Considering the addition of bias to both the input layer and the hidden layer,
Equation (1) turns into:
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))
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where ωH
j and ωb indicate the respective weight from bias to the hidden layer and

output layer.

2.1.2. Training, Validation, and Testing Processes

Training the FFNN involves optimizing the network’s parameters, which are the
weights and biases, to make the predicted EMF outputs as close as possible to the actual
EMF values. This process is conducted through so-called “backpropagation”, where the
network learns from its errors and adjusts its weights and biases accordingly. To help with
efficient training, a loss function is used to measure the difference between the predicted
and actual EMF values. A common loss function for this is Root Mean Squared Error
(RMSE). The network’s parameters are adjusted over multiple iterations using optimization
algorithms like a Scaled Conjugate Gradient (SCG), which uses a subset of the training data
to calculate how much the weights and biases should be updated.

After training the FFNN, it is essential to evaluate its performance and validate its
effectiveness. Performance metrics such as Root Mean Squared Error (RMSE) and the
coefficient of determination (R-squared or R2) can be calculated to assess the network’s
accuracy in estimating the EMF values. The network’s parameters are adjusted over
multiple iterations using optimization algorithms (also known as training functions) like
Levenberg–Marquardt, which uses a subset of the training data to calculate how much the
weights and biases should be updated.

2.2. CFNN
Unique Features and Architecture

CFNN distinguishes itself from other ANN variants through its sequential learning
approach. Unlike the FFNN, where data flow through the layers in a single pass, the
CFNN introduces a two-stage learning process. In the first stage, a hidden layer is trained
using a traditional feed-forward learning algorithm. Then, in the second stage, additional
hidden units are added sequentially in a cascade fashion, each trained to minimize the error
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remaining from the previous layer. This sequential learning process allows the network
to refine its estimations layer by layer, progressively improving accuracy and enhancing
the overall estimation performance, which is shown in Figure 1. The addition of the
cascade units and its incorporation into the network architecture enables the CFNN with
multiple hidden layers to learn complex features in a gradual and systematic manner,
further enhancing its capacity for learning intricate patterns and achieving improved
performance [33,37]. Therefore, the main difference between CFNN and FFNN is that the
number of weight factors in each layer of CFNN increases in a cascade manner. This means
that by moving to the next layers, the network will have more weight factors that contribute
to the impact of the outputs of all previous layers, while in the FFNN, only one weight
factor contributes to the influence of the previous layer (not all of the previous ones).
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yp =
n

∑
i=1

f iω0
i xi + f 0

(
n

∑
j=1

ω0
i xi f H

j

(
n

∑
i=1

ωH
jh xi

))
(3)

where f i and f H
j designate the output layer and the hidden layer activation functions,

respectively. By adding bias to both the input layer and the hidden layers, Equation (3) can
be modified to:

yp =
n

∑
i=1

f iω0
i xi + f 0

(
ωb +

n

∑
j=1

ω0
i xi f H

j

(
ω0

i +
n

∑
i=1

ωH
jh xi

))
(4)



Appl. Sci. 2023, 13, 11180 6 of 20

where ωH
j and ωb indicate the respective weight from bias to the hidden layer and

output layer.

3. Results and Discussion
3.1. Data Collection

The experimental data used in this paper were collected from [13] which provided the
data of an experimental measurement on a 154 kV OHTL, where EMF has been measured
using sensors in the vicinity of the OHTL. To measure the electric field, a CA42 LF field
meter was used in 21 different longitude positions and 5 different heights from ground level.
During the measurement period, the recorded instantaneous current value of the transmis-
sion line was approximately 156.3 Amperes. In the same process, by using Magnetic Field
Hitester 3470 with the magnetic field sensor 3471, the magnetic field was measured.

After data collection, both datasets were organized and preprocessed, making them
suitable for use as input datasets for ANN models.

3.2. Error Indices for Evaluating Model Performances

There are three main indices that have been used to assess the accuracy of the different
setups of a model as follows [38,39]:

Standard Deviation =

√
∑m

i=1(y − yi)
2

m − 1
(5)

RMSE =

√√√√ ns

∑
k=1

(dk − yk)
2

ns
(6)

R2 =
∑ns

k=1

(
dk − d

)
(yk − y)√

∑ns
k=1

(
dk − d

)2
∑ns

k=1(yk − y)2
(7)

In these equations, m represents the number of iterations for each setup, y is the
predicted value, y is mean value of x in m iterations, ns is the number of samples of the
training dataset, dk is the actual value, and dk is the mean value of dk.

3.3. Sensitivity Analysis

The sensitivity of models to their major controlling parameters or so-called “hyper-
parameters” should be tested for both electric and magnetic fields, making sure the best
architecture/setup has been proposed for the final model. Therefore, a sophisticated
approach has been proposed and followed for this step of analysis, which is demonstrated
in Figure 2.

3.3.1. Layers

One of the most important parameters that have a significant impact on the accuracy
and the training time of the ANN model is the number of hidden layers. For simplicity,
most of the researchers consider only one layer for their ANN model. That said, in this
work, the five different numbers of hidden layers, starting from the single-layer model to
quintuple-layer one, have been tested to ensure that the best number of hidden layers for
the dataset has been chosen for further steps. Also, it is good to note that the values of
indices of the best setup of neurons in each number of hidden layers have been considered
to perfectly make a decision on which one is the best for further steps of analysis. Also,
Levenberg–Marquardt as the training function, Purelin–Tansig as the activation function,
and 70% as the training ratio have been considered for this step according to [28].
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Electric Field

Figure 3 demonstrates that for the CFNN, the more hidden layers a model has, the
lower RMSE and the higher R-squared it has. This means the total accuracy of the CFNN
model increases by adding more hidden layers, while for the FFNN, after three hidden
layers, the RMSE climbs up and the R-squared drops. Therefore, for the FFNN, more than
two hidden layers not only does not increase but actually decreases the model’s accuracy.
This is a good example of the necessity of sensitivity analysis for AI models.
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In terms of the response time, for both models, it soars after three hidden layers. This
means that with respect to the application of the model and the computing resources, an
appropriate limit for the response time should be chosen. It is good to note that the reported
response time in this paper is the time in which the model is able to predict the fields.
Therefore, it may vary based on different computers. In this research, the models have been
tested on a computer with Intel® Core™ i7-4710HQ CPU with 12 GB RAM.

Magnetic Field

In the aspect of accuracy, the line graphs of Figure 4 indicate that the results of the
CFNN and FFNN are very close; however, the CFNN still has better results. The CFNN is
facing slight drops in accuracy by adding more hidden layers to the model after two layers,
which makes it the best number for it. The same is observed for the FFNN; the two hidden
layers have the lowest RMSE and highest R-squared which makes it the best option for it,
but it is still not as accurate as the CFNN.

In the aspect of response time, generally, it increases by adding more layers. That said,
although the double-layer model has the second lowest one after the single-layer model by
a great difference, by taking the accuracy of the models into account, the difference in time
can be neglected.

3.3.2. Neurons

The same is observed for the layers; sensitivity analysis on the number of neurons in
each hidden layer within ANNs is a critical approach for gaining deeper insights into the
network’s internal processes. Each neuron within ANNs plays a vital role in the complex
computation and feature extraction process. To explore the optimal configuration, we
systematically varied the number of neurons in each hidden layer, ranging from a single
neuron to a maximum of 15 neurons. This approach generated 15 possible configurations
for each hidden layer. By extending this analysis to encompass multiple hidden layers,
denoted as ‘k’, we meticulously examined 15k cases for each k and a total of 813,615 unique
conditions. This exhaustive exploration aimed to identify the most efficient setup, so only
the best configuration of each k is reported in the figures and tables.
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Electric Field

As can be seen in Tables 1 and 2, the best neuron setup of each layer with respect to
the RMSE value is shown. It is obvious that the CFNN triple-layer model with [1 3 7] setup
of neurons is the optimum configuration as it has extremely low RMSE.

Table 1. Sensitivity Analysis of Layers and Neurons for FFNN for the electric field.

Layers Neurons RMSE R-Squared Response Time [ms]

1 11 0.006217 0.999936 6.651
2 [3 15] 0.003999 0.999978 8.621
3 [5 7 7] 0.004381 0.999980 9.362
4 [5 9 13 5] 0.006696 0.999956 12.652
5 [5 9 9 13 5] 0.006174 0.999920 14.598
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Table 2. Sensitivity Analysis of Layers and Neurons for CFNN for the electric field.

Layers Neurons RMSE R-Squared Response Time [ms]

1 13 0.010050 0.999817 6.543
2 [1 11] 0.002770 0.999984 8.467
3 [1 3 7] 0.001953 0.999993 9.151
4 [1 3 3 3] 0.002013 0.999994 11.206
5 [2 2 2 4 2] 0.001763 0.999994 12.797

Magnetic Field

According to Tables 3 and 4, the double-layer models for both CFNN and FFNN with
[3 3] and [3 9] setup of neurons, respectively, are the best option for this step of the study.

Table 3. Sensitivity analysis of Layers and Neurons for FFNN for the magnetic field.

Layers Neurons RMSE R-Squared Response Time [ms]

1 6 4.97 × 10−2 9.99 × 10−1 3.27
2 [3 9] 2.53 × 10−2 9.99 × 10−1 4.70
3 [5 3 3] 2.66 × 10−2 9.99 × 10−1 6.31
4 [5 5 9 9] 3.33 × 10−2 9.99 × 10−1 5.04
5 [5 5 13 5 1] 2.85 × 10−2 9.99 × 10−1 5.25

Table 4. Sensitivity analysis of Layers and Neurons for CFNN for the magnetic field.

Layers Neurons RMSE R-Squared Response Time [ms]

1 5 4.87 × 10−2 9.95 × 10−1 3.32
2 [3 3] 2.46 × 10−2 9.99 × 10−1 4.59
3 [3 7 1] 2.53 × 10−2 9.83 × 10−1 7.48
4 [5 5 1 5] 2.77 × 10−2 9.99 × 10−1 7.67
5 [5 5 9 5 5] 3.13 × 10−2 9.99 × 10−1 6.84

3.3.3. Training Functions

Sensitivity analysis of training functions in ANNs is a fundamental step in understand-
ing the impact of different optimization algorithms on the network’s learning process and
performance. The choice of a suitable training function directly influences the convergence
rate, accuracy, and efficiency of the ANN model. In this paper, the four most common
training functions (in the literature) have been tested: Levenberg–Marquardt (LM), Scaled
Conjugate Gradient (SCG), Resilient Backpropagation (RB), and Variable Learning Rate
Backpropagation (VLRB). Analyzing the sensitivity of these training functions provides
valuable insights into their strengths, weaknesses, and suitability for the proposed model.

Electric Field

As can be seen in Figure 5, the LM training function has the lowest RMSE in compari-
son to other training functions. In contrast, its best setup has a higher response time than
the others. Also, the CFNN method has more accurate results than the FFNN in all training
functions. Therefore, the best model at this step is the CFNN trained with LM.

Magnetic Field

Similar to the electric field, according to Figure 6, the LM has the lowest RMSE and
highest R-squared. Also, the CFNN model’s RMSE is less than the FFNN for all training
functions. Moreover, in terms of response time, there is no significant difference between
all the options. So, the best option is the CFNN method with the LM training function.
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3.3.4. Activation Functions

Activation functions introduce non-linearity to the neural network, enabling it to
model complex relationships and learn intricate patterns from the data. In this paper, four
activation functions including Purelin, Tansig, Satlin, and Logsig have been considered for
this step of analysis as the most common functions used in the literature. The equations of
these activation functions are as follows [40,41]:

Pure linear F(x) = x (8)

Saturated linear F(x) =
{

0 f or x < 0
1 f or x > 1

(9)

Hyperbolic tan gentsigmoid F(x) = tanh(x) (10)

Log–sigmoid F(x) =
1

1 + exp(−x)
(11)

It was considered that the activation functions between the input and hidden layer,
and the hidden layer and hidden layer are the same. Also, eight combinations of activation
functions out of all possible conditions were chosen from [19]. Then, they were assessed to
check whether they result in higher accuracy than others.

As can be seen in Figure 7 and Table 5, for the electric field, Purelin–Logsig for CFNN
and Tansig–Purelin for FFNN resulted in the lowest RMSE and highest R2, respectively.
Also, according to Figure 8 and Table 6, Logsig–Purelin for both the CFNN and FFNN
demonstrated the highest accuracy. Also, it is worth noting that the CFNN has a higher R2

than the FFNN, while it has lower RMSE values. This means that the CFNN gives more
accurate estimates of both electric and magnetic fields in most pairs of activation functions.
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Table 5. R-squared values of the pairs of activation functions for both FFNN and CFNN for the
electric field.

Activation Function FFNN CFNN

Purelin–Tansig 0.999957 0.999995
Tansig–Purelin 0.999997 0.999979
Satlin–Tansig 0.981759 0.99983
Tansig–Satlin 0.998797 0.999928

Purelin–Logsig 0.859171 0.999979
Logsig–Purelin 0.998393 0.999986
Satlin–Logsig 0.901135 0.999884
Logsig–Satlin 0.999866 0.999949
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Table 6. R-squared values of the pairs of activation functions for both FFNN and CFNN for the
magnetic field.

Activation Function FFNN CFNN

Purelin–Tansig 0.995210 0.995201
Tansig–Purelin 0.999231 0.999198
Satlin–Tansig 0.897353 0.998647
Tansig–Satlin 0.621461 0.885737

Purelin–Logsig 0.867373 0.867271
Logsig–Purelin 0.999280 0.999177
Satlin–Logsig 0.632067 0.879440
Logsig–Satlin 0.533737 0.886112

3.3.5. Training Ratio

The sensitivity of the model to the training data ratio must be assessed by considering
different ratios for the number of training data to the total data in the dataset of the model.
It is common practice among AI researchers to consider a data training ratio between 50%
to 90% for the training of the model and 5% to 25% for each validation and testing process
equally. This ratio depends on the number of observations in a dataset, the number of input
parameters, etc.
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In this paper, the data training ratios were considered for 50%, 60%, and 70% to find
the best ratio in terms of the accuracy of the model. The reason that 80% and 90% were not
studied is that there was a risk of overfitting the model. The results of Tables 7 and 8 demon-
strate that 70% training ratio gave the highest accuracy for both electric and magnetic fields.

Table 7. The RMSE and R-squared of different data training ratios for the electric field estimation.

Training Ratio RMSE R-Squared

70% 1.58 × 10−3 0.999979
60% 1.71 × 10−3 0.999995
50% 1.82 × 10−3 0.999992

Table 8. The RMSE and R-squared of different data training ratios for the magnetic field estimation.

Training Ratio RMSE R-Squared

70% 2.49 × 10−2 0.999177
60% 2.62 × 10−2 0.999177
50% 2.96 × 10−2 0.998943

3.3.6. Stability

The performance variability observed in ANN models, even when the network setup
remains unchanged, is a common phenomenon and can be attributed to several factors.
First and foremost, ANNs inherently depend on the initial weights assigned to their
connections, which are typically initialized randomly. This initial condition can lead to
different starting points for the learning process, resulting in divergent outcomes during
training. Additionally, the data used for training play a crucial role. The dataset splitting
for the training, validation, and testing process is performed randomly, which can result
in different model performances. Stability analysis holds significant importance for ANN
models, as it guarantees the robustness and dependability of their predictions. In this paper,
each setup/configuration for the ANN model, regardless of being in each step of sensitivity
analysis, was repeated 50 times to avoid any significant fluctuation. Then, the mean values
of RMSE and R-squared were compared between models to assess their accuracy. As can
be seen in Figures 9 and 10, the RMSE values are almost the same and fluctuations are
not significant. Also, the SD of the data for electric field and magnetic field models was
evaluated using Equation (1) and is only 4.88 × 10−4 and 4.81 × 10−3, respectively. As the
SD values are near zero, they prove that the fluctuation of RMSE in both suggested models
is negligible, and so, the suggested models are absolutely stable.
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3.4. Comparison with Other Works

In this section, the accuracy of the presented model in this paper will be compared
to the previous works published in the literature. As can be seen with Table 9, the RMSE
of the proposed model in this paper is the lowest in comparison with other published
papers. Also, in terms of R-squared, the proposed model in this paper has an R-squared of
almost 0.999, which is higher than other published papers. Moreover, in this paper, relative
error never exceeded 5.4% (worst case), while for other published papers, it was reported
between 3% to 190%.

Table 9. Comparison of accuracy of the proposed model with other works.

Reference Method Field RMSE R2 Relative Error

[34] MLPNN Electric - - 5.437–23.62%
Magnetic - - 3.255–11.5%

[13] MLPNN Electric 0.030855 - -
Magnetic 0.02719 - -

[13] GRNN Electric 0.053084 - -
Magnetic 0.03666 - -

[20] NFC Electric - - 8–135%
Magnetic - - 5–190%

[36] FFNN Electric 0.6172 0.9121 -
Magnetic 0.3602 0.9471 -

[35] FFNN Electric - - -
Magnetic - 0.709–0.988 -

Present paper CFNN Electric 0.001708 0.99995 0.01–3.281%
Magnetic 0.0246 0.99920 0.05–5.87%

4. Conclusions

Both finite element and experimental methods that are being used by researchers for
the electric and magnetic fields evaluation are extensively time-consuming and expensive.
This paper intends to propose an extremely fast and low-cost implementation method
using AI methods based on neural networks. The cascade-forward neural network (CFNN)
as the main ANN method of this paper demonstrated higher accuracy than the commonly
used feed-forward neural network (FFNN). For the electric and magnetic fields estimation,
the CFNN exhibited a reduction in RMSE by 56% and 5%, respectively, compared to the
FFNN. The other important findings can be expressed as follows:

• The training time of both models did not exceed 10 s, while it can take some days for
the experimental and FEM methods.
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• The response times of both proposed models were less than 10 ms, even using a regular
personal computer. Therefore, they are very suitable for real-time use.

• Although the CFNN models have more complex architecture, they had almost the
same response time to the FFNN, with higher accuracy.

It is worth noting that CFNN models are versatile and can handle various datasets
in many engineering applications. These models have been developed for one layout and
have very high accuracy for that layout. To reach similar accuracy for other layouts, the
models can be retrained and updated with new datasets related to them.
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Nomenclature
Abbreviation Description
EMF Electric and magnetic field
OHTL Overhead Transmission Line
AI Artificial Intelligence
ANN Artificial Neural Network
FFNN Feed-Forward Neural Network
CFNN Cascade-Forward Neural Network
LM Levenberg–Marquardt
SCG Scaled Conjugate Gradient
RB Resilient Backpropagation
VLRB Variable Learning Rate Backpropagation
FEM Finite Element Method
MSE Mean Squared Error
RMSE Root Mean Squared Error
R-Squared coefficient of determination
SD Standard Deviation
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