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Abstract: Federated learning (FL) offers a promising solution in edge computing to overcome band-
width limitations and privacy concerns associated with traditional cloud-based training. However,
current FL methods often suffer from transmission delay and excessive communication resource
usage. In this paper, we introduce an innovative asynchronous hierarchical FL approach based on
bandwidth allocation and client scheduling. Specifically, we propose an efficient algorithm that
dynamically assigns clients to edge servers based on client mobility during training and accelerates
parameter uploading while taking into account the remaining bandwidth of the edge servers. Our
experimental results demonstrate the effectiveness of our approach, particularly in scenarios with
frequent client mobility. This research strongly supports the application of FL in edge computing and
underscores the crucial role of resource allocation in addressing communication resource constraints
and reducing the training time of FL.

Keywords: federated learning; resource allocation; client selection

1. Introduction

The advent of digital technology has fueled significant advancements in various
transformative technologies such as big data and artificial intelligence. Machine learning
(ML)-powered mobile applications are revolutionizing various aspects of modern life [1].
Nevertheless, ML training tasks typically demand a significant volume of data from di-
verse terminals with varying computational capabilities. Uploading data to remote cloud
servers for processing, which is the conventional approach, presents challenges like privacy
infringement, network congestion, and significant transmission delays. These challenges
hinder the complete utilization of the abundant data [2]. In 2016, the Google Research
Institute introduced the concept of federated learning (FL) with the aim of mitigating
network bandwidth constraints and addressing vulnerabilities in data privacy [3]. FL is a
collaborative training and sharing approach that eliminates the need for accessing raw data,
aligning with decentralized collection and data minimization principles, where updates
are shared with a central server or a coordinator. This decentralized approach adheres
to principles of data minimization and eliminates the requirement for centralized data
collection. Raw data remain securely stored on individual devices without direct access. FL
facilitates local model training on each device while uploading only aggregated updates or
model parameters to the central server.

Hierarchical FL (HFL) [4] is an FL framework where edge servers serve as interme-
diaries between mobile devices and the cloud. These servers facilitate the aggregation of
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local models received from neighboring devices at the edge. By enabling the cloud server
to effectively process data from a larger number of terminal devices, HFL successfully
addresses the challenges encountered during data uploading to the cloud. However, the
common HFL framework employs synchronous aggregation of global models, wherein
the server does not conduct cloud aggregation until it receives the model parameters of all
clients. This synchronous approach leads to a phenomenon known as the straggler effect,
wherein the delay in cloud aggregation is determined by the slowest client. The straggler
effect adversely affects model training in terms of delayed convergence and greater resource
consumption. Notably, a delay in uploading parameters by one or more clients result in an
overall delay in the training process, prolonging the training time. Moreover, a delayed
aggregation of client parameters impedes the convergence of the global model, potentially
affecting the overall accuracy performance of the trained model. These negative effects
underscore the significance of addressing the straggler effect in FL to ensure efficient and
timely model updates.

2. Related Works

In order to address the issue of low communication efficiency with peripheral devices,
Zhang et al. proposed an FL framework with cooperative mobile edge networking [5]. The
structure involves the use of multiple edge cloud servers collaborating instead of a single cloud
server, which allows devices located at the periphery to upload parameters to the cloud server
at a lower cost, enabling it to cover a broader range of clients. The authors in [6] designed
a compression control scheme to balance the energy consumption of local computing and
wireless communication from the long-term learning perspective. Several approaches have
been proposed to address the straggler effect in FL, including works in [7–9]. Xie et al. in [7]
introduced the FedAsync algorithm, which enables clients to promptly upload their local
models to the server upon completing an update. However, these uploaded models may
become outdated by the time they reach the server. To mitigate the influence of obsolete
models on the global model, some researchers attempted to incorporate the FedAsync al-
gorithm with an obsolescence function as a hyperparameter. Nguyen et al. proposed the
FedBuff algorithm [8], which involves the server establishing a buffer of a specific capacity
and leveraging trusted execution environments to enhance privacy protection. In this ap-
proach, clients asynchronously upload their updated models to the buffer. Once the buffer
holds a sufficient number of models, the server conducts a round of aggregation. The FedBuff
algorithm has faster convergence compared to the FedAsync algorithm while also preserving
privacy. Chen et al. introduced an aggregation method based on update awareness in the
asynchronous FL framework [9]. This approach effectively addresses the negative impact of
variations in local training speeds on aggregation parameters by appropriately controlling
parameter proportions among clients. Furthermore, the aggregation parameters of slower
clients are dynamically updated in this method.

While these algorithms can improve model training efficiency and reduce data traffic,
several challenges still require further investigation. For example, optimization algorithms
tend to exhibit longer processing times for non-IID (non-Independent and Identically
Distributed) data compared to IID data, resulting in increased time costs [10]. Additionally,
compression algorithms, capable of reducing the data volume of communication, may also
have a significant impact on convergence performance, posing a challenge for achieving a
balance between communication efficiency and convergence [11]. Consequently, there is
an urgent need for effective algorithms that can overcome issues related to non-uniform
computing capacity and discrete distribution in the context of a large number of clients.

In response to the challenges posed, we introduce an innovative asynchronous hierar-
chical FL approach and the main contributions of this work are summarized as follows.

• To mitigate the straggler effect, we introduce an asynchronous hierarchical FL ap-
proach which jointly optimizes bandwidth allocation and client scheduling.

• In order to realize load balance, we dynamically assign clients to edge servers taking
into account client mobility during training. Then, we propose a client scheduling
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algorithm which selects clients with high-quality data and low latency to achieve fast
convergence and high model accuracy.

• We accelerate model parameter uploading by taking into account the remaining
bandwidth of the edge servers.

• The simulation results validate the potential of the proposed asynchronous HFL
approach in improving the overall performance and scalability in the context of a large
number of clients.

3. System Model

As shown in Figure 1, we consider an HFL system, including one cloud server, edge
servers, and clients. The cloud server is responsible for selecting participating clients for
training and managing the global model parameters of the entire FL system. The edge
servers receive updates of local model parameters from the clients, instead of data samples,
thus reducing communication overhead. The clients receive the global model from the
cloud server and update the global model based on their own data samples. Moreover,
these clients are mobile and thus are associated with different edge servers at different time
intervals. The sets of clients and edge servers are denoted using I = {i : i = 1, 2, . . . , I}
and J = {j : j = 1, 2, . . . , J}, respectively. The cloud server is denoted using C. Each
client i has an independent local dataset Di = {(xm, ym)}|Di |

m=1, where xm represents the mth
input sample, ym represents the corresponding label, and |Di| is the size of the dataset on
client i. In the following, we detail the training process and then formulate an optimization
problem to improve the training performance.

Figure 1. A snapshot of the considered system model.

3.1. Training Process

Figure 1 depicts the training process, starting with the cloud server distributing the
latest model parameters to the clients. Once it has received the global model parameters,
each client performs local training to update model parameters based on its own dataset
and then transmits the updated model parameters to its associated edge server, taking
into account client location and available bandwidth. An example is given in Figure 2,
where ES1, ES2, . . . represent edge servers and c1, c2, . . . represent the clients participating
in this round of edge aggregation, ω(t) represents the model parameter in the cloud server
in round t, and ω

(t)
j represents the parameter in the edge server j in round t. Each edge

server performs edge aggregation on the received model parameters after a predefined time
interval of ∆T. Then, the edge servers upload edge model parameters to the cloud server
and the cloud sever performs cloud aggregation during the time interval of ∆Taggregation.
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Additionally, the edge server optimizes bandwidth allocation to improve the achievable
transmission rate and reduce the uploading time of model parameters. Subsequently,
the edge server uploads the aggregated model parameters to the cloud server for cloud
aggregation. Notably, edge aggregation and model uploading operations can occur concur-
rently on the edge servers. Such a process is named a round and is repeated many times
until convergence.

Figure 2. Model uploading and aggregation.

3.1.1. Client Selection and Model Distribution

During the training process, the clients are mobile and their movement is unpre-
dictable, making it challenging for the cloud server to determine the participating clients.
Also, the uncertainty in client association may lead to a failure of model parameter upload-
ing, especially when the number of clients is huge but the available bandwidth is limited.
To tackle this challenge, it is crucial to determine which clients should participate in the
training process and how to associate the clients with different edge servers.

In this paper, we propose an approach that considers the available bandwidth of each
edge server and traffic flow to determine the optimal number of clients. Our approach
involves distributing the latest model parameters and enabling clients to locally train the
model using their own datasets. The goal is to enhance the performance of the models
shared among the clients. Given the powerful computation and communication capabilities
of the cloud servers, the calculation time required for selected clients and the distribution
time can be neglected.

3.1.2. Local Training on Clients

At the beginning of the local training process, the participating clients receive the latest
model parameters from the cloud server. Then, each client i utilizes its local dataset Di to
minimize the loss function fi(xm, ym, ω), which facilitates the representation of ym with the
optimal model parameters ω. The loss function of local training on client i is defined as
follows [12]:

Fi(ω) =
1
|Di| ∑

m∈Di

fi(xm, ym, ω), (1)

which aims to find the optimal model parameters that minimize the loss function, i.e.,
ω∗i = arg min[Fi(ω)].

The stochastic gradient descent method is adopted in the local training process. To
achieve the desired level of local accuracy θ ∈ (0, 1), the clients carry out several local
iterations such as L(θ) = µ log(1/θ) [13], where the value of the constant µ relies on the
dimensions of the training task. Specifically, the update rule of the l-th local iteration is
given as ω

(l)
i = ω

(l−1)
i − η∇Fi

(
ω

(l−1)
i

)
, where η represents the learning rate.
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The time consumption of the local training is calculated as follows:

τ
comp
i = L(θ)Piψ, (2)

where L(θ) represents the number of local iterations, Pi represents the time consumed by
processing a data sample on client i, and ψ represents the batch size.

3.1.3. Model Uploading

Upon reaching the predetermined accuracy, each participating client promptly sends
the model parameters to a certain edge server with available bandwidth. Let βij denote
the ratio of the bandwidth of edge server j allocated to client i. The achievable rate of
uploading model parameters of client i can be expressed as follows [14]:

rij = βijBj log2

(
1 +

p(T)
∣∣hij
∣∣2

N0

)
, (3)

where hij is the channel gain between edge server j and client i, N0 is the noise power, and
p(T) is the transmit power of the clients. Then, the uploading delay of model parameters
can be expressed as τcomm

ij = Γ
rij

, where Γ is the size of the model parameters to be uploaded.

3.1.4. Edge Model Aggregation

To address the straggler effect in the synchronous FL framework, our approach intro-
duces asynchronous aggregation. In this method, each edge server independently performs
edge model aggregation using the collected model parameters and then uploads the aggre-
gated parameters to the cloud server. It is unnecessary to wait for the model parameters
from all the participating clients; thus, asynchronous aggregation can significantly reduce
waiting time and potential delays caused by slow clients.

However, a potential challenge lies in the possibility of clients uploading outdated
parameters. To address the challenge, we introduce an obsolescence function as a hyper-
parameter to gradually reduce the weight of outdated parameters during the aggregation
process. The obsolescence function of each client is determined by the current round of
cloud aggregation, denoted as t, and the round of model uploaded from client i, denoted
as t′. The function for the uploaded parameters of client i can be expressed as H(t)

i = λt−t′ ,
where λ ∈ (0, 1) is an attenuation coefficient, which makes the influence of outdated
parameters diminish over time.

The model aggregation on edge server j can be expressed as

ω
(t)
j =

∑i∈S(t)
j

H(t)
i |Di|ω

(t)
i

∑i∈S(t)
j

H(t)
i |Di|

, (4)

where S(t)
j is the set of clients associated with edge server j that participates in edge

aggregation in round t.

3.1.5. Cloud Model Aggregation

Considering the powerful communication capabilities of both the edge server and the
cloud server, the communication delay during parameter uploading from the former to the
latter is negligible. Therefore, upon receiving the uploaded parameters, the cloud server
promptly performs a round of cloud aggregation. Similarly, it is crucial to incorporate an
obsolescence function to mitigate the impact of outdated model parameters on the global
model. The obsolescence function is associated with the model parameters uploaded by
each edge server; it is linked to the overall obsolescence of the clients who participated in
the last round of aggregation and is defined as follows:
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H(t)
j =

∑i∈Sj
H(t)

i∣∣Sj
∣∣ . (5)

Then, the update of model parameters on the cloud server is given as

ω
(t)
0 =

∣∣∣D(t−1)
S

∣∣∣ω(t−1) + H(t)
j

∣∣∣D(t)
Sj

∣∣∣ω(t)
j∣∣∣D(t−1)

S

∣∣∣+ H(t)
j

∣∣∣D(t)
Sj

∣∣∣ , (6)

where D(t)

S(t)
j

=
⋃

i∈S(t)
j

Di is the total dataset of the clients associated with edge server j in

round t, and D(t)
S0

=
⋃t

t′=1 D(t′)

S(t′)
j

. After the cloud model aggregation, the cloud server starts

the next round of training via choosing a set of clients and distributing the latest global
model parameters to them.

3.2. Problem Formulation

Due to the asynchronous nature of the aggregation process on edge and cloud servers,
it is hard to find the optimal solution of the whole training process. Instead, we aim
to achieve a balance between model performance and latency by optimizing the client
scheduling and bandwidth allocation, taking into account the delay (including the delay of
transmission and local training) and data quality.

After each round of cloud aggregation, the cloud server selects n training clients. These
clients are then allocated to the nearest edge server j in order to optimize their training
delay (τi) and data quality (Qi). Accordingly, the optimization problem is formulated as

min
βij ,Sj

n

∑
i=1

(
ατi +

(1− α)

Qi

)
,

s.t. Sj ∈ I ,

Sj ∩ Sj′ = ∅, ∀j, j′ ∈ J , j 6= j′,

∑
i∈Sj

βij ≤ 1,

(7)

where α is the weight coefficient and τi = τ
comp
i + τcomm

ij . Note that one client can associate
only with one edge server during the training process.

However, solving this optimization problem is challenging due to the vast combi-
natorial search space of the association decisions and the interdependence with resource
allocation. Instead of finding the optimal solution, we aim to find suboptimal solutions
by employing a divide-and-conquer approach to split the critical problem into two sub-
problems, i.e., reducing client training delay and enhancing client data quality. Our pro-
posed approach includes the following steps:

(a) We develop a load balance algorithm that calculates the number of clients associated
with each edge server based on the remaining available bandwidth and the state
transition probability of client mobility.

(b) Then, we propose a client scheduling algorithm which selects the clients with low
latency and high data quality.

(c) Furthermore, we also develop an algorithm that accelerates model parameter upload-
ing by making full use of the available bandwidth of the edge servers.

3.3. Load Balance

Generally, it is hard to predict the movement of each client. This work assumes that
the state transition probability of each client is available. Specifically, different edge servers
have different coverage areas. The probability that a client staying in the coverage area of
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edge server ESj moves to the coverage area of edge server ESj′ is known a priori. Thus, we
model the movement of clients as a Markov process and an example of the state transition
probability matrix is given in (8) with J = 3, where the elements in row j and column j′

represent the probability that a client moves from the coverage area of edge server j to the
coverage area of edge server j′ during the training process.

M =

e11 e12 e13
e21 e22 e23
e31 e32 e33

. (8)

Each client participating in the training process has a specific initial bandwidth allo-
cation ratio β0. First, we define a vector n = [n1, n2, n3, . . . , nJ ]

T where the j-th element
represents the number of clients that are associated with edge server j in the next round. In
addition, we also define a vector x = [x1, x2, x3, . . . , xJ ]

T where the j-th element denotes the
number of clients initially allocated by the cloud server to the j-th edge server. Then, we
formulate the following optimization problems, which determine the number of clients
that are associated with each edge server, i.e.,

min
x

J

∑
i=1

(
yj − nj

)2,

s.t.
J

∑
j=1

xj −
J

∑
j=1

nj = 0,

xj ≥ 0, j ∈ J ,

xremain
j − xj ≥ 0, j ∈ J ,

(9)

where yj is the j-th element of y = xTM. We rewrite the first constraint as c1(x) = 0,
the following J constraints as cj = xj ≥ 0, j = 2, 3, . . . , J + 1, and the last J constraint as
cj = xremain

j − xj ≥ 0, j = J + 2, J + 3, . . . , 2J + 1, respectively.
The constraint problem (9) can be solved with the projected hypergradient descent

method [15], for which the main steps are given as follows:
Step 1: We first initialize the penalty factor θ1, error control factor ε > 0, constant

θ ∈ (0, 1), and k = 1.
Step 2: For the initial point Xk−1, we solve the following unconstrained problem:

M(x, λ, σ) = f (x) +
1

2σ

2J+1

∑
i=2

{
[max(0, λi − σci(x))]2 − λ2

i

}
−λ1c1(x) +

σ

2
c1(x), (10)

then we obtain the optimal solution Xk.

Step 3: If ϕk =
{

c2
1(x) + ∑2J+1

i=2

[
min

(
ci(xk),

(λk)i
σ

)]} 1
2
< ε, then Xk is the optimal

solution; stop. Otherwise, go to step 3.
Step 4: If ϕk/ϕk−1 ≤ θ, go to step 4. Otherwise, let σk+1 = cσk, and go to step 4.
Step 5: Update the multiplier vector according to

(λk+1)1 = (λk)1 − σc1(xk), (11)

and
(λk+1)i = max[0, (λk)i − σci(xk)], i = 2, 3, . . . , 2J + 1. (12)

Let k = k + 1, then go to step 2.
Here, the first constraint is an equality constraint and the other constraints are in-

equality constraints. The output X may not an integer and the rounding method can be



Appl. Sci. 2023, 13, 11134 8 of 13

adopted. Then, the obtained integer solution is the number of clients that are associated
with each edge server. The proposed client selection method reduces the insufficient band-
width allocation, especially when the number clients is large but the available bandwidth
is scarce.

3.4. Client Scheduling

During the phase of client scheduling, the computing capability and the quality of
the local data are considered simultaneously. In this work, data quality is measured using
the entropy weight method. Specifically, assume that each client i has Ki attributes. We
randomly select M samples from the local dataset Di of each client i and calculate

Qi =
1
M

Ki

∑
k=1

M

∑
m=1

w(i)
k y(i)km (13)

where w(i)
k =

1−e(i)k

∑
Ki
k=1 1−e(i)k

is the entropy weight of the k-th data attribute of client i, yi
km is

the value after data attribute standardization, and the information entropy of each data
attribute [16] can be expressed as follows:

e(i)k = − 1
ln m

m

∑
n=1

y(i)kl

∑m
n=1 y(i)kl

ln

(
y(i)kl

∑m
n=1 y(i)kl

)
. (14)

The client scheduling metric is based on its computing capability Pi and the indicator
of local data quality Qi. It is assumed that the Pi and Qi of each client are stable during the
training process and the clients with a higher value of φi = γPi + (1− γ)Qi have priority
to be selected to participate in the FL training. The steps of selecting xj clients from the
range of edge server j are as follows:

Step 1: The value of |Nselected| updates. If |Nselected| > k, select xbest
j clients from Nselected

within the coverage of edge server j and with the highest value of φ.
Step 2: If xbest

j < xj, xj − xbest
j clients are randomly selected from I − Nselected that are

within the range of the edge server j. The value of φ of these clients is calculated, and the
clients are then added to Nselected.

Step 3: Finally, all clients in Nselected participate in the next round of training, and the
cloud server distributes the latest model parameters to these clients.

The time complexity of this algorithm for calculating the entropy weight of each client
is related to the product of the number of data samples chosen and also the number of
clients selected, which is O(M|Nselected|).

3.5. Uploading Acceleration

To accelerate the uploading process of model parameters, the available bandwidth is
allocated based on the distance between the clients and the edge server. When n clients
are uploading simultaneously, the allocation ratio for client i is adjusted to ensure that the
transmission time for all clients is nearly equal, i.e., the allocation ratio for client i is given by

min{
s2

ijβ
(j)
remain

∑n
i=1 s2

ij
, βmax}. (15)

If there are no other clients uploading at the same time, then the min{β(j)
remain, βmax} of

the bandwidth is allocated to client i, where βmax is the constant, which limits the maximum
ratio of bandwidth allocated by an edge server to a client.
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4. Simulation Results

In this section, we will show the simulation results of the asynchronous HFL ap-
proach based on bandwidth allocation and client scheduling. To illustrate the significant
advantages of this approach, some baseline algorithms are introduced.

4.1. Simulation Settings

We consider an FL system consisting of a cloud server in the center and five edge
servers randomly distributed within the coverage of the cloud server. A total of 250 clients
are randomly distributed within the coverage area of the edge servers, but the number of
clients under each edge server may vary.

A training task of handwritten digit recognition based on the MNIST dataset is consid-
ered. The LeNet is a classic convolutional neural network for handwritten digit recognition
and was proposed by LeCun et al. in 1998 [17]. For simplicity, we still use the MNIST
dataset and the LeNet as the basis of our simulations. This network comprises an input
layer for 32 × 32 grayscale images, followed by two convolutional layers (C1 and C3) using
5 × 5 kernels and Sigmoid activation. Max-pooling layers (S2 and S4) reduce dimensions,
while fully connected layers (C5 and F6) introduce intermediate neurons. The output layer,
with Softmax activation, has ten neurons for digit classification.

In our study, we randomly select 1000 labeled data samples from the MNIST dataset
of 60,000 data samples and form a test dataset on the cloud server. In addition, 5000 labeled
data samples are randomly chosen and evenly allocated among the five edge servers to
evaluate the model accuracy. The remaining 54,000 data samples are equally distributed
among the 250 clients in an independent and identically distributed manner.

We initialize the learning rate as 0.01. After completing each training round, we
reduce the learning rate by 0.995 times its previous value. This decay strategy plays a
crucial role in gradually adjusting the learning rate over time, leading to improved model
convergence. Each client performs forty iterations of local updates. Consequently, every
client performs forty iterations of gradient descent using its respective local dataset to
update the model parameters. This iterative approach enables the model to learn from the
data and continually enhance its performance across multiple training rounds.

The channel is modeled as Rayleigh fading. The small-scale fading coefficient follows
complex Gaussian distribution with zero mean and unit variance and the large-scale fading
mainly depends on the path-loss model given by PL[dB] = 128.1 + 37.6log10(d), where d is
the distance. The transmit powers of each client, each edge server, and the cloud server are
set to 20 dBm, 30 dBm, and 40 dBm, respectively. The total available bandwidth is 1 MHz
and each sub-channel is of 15KHz.

When simulating, we defined the following classes in our program:

• Cloud Server Class: It implements functions including load balance among edge
servers, client scheduling, model distribution, and cloud aggregation.

• Edge Server Class: It implements functions including model collection from clients
and edge aggregation.

• Client Class: It implements functions including local updates, model uploading, and
client mobility.

Then, the following steps are executed:

• The cloud server performs cloud aggregation and determines the client scheduling
and bandwidth allocation scheme in the next round of model training.

• The selected clients perform local updates and then upload the updated model param-
eters to their associated edge servers, respectively. The uploading delay is recorded.
In addition, we use a binomial distribution to simulate model uploading failure and
success events.

• Each edge server executes edge aggregation of model parameters from clients and
then uploads the aggregated model to the cloud server.

• Such a process is repeated until convergence.



Appl. Sci. 2023, 13, 11134 10 of 13

4.2. Introduction to Baseline Algorithms and Proposed Approach

(a) Baseline 1 (hierarchical FL in [4]): In this baseline, after each round of cloud aggre-
gation and before local updates, five edge servers randomly select 10 clients in their
coverage to participate in the training process. The client selection takes into account
the possibility of client relocation during the training. Once the clients complete their
local updates, the edge servers receive the uploaded model parameters if the clients
remain in their coverage. The edge servers proceed to collect the parameters from all
the clients. If the waiting time exceeds a threshold, the edge server performs a round
of edge aggregation and uploads the aggregated model parameters to the cloud server.
Upon receiving the parameters from the edge servers, the cloud server performs a
round of cloud aggregation.

(b) Baseline 2 (greedy optimization): In this baseline, 10 clients are randomly selected
from the clients in the coverage of each edge server for training. The selection process
takes into account the potential client relocations during the training process. Once
the local training is completed, each selected client is connected with its closest edge
server and uploads the model parameters. After a specific time period, each edge
server performs edge aggregation on the uploaded model parameters. The parameters
that are not uploaded on time are buffered and used in the next edge aggregation
based on the uploading delay, which is adjusted according to the outdated function.
Finally, the cloud server receives the model parameters from all the edge servers
simultaneously, along with the information about the number of participating clients
in the cloud aggregation.

(c) Proposed asynchronous hierarchical FL: In our approach, after each round of cloud
aggregation and before local updates, we first determine the number of clients that are
associated with each edge server. Then, the client scheduling and bandwidth allocation
are optimized simultaneously based on training delay and data quality. In addition,
client mobility is also considered and is modeled as a Markov process. After finishing
model uploading, the edge server releases the idle bandwidth resource. If a client
fails to upload its model parameters to its edge server within a given time interval,
the edge server is forced to release the corresponding bandwidth. Each edge server
performs edge aggregation on the uploaded model parameters in a predetermined
interval and uploads them to the cloud server. The cloud server receives all the model
parameters uploaded by the edge servers, along with information about the number
of clients participating in the cloud aggregation.

4.3. Results

Figure 3 shows that the proposed approach achieves the best performance, compared
to baselines 1 and 2, in terms of model convergence. Specifically, to achieve a certain
accuracy (such as 0.9), the proposed asynchronous HFL approach based on bandwidth
allocation and client scheduling takes only 33 time units, whereas baseline 1 takes 56 time
units and baseline 2 takes 113 time units. Furthermore, the proposed approach can achieve
an accuracy of 0.95, which serves as the upper bound of baselines 1 and 2. It is found that
the proposed approach can reduce the training time by 70.8% compared to baseline 1, and
by 41.1% compared to baseline 2. Moreover, the proposed approach exhibits more stable
convergence performance compared to baseline 1. This is because the proposed approach
takes into account both the training delay and data quality of the clients.

Figure 4 presents a similar conclusion to that drawn from Figure 3. Specifically, the
proposed approach has a smaller test loss and converges faster, compared to baselines 1
and 2. This is because the proposed approach tends to select the clients that behave well,
i.e., the clients with lower delay and higher data quality.
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Figure 3. Test accuracy over training time.

Figure 4. Test loss over training time.

During the training process, the clients’ movements may prevent the clients from
uploading model parameters to the corresponding edge server in time. This results in
some clients not participating in the edge model aggregation, leading to unstable and
poor accuracy performance. The greedy optimization algorithm for uploading model
parameters can significantly reduce the uploading delay in an HFL framework. As shown
in Figure 5, the horizontal axis represents the normalized time required for the clients to
upload their models in existing hierarchical FL methods, and the vertical axis represents the
time needed in greedy optimization. However, the greedy algorithm may result in initially
allocating clients to a group in one particular area post training. This would cause some
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edge servers to receive additional clients, potentially leading to uploading congestion. If the
bandwidth is not well allocated, the clients will be blocked in the uploading stage, resulting
in slow model convergence. However, our proposed algorithm achieves load balancing
based on bandwidth allocation and client scheduling, which prevents the occurrence of the
above situation.

Figure 5. Previous time–current time via greedy optimization algorithm.

5. Conclusions

This work introduced an asynchronous HFL framework with bandwidth allocation
and client scheduling that aims to enhance resource utilization while guaranteeing model
training performance. We proposed an efficient algorithm to perform bandwidth allocation
based on client mobility patterns and also load balance on edge servers. Edge servers
further accelerated model uploading using the remaining bandwidth. Ultimately, compared
to the existing hierarchical FL methods, our approach can reduce training time by 78.2% and
achieve higher model accuracy, which represent promising potential for efficient and robust
FL in dynamic environments with client mobility. Our future research endeavors will focus
on safeguarding privacy in the considered asynchronous FL by exploring the integration of
privacy protection techniques such as differential privacy and homomorphic encryption.
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