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Abstract: In this work, we propose the SPREAD approach, which tailors a concurrent range index
structure to a range index structure for disaggregated memory connected via RDMA (Remote Direct
Memory Access). The SPREAD approach leverages the concept of tolerating transient inconsistencies
in a concurrent range index structure to reduce the amount of expensive RDMA operations. Based on
the SPREAD approach, we converted Blink-tree, a concurrent range index structure, to a range index
structure for disaggregated memory called RF-TREE. In our experimental study, RF-TREE shows
comparable performance to Sherman, a state-of-the-art and carefully crafted range index structure
for disaggregated memory.
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1. Introduction

In the memory-driven computing era, the demand for memory is increasing as memory
provides high performance to the software. However, the cost of memory is still high, and
the memory utilization of servers in the data center is still low.

Disaggregated memory is rising as a promising solution to fulfill the increasing de-
mand for memory. Disaggregated memory separates computing and memory in data
centers, and it manages the resources as connected computing and memory pools, respec-
tively. The primary virtue of separating computing and memory pools lies in that it enables
elastic resource management and reduces the TCO (Total Cost of Ownership) [1].

In-memory storage systems, such as in-memory database systems or an in-memory
cache, can be major use cases of disaggregated memory as they require low-latency access
to a large amount of physical memory.

However, simply exploiting the disaggregated memory cannot fully utilize the archi-
tecture’s potential. To fully take advantage of disaggregated memory, the index structures,
which are the primary data structures of in-memory storage systems, should be changed
by considering the characteristics of disaggregated memory. For instance, disaggregated
memory requires a high-performance interconnect network to provide low latency to sup-
port the memory pool. Most previous research for disaggregated memory [2–4] depends
on RDMA (Remote Direct Memory Access) as RDMA provides high-performance and direct
access to the memory in the remote server.

To directly access the remote memory using RDMA, RDMA one-sided verbs such
as RDMA Read/Write/Atomic operations are used because they are memory semantics.
RDMA one-sided verbs provide high performance by allowing a memory operation to be
executed without the remote host’s active involvement. Although RDMA one-sided verbs
provide high performance, they still incur high overhead. This is because the latencies of
RDMA one-sided verbs are relatively higher than local memory accesses. Previous stud-
ies [3,5] mainly exploit simple hash table-based storage systems because it is challenging to
support complicated index operations using RDMA one-sided verbs.
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There have been a few research efforts for designing range index structures that
leverage RDMA one-sided verbs [2,6]. They explore the design of range index structures
on disaggregated memory. The first range index structure to use RDMA one-sided verbs is
called FG [6], a distributed Blink-tree that distributes the node among the memory servers
in a fine-grained manner. However, it suffers a high overhead from the frequent RDMA
one-sided verb calls. Sherman [2] is a state-of-the-art range index structure that uses RDMA
one-sided verbs. Sherman leverages the compute server’s local DRAM as a local cache. It
also exploits the on-chip memory of NIC to reduce the overhead of atomic operations in the
RDMA’s one-sided verbs. However, these engineering efforts require a deep understanding
of RDMA.

While recent studies require a steep learning curve for RDMA, we revisited their
approaches and observed that they leverage RDMA write operation (i.e., one-sided verb),
providing a strong ordering guarantee [2,7]. This strong ordering guarantee shows similar
characteristics to the ordering guarantee of the memory operation in recent concurrent
range index structures [8]. In recent concurrent range index structures, the readers can
tolerate inconsistent transient states during index update operations by other writers.
These inconsistent transient states are called Transient Inconsistency. Moreover, other recent
studies [9,10] show that separating the search layer (the internal nodes) and the data
layer (the data nodes) in a concurrent range index structure can improve scalability and
performance. This structure also can take advantage of disaggregated memory, which is an
emerging architecture in a distributed memory system.

Hence, in this work, we propose a new approach, called SPREAD, to convert a concur-
rent range index structure into a range index structure for disaggregated memory. Using
the SPREAD approach, we implement RF-TREE, a range index structure for disaggregated
memory, by converting Blink-tree, which is a concurrent range index structure.

• We develop a new approach called SPREAD, which converts a concurrent range in-
dex structure into a range index structure for disaggregated memory. The SPREAD

approach exploits the concept of tolerating transient inconsistency in a concurrent
range index structure.

• Following the SPREAD approach, we implement RF-TREE. We show that the existing
concurrent range index structure can be converted for disaggregated memory without
a deep understanding of disaggregated memory architecture.

The rest of the paper is organized as follows:
In Section 2, we explain the background of our work. Section 3 introduces the SPREAD

approach and shows a case study with RF-TREE, a range index structure for disaggregated
memory. Section 4 shows our experimental evaluation results, and Section 5 explains
related works. In Section 6, we conclude the paper.

2. Background
2.1. Disaggregated Memory

Disaggregated memory [1] was proposed over the past decades to improve the effi-
ciency of TCO (Total Cost of Ownership) by sharing idle resources in a server with other
servers by disaggregating the computing and the memory resources.

Since there is currently no commercially available hardware for disaggregated mem-
ory, most previous research exploits environments where servers are connected via high-
performance interconnect networks to emulate disaggregated memory. Disaggregated
memory requires direct memory access to the remote memory in the remote servers. Cur-
rently, disaggregated memory leverages RDMA one-sided verbs [2–4,6], so we focus on
exploiting RDMA one-sided verbs in disaggregated memory. Figure 1 presents the dis-
aggregated memory that uses RDMA one-sided verbs. The server that uses the memory
spaces and computes the data is called the compute server, and the server that provides
the memory spaces is called the memory server. Compute servers typically have more
computing powers (i.e., more powerful CPU cores), and memory servers typically have
fewer computing powers but are equipped with more capacity.
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Figure 1. Overview of disaggregated memory.

2.2. RDMA

RDMA (Remote Direct Memory Access) provides high throughput with low latency.
RDMA has two types of verbs: one-sided verbs and two-sided verbs. RDMA one-sided
verbs are memory semantics and consist of RDMA Read, RDMA Write, and RDMA Atomic
operations. RDMA two-sided verbs are composed of RDMA Send and RDMA Recieve,
similar to the typical socket programming. The main difference between RDMA one-sided
verbs and two-sided verbs is the involvement of the remote host. RDMA one-sided verbs
do not involve the remote host, but the results of the RDMA two-sided verbs are posted by
the remote host.

2.3. Range Index Structures on Disaggregated Memory

In this section, we explain the works most related to our paper, which exploits RDMA
one-sided verbs for a range index structure on disaggregated memory.

FG [6] is the first Blink-tree to exploit only one-sided verbs and RDMA Atomic operations
such as RDMA Fetch-And-Add and RDMA Compare-And-Swap for distributed Blink-tree
operations. Since the one-sided verbs do not involve the remote host in disaggregated
memory, the compute server performs the distributed B+-tree operation using these one-
sided verbs. Even though RDMA one-sided verbs show low latency, the latencies of
RDMA one-sided verbs are still much higher than memory accesses. Hence, FG leverages a
prefetching technique to reduce the latency.
Sherman [2] is a B+-tree for disaggregated memory. Sherman analyzes the reason for slow
one-sided verbs and adds engineering efforts to leverage hardware features such as on-chip
memory for mitigating locking overhead. Sherman also actively exploits the compute
server’s local resources. For instance, it uses the compute server’s local memory as a cache
for the index structure to reduce the number of network round-trips. Moreover, the local
lock table reduces the number of retries caused by contentions between clients located on
the same server.

3. Method

Designing index structures for disaggregated memory entails both a time-consuming
and labor-intensive process because the range indexes accompany complicated SMO (Struc-
ture Modification Operations). Moreover, RDMA hardware features are complicated and
require deep knowledge. In this section, we present our SPREAD approach to convert a
concurrent range index structure to a range index structure for disaggregated memory.
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3.1. Search Layer and Data Layer in Range Index Structure

General range index structures are composed of the search layer and data layer, as
shown in Figure 2. The search layer consists of internal nodes and provides a shortcut to
the target node in the data node in the data layer. Thus, the nodes in the search layer do
not include the data, and they only store the key and pointer to the child node. The data
layer consists of data nodes (i.e., leaf nodes) in the range indexes. In the data node, the data
are composed of key and value pairs where the value is typically the address of the data.
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Figure 2. Tolerating Transient inconsistency in the concurrent range index structures. (a) Blink-tree:
Example of lookup operation of key 80. When the node split occurs, the reader can tolerate the
transient inconsistency by traversing the sibling node. (b) SkipList: Example of lookup operation of
key 25. The reader can tolerate transient inconsistency by traversing the lower level when the key is
added to the upper level.

There have been a lot of efforts to improve the concurrency level of range indexes in
prior studies. Blink-tree [11] is the most widely known range index, improving the concur-
rency level by tolerating the transient inconsistencies of the range indexes. SkipList [12] is
another index structure that can tolerate transient inconsistencies because of the insert and
delete operation of internal nodes. Recently proposed hybrid range indexes [9,10] improve
the performance and scalability by tolerating transient inconsistencies between the search
layer and the data layer. We exploit the concept of tolerating transient inconsistencies
between the search layer and the data layer. In the range index structure for disaggregated
memory, the client always needs to read the data node from the memory server to retrieve
the up-to-date version. However, the search layer does not need to be an up-to-date version
because it only provides the route to the data node. Instead, the client can access the target
data node by traversing the data layer using the sibling pointer of the data node.

3.2. Converting Concurrent Range Index Structure for Disaggregated Memory

Log-Structured Search Layer Region. In order to make the search layer RDMA-friendly,
the search layer should be accessed with minimal RDMA Read operations. To do this, the
internal nodes in the search layer are in consecutive memory space. In the memory server,
the memory space is divided into two regions: the search layer region and the data layer
region. The internal nodes are stored in the search layer region. The data node (i.e., leaf
node) is stored in the data layer region. Storing the search layer in consecutive memory
space is simple and straightforward. Basically, the internal nodes are allocated sequentially
in the search layer region, similar to that of log-structured memory management [13,14].
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Load Balancing. The disaggregated memory consists of memory servers connected via
RDMA one-sided verbs. Hence, if the loads between the memory servers are unbalanced,
the memory servers could become the performance bottleneck. As a result, the data should
be distributed among the memory servers uniformly. However, as shown in a previous
study [6], fine-grained node distribution can incur additional RDMA Read operations,
which cancels out the benefit of the balanced load. Fortunately, the log-structure search
layer region helps reduce the number of RDMA Read operations even when the nodes are
distributed in a fine-grained manner. This is because the log-structured design enables
reading the search layer as a large-sized chunk. Thus, in our SPREAD approach, each node
is stored in the memory server randomly.
Higher Consistency Guarantee. Since the disaggregated memory is the remote memory,
there can be a high possibility of transient inconsistencies between servers and clients.
Previous studies [7,15] exploit a characteristic of RDMA Writes, which transfer data in the
order of memory address.

However, a recent study [16] shows that the RDMA Read operation can still suffer
from transient inconsistencies due to the concurrent multiple cache line retrievals. Hence,
an additional consistency-guarantee mechanism is still required. There are several existing
approaches, such as checksum [3,4,17,18] and versioning for each cache line [6,19]. These
consistency-guarantee mechanisms improve consistency but incur additional overheads,
such as computation and memory accesses. In our SPREAD approach, we add a CRC (Cyclic
Redundancy Check) value as a checksum for each node to guarantee the consistency of
the node.

Efficient Usage of Local Cache. As RDMA-based disaggregated memory still suffers from
the high performance overhead from RDMA’s relatively high latency, it is important to
reduce the number of RDMA operations. In that sense, leveraging the compute server’s
local memory cache is a fundamental solution. Previous works [2,6] already have exploited
the local cache. In a compute server, there can be multiple clients based on threads.
These threads share the same local cache in the compute server, so the cached range
index structure should support concurrent access. Originally, the concurrent range index
structures were designed for multi-core scalability in the same machine. Thus, we can
leverage the concurrency control of the range index structure.
Concurrency Control. The concurrency control protocol exploits atomic instructions to
guarantee mutual exclusion in the critical section. The index structure can simply replace
the atomic instructions, such as Compare_And_Swap (CAS) and Fetch_And_Add (FAA), with
RDMA atomic opertions (i.e., RDMA CAS or RDMA FAA) [20]. However, RDMA atomic
operations are more expensive than CPU atomic instructions. Thus, we must employ
RDMA atomic operations while carefully avoiding excessive calling.
Pointer Representation. Since disaggregated memory consists of the memory from mul-
tiple servers, there is a need to add server information to the pointer representation. In
order to distinguish the memory region of each memory server, the SPREAD approach
embeds the memory region ID, which indicates the memory server in the address space.
Note that current x86 systems only use six bytes, so we can use two bytes for storing
memory region ID, similar to previous studies [2,10]. Moreover, the SPREAD approach uses
offset information with a base address. The offset information of each object is stored in a
six-byte space instead of the virtual address.

3.3. Case Study: RF-TREE

To demonstrate the benefit of the SPREAD approach, we present RF-TREE, an index
structure for disaggregated memory, as shown in Figure 3. We judicially leverage Blink-Tree,
which uses the Atomic Shift operation [8] to tolerate the transient inconsistencies.
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Figure 3. Overview of RF-TREE. When the SLC is empty, the client reads the search layer from
the memory servers. When the search layer is cached and built, the client finds the address of the
target data node. Using the address, the client reads the data node. In the figure, N is the number of
the server.

3.3.1. Structure of RF-TREE

RDMA-Friendly Search Layer. In RF-TREE, we make the search layer RDMA-friendly
by allocating the search layer in a log-structured manner in the memory server. Thus,
RF-TREE can read multiple internal nodes using one RDMA Read operation. Moreover,
RF-TREE divides the search layer into multiple chunks and distributes the chunks to
multiple memory servers to balance the load of each memory server. Each internal node is
appended to the end of memory space or added to the free page in the selected memory
server. RF-TREE manages the free page using a linked-list-based free list (Section 3.3.2).
Each client checks the free list, and, if there is any free page, then the client removes the
free page from the free list and uses it.
Uniformly Distributed Data Nodes. The data layer is composed of data nodes (i.e., leaf
nodes). The data node keeps the key and value pair. Since the data node and the target
data will be accessed together, our approach stores the data node and the data in the same
memory server to reduce the communication overhead. The memory server will be selected
in a round-robin manner to uniformly distribute the data and data nodes.

3.3.2. Memory Server

Memory Management. RF-TREE leverages log-structured memory management to effi-
ciently add and delete the node to the memory server’s memory space. RF-TREE preallo-
cates the memory space in the memory space in the memory server. The client updates the
last index of the page in the memory server atomically when a new node is added to the
memory space in the memory server.

The compute server manages its own local free page list called the free list. When a
page is free, a client marks the page as free and adds the free page to the free list. Since the
free list is located on the compute server’s local memory, the free page information can
be lost when the compute server is aborted. In that case, another compute server scans
the memory spaces in the memory servers and reconstructs the free list by adding the free
pages from the result of the scan operation.

Concurrency Control. As noted in the previous study [16], the version-based locking
protocol with one RDMA Read has inconsistencies because it can prevent inconsistencies
from the multiple concurrent cache line retrievals. Hence, RF-TREE exploits a version-
based locking protocol with a checksum protocol to guarantee the consistency of the data
structure. RF-TREE only acquires a write lock prior to updating both internal and data
nodes since it allows a non-blocking read operation. We will discuss the Read operation
without locking in the following section (Section 3.3.3).
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3.3.3. Read Operation

The Read operation in the range index structure is important as every index operation
should traverse the tree and do its own work. The Read operation is composed of a
Non-Blocking Read operation in the search layer and an optimistic Read operation in the
data layer.

Search Layer Cache in the Compute Server. Since the one-sided verbs have relatively
higher latency than local memory access, exploiting the local memory cache in the compute
server is essential. In the compute server, a client reads the search layer from the mem-
ory servers and reconstructs the search layer in the Search Layer Cache (SLC). The search
layer is shared with multiple threads in the same server. RF-TREE uses the version-based
concurrency control mechanism, similar to the previous studies [4,9,10].
Non-Blocking Read in the Search Layer. RF-TREE provides a Non-Blocking Read in the
search layer to provide high performance. To find the target data node, the client should
traverse the search layer. The client reads the search layer from the memory servers using
the RDMA Read operation when the compute server’s SLC is empty. Since the client
copies the search layer without blocking, some internal nodes experience an inconsistent
state. To tolerate the inconsistent states of some internal nodes, RF-TREE leverages the x86
atomic primitives that can guarantee that 8-byte write is atomic [8,10,21,22]. Moreover,
RDMA Write guarantees the order that follows the order of the memory address. RF-TREE’s
Read operation considers the RDMA Write operation’s ordering to tolerate the transient
inconsistencies, as shown in the following cases.

• Case 1: Inconsistent Search Layer. When the internal nodes are inconsistent, the internal
nodes may shift the key-value pairs. For the Write operation, RF-TREE shifts the
pointer first and then the key. Figure 4 shows an example of an inconsistent search
layer. When the client finds a proper key, it first checks whether the pointer value of the
key is duplicated. If it is, then it returns the pointer value of the node to the right before
the key. If it is not, it returns the pointer of the key, similar to the previous study [8].
The child node may have lower keys and does not have the target key. However, the
client tolerates the transient inconsistencies by traversing the child nodes.

• Case 2: Stale SLC. Since the search layer is stored in the memory server and cached
in the local cache of the compute server, the SLC may be stale. RF-TREE can endure
the stale SLC by traversing the data layer using the sibling pointer of the data node, as
shown in Figure 5. However, traversing the data layer incurs additional expensive
RDMA Read operations. Thus, RF-TREE updates the SLC when the client traverses
more than the threshold. The SLC update is performed using the COW (Copy-On-
Write). The client reads the SLC from the memory server to another memory space
and then updates the pointer of the SLC to the new one.

Read in the Data Node. RF-TREE reads the data node from the memory server using
an optimistic locking protocol. Since there can be an inconsistent state in the leaf node,
RF-TREE checks the checksum after reading the data node. When the checksum value is
not the same, RF-TREE reads the data node from the remote memory server again. Note
that the data nodes are not cached in the compute server’s SLC. RF-TREE always reads
the data node from the memory server and stores it in the thread’s local buffer. This is
because the data node keeps the pointer to the data, so RF-TREE needs a consistent and
latest version of the data node.
Range Query. In the range query operation, the client traverses the search layer in the SLC
and finds the pointers of data nodes, which have the keys to the result of the given range
query. Note that the range query of RF-TREE has low-level isolation as RF-TREE does not
keep the locks for the data nodes for the range query.
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Figure 4. An example of an inconsistent search layer. When RF-TREE updates a node, RF-TREE
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client moves to the DN7.
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Figure 5. An example of a stale SLC. 1 A client moves to the child node when it finds a key that is
larger than the target key. 2 The client traverses the child nodes to find the target key.

3.3.4. Write Operation

Insert/Update/Delete. In common Write operations, such as the Insert/Update/Delete
operation, the client first finds the target node’s address by traversing the search layer in
the compute server’s SLC. The client reads the target node from the memory server using
the target node’s address. Next, the client checks the checksum value to guarantee the
consistency of the data node. The client performs the Write operation after acquiring the
write lock. When the data node is successfully updated, the client writes the unlocked data
node to the memory server. Note that the lock of the data node is located on the last 8-byte
of the data node.
Split. When the node does not have enough space to store a given key and value pair, the
client conducts a split operation of the node. The split operation is also a part of the insert
operation, so the overflown data node is already locked. The client allocates a new node
and copies half of the key-value pairs to the new node. The client finds the free node from
the local free list and uses it. The node is newly allocated when the free list is empty. After
copying the data and connecting the new node, the client atomically updates the variable



Appl. Sci. 2023, 13, 11130 9 of 15

for the number of data to half. The client writes the nodes and inserts the parent entry to
the parent node of the overflown node.
Merge. When the utilization of the node is too low, RF-TREE triggers the merge operation.
The client first checks the size of the data of the sibling node. If the sum of the data
size of the underutilized node and the sibling node is smaller than the node size, the
merge operation is triggered. The client copies the key-value pairs of the sibling node to
the underutilized node. The client writes the underutilized node to the memory server.
After writing the underutilized node, the client reads and locks the parent node, qnd then
removes the sibling’s parent key-value pair. The sibling page is added to the free list of the
compute server.

4. Experimental Results
4.1. Experimental Environment

Hardware. We used two servers that are connected directly via infiniband. Each server is a
dual-socket machine with two Intel Xeon Gold 5318Y CPUs having 24 physical cores at
2.1 GHz and 256 GB of DRAM. Since there is no publicly available disaggregated memory
hardware, we emulate the memory disaggregation using the two servers. Each server
launches one memory server and one compute server as in previous work [2]. Each
compute server launches multiple threads, and the threads can share the same cache in
the server. We set the size of the local cache of the compute server to 1 GB, and the size
of memory space is set to 200 GB. Each memory server provides a 100 GB memory size to
the memory pool. For all experiments, we follow the prior work [2] to enable huge pages.
The main performance overhead in the range index structures for disaggregated memory
comes from frequent RDMA Read/Write/Atomic operations because of complicated index
operations. In our experiment, each compute server and memory server are distributed
among the servers.
Workload. We used YCSB workloads [23], which are representative workloads of key-value
stores. Table 1 shows the characteristics of each workload. We performed LOAD A and
YCSB A-E to evaluate RF-TREE against other index structures for disaggregated memory.
Table 1 shows the ratio of operations of each YCSB workload. In the evaluation, we inserted
10 M key-value pairs and conducted the 10 M operations of workloads after inserting the
key-value pairs. We used an 8-byte integer key and 8-byte value pairs.

Table 1. The operation ratio of each YCSB workload.

Lookup Insert Update Scan

Load A 0% 100% 0% 0%

Workload A 50% 0% 50% 0%

Workload B 95% 0% 5% 0%

Workload C 100% 0% 0% 0%

Workload D 95% 5% 0% 0%

Workload E 0% 5% 0% 95%

Competitors. We compared the performance of RF-TREE against other range indexes
for disaggregated memory. We used the open-sourced version of Sherman [24], and we
implemented a Blink-tree for disaggregated memory that is similar to the FG [6].

The implementation of RF-TREE and Blink-tree use the same baseline for the fair
performance evaluation. Since FG did not exploit the local cache in the compute server, the
Blink-tree also did not use the local cache. In the Blink-tree, we also added the CRC32 value
as a checksum and optimization for the Write operation, such as exploiting the RDMA
Write ordering for version updates. Note that Sherman has an inconsistency problem [24],
so we fixed the inconsistencies by adding the CRC as a checksum protocol.
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4.2. Throughput

We measured throughput for YCSB workloads while varying the number of clients. We
used YCSB workloads with both Zipfian distribution and uniform distribution.

Zipfian distribution. Figure 6 shows the throughput of the range index structures for
disaggregated memory. In Write-intensive workloads, such as load A and workload A,
Sherman shows 16% higher throughput than RF-TREE. This is because Sherman optimizes
RDMA one-sided verbs, such as RDMA Write batching and on-chip lock management,
which require lots of engineering efforts. Note that RF-TREE also can apply Sherman’s
optimization. When the Read ratio is increased, as in workloads A–D, RF-TREE shows
better throughput than Sherman. This is because RF-TREE has a sorted node layout, and
RF-TREE’s internal nodes are sequentially stored. In workload E, RF-TREE and Sherman
show similar performance. Both experience performance degradation, due, however,
to different reasons. Sherman can reduce RDMA Read operations by batching RDMA
Read operations, but it suffers huge overhead of in-memory operations, such as cache
management and unsorted node layout. Meanwhile, RF-TREE suffers higher RDMA
Read operation overhead than Sherman, as it does not provide the batching RDMA Read
operation. Blink-tree suffers high overhead from the RDMA Read operation because it does
not use the local cache of the compute server.
Uniform distribution. The YCSB workload evaluation with uniform distribution shows
similar performance trends to the YCSB workload evaluation with Zipfian distribution, as
shown in Figure 7. In Write-intensive workloads, RF-TREE shows comparable performance
to Sherman because a uniform distribution reduces the possibility of contention.

0.00

1.00

2.00

3.00

4.00

5.00

0 16 32 48 64
0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 16 32 48 64
0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 16 32 48 64

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 16 32 48 64
0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 16 32 48 64
0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00

0 16 32 48 64

M
O

ps
/s

ec

# clients

LOAD A

Sherman

# clients

YCSB A

RF-TREE

# clients

YCSB B

Blink-tree

M
O

ps
/s

ec

# clients

YCSB C

# clients

YCSB D

# clients

YCSB E

Figure 6. Throughput of range index structures for disaggregated memory (Zipfian distribution).

4.3. Performance Breakdown

We analyzed the performance of range index structures for disaggregated memory,
as shown in Figure 8. The performance trends on the Zipfian distribution and uniform
distribution were similar. Blink-tree spends the most time on RDMA operations, such as
RDMA Read, RDMA Write, and RDMA CAS. Sherman and RF-TREE take advantage of
their local cache, so the elapsed time for RDMA operation was drastically reduced. As
shown in Figure 8, both Sherman and RF-TREE similarly experience significant perfor-
mance overhead due to the CRC (checksum) computation (i.e., 7–50%). Moreover, RF-TREE

showed less in-memory computation overhead than Sherman because RF-TREE stores the
search layer in the consecutive memory space, and RF-TREE has a sorted layout. Since
the in-memory computation overhead is low, RF-TREE is more efficient for disaggregated
memory. Sherman shows low overhead from RDMA Write operations because it only
writes key-value pairs to the target data node instead of the whole data node. More-
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over, Sherman incurs higher overhead for in-memory overhead, which is inefficient for
disaggregated memory.
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Figure 8. Performance breakdown of range index structures for disaggregated memory with YCSB
workload. In this experiment, B stands for Blink-tree, S stands for Sherman, and R stands for RF-TREE.
For workload, LA stands for load A, and WA–WE stand for workload A–E.

In workload E, Sherman batches RDMA Read operations for reading the data nodes.
RF-TREE traverses data nodes using a sibling pointer. Sherman spends more time on
in-memory operation than RF-TREE because Sherman has an unsorted data node layout
and SkipList-based local cache of the compute server.

4.4. Tail Latency

We performed tail latency evaluation for the range index structures for disaggregated
memory, as shown in Figures 9 and 10. Overall, RF-TREE shows lower latency than other
range index structures in medium latency (50%) and 99th latency. While RF-TREE might
experience high tail latency at 99.9 and 99.99th, this can be further optimized by adopting
optimization techniques in Sherman (e.g., batching RDMA operations and leveraging
on-chip memory). We leave this for future work considering that a high tail latency
in Write-intesive workloads represents the worst-case scenario and that RF-TREE has a
performance benefit for a Read-intensive workload.
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Figure 9. Tail latency of range index structures for disggregated memory with YCSB workload
(Zipfian Distribution).
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Figure 10. Tail latency of range index structures for disggregated memory with YCSB workload
(Uniform Distribution).

Zipfian distribution. In load A, RF-TREE shows higher latency at the 99.99 percentile, as it
frequently reads the search layer from the memory server. Note that the load A workload
includes insert operation only and starts from scratch. In that case, the search layer is
updated frequently, and thus, it worsens the performance of RF-TREE.

In workloads A–B, Sherman shows lower tail latency than RF-TREE, which translates
to Sherman’s optimization techniques for RDMA Write/CAS operation. The workloads
include Write operations, and there are contentions between clients with the Zipfian
workload, so RDMA CAS overhead was increased. Moreover, retrying the search layer
Read operation incurs additional CRC overhead, so the tail latency is larger. In workloads C–
E, RF-TREE shows comparable performance to Sherman, as it efficiently leverages the SLC.

Uniform distribution. In the tail latency evaluation with uniform distribution, RF-TREE

exhibits lower latency than Sherman in most workloads. This is because the effect of
Sherman’s optimization techniques is not significant where there is low contention be-
tween clients.
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5. Related Work

In this section, we briefly introduce the related work to our work.

5.1. RDMA One-Sided Verb-Based Key-Value Stores

There are previous studies that exploit the RDMA one-sided verbs for key-value
stores. Many previous works are based on distributed hash tables because of their simpler
structure than range index structures.

Clover [4] is a key-value store working with disaggregated persistent memory. Clover is a
distributed hash table-based key-value store and employs multi-version-based concurrency
control. Clover leverages RDMA one-sided verbs to access the data in the disaggregated
persistent memory.
RACE Hashing [3] is a distributed lock-free hash table that exploits RDMA one-sided
verbs. Race Hashing exploits the computing server’s local cache and provides a protocol to
tolerate inconsistencies in the cached data in the local cache.
Herd [25] is a key-value store that carefully optimizes RDMA operations to obtain
high performance.

5.2. Conversion Techniques for Emerging Hardware

Emerging persistent memory opens up new challenges as it has unique characteristics.
However, legacy storage systems still depend on volatile index structures. Moreover, newly
developed persistent indexes are less stable than mature volatile indexes [26–30]. Hence,
the researchers focus on leveraging the existing concurrent indexes for persistent memory.

Recipe [26] proposes the protocols to convert volatile concurrent data structure to persistent
indexes by adding persistence instructions, such as clwb and sfence, after store instruction.
Recipe supports both lock-based and lock-free data structures.
NVTraverse [31] and Log-Free Concurrent Data Structure [30] propose approaches to con-
vert the volatile lock-free data structure to a persistent lock-free data structure. NVTraverse
adds persistence instructions after every store and load instruction to guarantee the persis-
tence of the data structure. Log-Free Concurrent Data Structure proposes the link and persist
concept to guarantee persistence using pointer marking. In link and persist, not only does
the writer persist the data structure but the reader also persists the data structure when it
detects unpersisted data.

Previous studies require in-depth knowledge of the volatile indexes as they have to
add persistence instructions manually. There have been research efforts to develop the
framework to convert the volatile indexes to persistent ones systemically.

Pronto [28] is a framework to convert a legacy volatile index structure to a persistent index
structure. In Pronto, the volatile index structures are stored in both volatile DRAM and
persistent memory. The foreground threads access the index structure in the DRAM. If
the threads update the index structure, the update will be written to the operation log.
A background thread updates the index structure in the persistent memory using the
operation log.
TIPS [29] is another framework to make volatile index structures persistent. TIPS stores the
index structure on persistent memory. In DRAM, TIPS keeps a hash-table cache to provide
high performance. TIPS also uses an operation log to guarantee persistence and leverages
background threads to update the index structures on persistent memory asynchronously.

6. Conclusions

We presented the SPREAD approach, which is an approach to convert concurrent
range index structures to range index structures for disaggregated memory. The SPREAD

approach leverages the concept of tolerating transient inconsistencies in concurrent range
index structures. This approach makes it easy to convert concurrent range indexes to
range index structures for disaggregated memory. Following the SPREAD approach, we
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built RF-TREE, which converts the Blink-tree to a range index structure for disaggregated
memory. In our experimental evaluation, RF-TREE shows comparable performance to
Sherman, a carefully engineered range index structure for disaggregated memory while
providing easy conversion without complex engineering tasks.
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