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Abstract: The paper investigates the rheological behavior and microstructuring of an AlMg6/10% SiC
metal matrix composite (MMC). The rheological behavior and microstructuring of the AlMg6/10%
SiC composite is studied for strain rates ranging between 0.1 and 4 s−1 and temperatures ranging
from 300 to 500 ◦C. The microstructure formation is studied using EBSD analysis, as well as finite
element simulation and neural network models. The paper proposes a new method of adding data to
a training sample, which allows neural networks to correctly predict the behavior of microstructure
parameters, such as the average grain diameter, and the fraction and density of low-angle boundaries
with scanty initial experimental data. The use of neural networks has made it possible to relate the
thermomechanical parameters of deformation to the microstructure parameters formed under these
conditions. These dependences allow us to establish that, at strain rates ranging from 0.1 to 4 s−1 and
temperatures between 300 to 500 ◦C, the main softening processes in the AlMg6/10% SiC MMC are
dynamic recovery and continuous dynamic recrystallization accompanied, under certain strain and
strain rate conditions at 300 and 350 ◦C, by geometric recrystallization.

Keywords: metal matrix composite; high temperature; aluminum; simulation; rheology; neural
network; relaxation; rheological behavior; flow stress; Al-Mg alloy; Al-Mg-Sc-Zr alloy

1. Introduction

Aluminum and aluminum alloys have become widely used in industry due to their
high specific mechanical properties, high thermal conductivity, and corrosion resistance,
as well as other important technological parameters. Numerous aluminum-based alloys
doped with various alloying elements offering the required physical and mechanical
properties of an alloy have been created. These materials include Al-Mg alloys, which have
good corrosion resistance, ductility, and weldability [1–6]. The latter alloys are used as
structural materials for cryogenic structures, and they are used in the aerospace industry.
Magnesium additives in aluminum strengthen it significantly. Each percent of Mg content
increases the tensile strength by 25–30 MPa [7]. At the same time, Al-Mg alloys can be
considered as deformable with a Mg content of up to 11–12 wt%. With a Mg content of
up to 8 wt%, these alloys cannot be hardened by heat treatment [7]. However, with a
magnesium content of more than 7 wt%, its anticorrosive properties deteriorate sharply;
therefore, Al-Mg alloys with this Mg content are hardly ever used. This leads to the fact that
Al-Mg alloys used in industry are not amenable to heat treatment, and they have medium
strength. As a result, these alloys find limited use only in some areas of the industry.

One of the ways to increase the strength properties of Al-Mg alloys is their alloying
with the Sc rare earth element, which, even in a small content, increases the strength of
alloys [8,9]. The hardening of Al-Mg alloys by adding scandium is a combined effect of
dispersion hardening and structural hardening [10,11]. These alloys are generally alloyed
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with Sc in an amount of up to 0.3% and modified with Mn and Zr [11–14]. However, despite
the low content of scandium due to its high cost, the use of Al-Mg-Sc alloys is also limited.

Another way to obtain increased material properties, which has recently gained
increasing attention from the industry and researchers, is the creation of metal matrix
composites based on an aluminum alloy matrix reinforced with various fillers in various
percentages [15–20]. The development of a new material consists not only in synthesis
but also in the need to form the required properties after its manufacture. The required
properties of alloys and alloy-based composites, as well as products made of them, are
formed using heat treatment and machining in a wide temperature range. In particular,
for structural materials, these types of processing make it possible to obtain materials and
products with compromised plastic and strength properties. Thus, it becomes possible to
control the properties using controlled thermomechanical action consisting of mechanical
action on the workpiece under certain temperature conditions [21–23]. As a rule, the
thermomechanical processing of alloys and alloy-based composites is carried out at elevated
temperatures, at which the alloy structure is actively rearranged.

During plastic deformation, these materials undergo competing processes associated
with hardening due to the increased dislocation density and phase transformations, as well
as with softening due to dynamic recrystallization, recovery, and increased damage [23–32].
The interaction of hardening and softening affects the rheological behavior of the material.
In particular, the flow stress curves at certain temperatures and strain rates may have a
peak [26,33–35], a steady-state portion [25–27,34,35], and several hardening and softening
sections [10,11,36]; in addition, there may be an inverse strain rate dependence [37–39],
when an increase in strain rate causes a decrease in flow stress. To determine the condi-
tions for the formation of the required shape of the workpiece from a material with the
necessary properties, one is to relate the thermomechanical parameters of deformation to
flow stress and the microstructure parameters. These relationships are generally estab-
lished by means of mathematical models based on the functional relation of microstructure
parameters to thermomechanical parameters [40–43], as well as using physically based
models [35,44–49] and computational models, including models based on the cellular
automata method [34,50–54] and molecular dynamics [55]. Neural network models for
describing microstructure formation under high-temperature deformation have not found
wide application due to the need to obtain a large amount of experimental data which is
time-consuming and leads to the inexpediency of using neural networks. The problem
of the scanty experimental data is solved by simulating microstructure formation using
cellular automata or embedding functions into finite element programs [56–59]. Simulation
enables computational experiments to be conducted, thus making it possible to reduce
the time spent on forming a sample of the necessary size for training neural networks.
Nevertheless, this approach is rather time-consuming as it requires first developing or
applying a model that adequately describes the microstructure formation in the material
and then using the results of calculations based on the model to train neural networks. This
paper proposes a new and relatively simple method for processing scarce experimental
data relating microstructure parameters to the parameters of thermomechanical action on a
metal material for subsequent neural network training. The neural networks constructed in
this study are used to identify the softening mechanisms in an AlMg6/10% SiC metal ma-
trix composite at temperatures from 300 to 500 ◦C and strain rates ranging between 0.1 and
4 s−1, as well as to relate the microstructure parameters of the metal matrix composite to
the thermomechanical parameters of deformation.

2. Materials and Methods
2.1. Material and Research Technique

The AlMg6/10% SiC metal matrix composite (MMC) [60] produced using powder
technology is used as the material for the study. The initial components of the AlMg6/10%
SiC MMC were mixed in a vibratory mixer in an argon atmosphere. Sintering was carried
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out for 60 min at a temperature of 420 ◦C. The pressure at which sintering occurred was
30 MPa. No additives modifying the surface of SiC particles were used.

The size of the SiC particles corresponds to the F1500 standard, with an average
diameter of 2.0 ± 0.4 µm. Figure 1 shows an EBSD image and SEM image of the composite
before deformation. As can be seen from this figure, the matrix particles are a polycrystalline
material. After sintering of the composite, the SiC reinforcer particles are located along
the boundaries of the matrix particles. In this paper, the composite was studied without
pre-extrusion. Its mechanical properties at room temperature are shown in Table 1. For
comparison, this table shows the properties of AlMg6 and Al-Mg-Sc-Zr alloys, which are
similar in use to the composite.
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Figure 1. (a) The EBSD image after electropolishing and (b) the SEM image of the AlMg6/10% SiC
MMC microstructure.

Table 1. Material properties.

Material Yield Strength, MPa Elastic Modulus, GPa Density, g/cm3

AlMg6/10%SiC 179 93 2.67
Al-Mg-Sc-Zr alloy 164 66 2.65

AlMg6 alloy 141 76 2.62

Before testing, all the materials were identically annealed for 15 h at 520 ◦C. It can be
seen from this table that the yield strength and elastic modulus of the composite are higher
than those of the AlMg6 alloy and its more expensive Al-Mg-Sc-Zr analog. Table 2 shows
the chemical composition of the Al-Mg-Sc-Zr alloy, the AlMg6 alloy, and the matrix of the
AlMg6/10% SiC metal matrix composite. The chemical compositions were determined
by means of a Spectromaxx LMF04 optical emission spectrometer, and the granulometric
composition of the powders was determined by laser diffraction using a LaSca-TD.

Table 2. Chemical composition of materials, wt%.

Material Al Mg Mn Sc Fe Zr Si Cu Ti Zn Be

AlMg6 alloy
and the matrix of
AlMg6/10% SiC

balance 6.56 0.5 - 0.27 - 0.16 0.013 0.04 0.02 0.0012

Al-Mg-Sc-Zr alloy balance 5.18 0.36 0.23 0.12 0.07 0.01 0.022 0.02 0.02 0.003

The densities of the materials were determined using the hydrostatic method according
to ASTM B311-13, by weighing the specimens in air and distilled water on an Ohaus Pioneer
PA 214 analytical balance.
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Experiments on the determination of the mechanical properties and rheological
behavior of the composite at room and high temperatures were performed for cylin-
drical specimens. Compression specimens had a diameter d0 of 6 ± 0.05 mm and a
height h0 of 9 ± 0.05 mm. Cylindrical tensile specimens had the following dimensions:
d0 = 5 ± 0.05 mm, and the length of the gauge part l0 = 25 ± 0.1 mm. The data obtained
from high-temperature compression tests of specimens were used to construct flow stress
curves depending on temperature, strain, and strain rate. These curves were used for
finite element simulation of specimen compression. Compression experiments were carried
out using an automated plastometric installation designed at the Institute of Engineering
Science, UB RAS [11,39].

In compression experiments, a graphite-containing lubricant was used to reduce fric-
tion between the punch and specimen. The lubricant provided the coefficient of Coulomb
friction between the flat die and aluminum alloy equal to 0.09 at 300 ◦C and equal to
0.1 and 0.13 at 400 and 500 ◦C, respectively. The values of the friction coefficients were
obtained using the procedure described in [61], the essence of which is to compress spec-
imens to different heights and select the friction coefficient in the Coulomb friction law
according to the results of finite element simulation in such a way that the maximum and
minimum diameters of the specimen coincide as closely as possible with the simulated one
at different strains.

In the temperature range between 300 and 500 ◦C, the specimens became barrel-shaped
despite the use of the lubricant (Figure 2). The specimens were cooled immediately after
the end of deformation, and in 2 s, the specimen temperature did not exceed 70 ◦C. After
deformation, the specimens were cut in a longitudinal section (parallel to the compression
axis) using electric spark cutting. Then, thin sections for EBSD analysis were made in
the plane of the longitudinal section of the specimens. Zones of the specimens for EBSD
analysis are highlighted in orange in Figure 2. For the same zones, the strain ε and strain
rate

.
εwere calculated on the basis of finite element simulation of compression of specimens

at the studied range of temperatures, strains and strain rates. The formulation of the finite
element simulation problem is given in Section 2.2.
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Figure 2. The longitudinal section of a cylindrical specimen after compression. The zones of the
EBSD analysis of the specimen microstructure are highlighted in orange.

The microstructures of the specimens before and after deformation were studied
by electron backscattered diffraction (EBSD) using a Tescan Vega II scanning electron
microscope with an Oxford HKL Nordlys F+ EBSD analysis accessory. For the EBSD
analysis, the specimens were first mechanically polished and then electropolished by 90%
CH3COOH +10% HClO4 electrolyte cooled to 8 ◦C. The polishing time averaged 6 s at a
voltage of 40 V and a current density of 0.3 A/mm2. The scanning step during the EBSD
analysis was equal to 0.3 µm. The size of the scanned area was 300 × 150 µm. It was
assumed that the grain misorientation exceeded 15◦ and that the subgrain misorientation
ranged between 2 and 15◦.

2.2. Formulation of the Finite Element Problem for Specimen Compression

In order to determine the stress–strain state in the specimen, its finite element model
was constructed in the Deform program. For the specimen material, an isothermal vis-
coplastic model of isotropic strain hardening was used. The flow stress was set in a tabular
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form based on cylindrical specimen compression tests (Figure 3a). The calculations were
performed under the assumption of the axisymmetric stress–strain state and deformation
symmetry about the horizontal geometric symmetry axis of the specimen (Figure 2). Thus,
only a quarter of the specimen cross-section was simulated (Figure 3b).
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The simulation was performed in accordance with the experimental conditions of
specimen loading in which the time dependence of die speed Ṽy(t) (Figure 3b) was taken for
each specific tested specimen. It was assumed that the friction between the specimen and
the die followed Coulomb’s friction law and depended on temperature. In the simulation
of specimen deformation, the Coulomb friction coefficient was set to 0.09 at a temperature
of 300 ◦C and to 0.1 and 0.13 at 400 and 500 ◦C, respectively.

2.3. Neural Network Models for Forming Microstructure Parameters

The average grain diameter D, the fraction of low-angle boundaries PL, and their
density SL were the analyzed parameters of the composite matrix microstructure depending
on temperature, strain, and strain rate. The fraction and density of low-angle boundaries
were calculated using the formulas

PL =
L

L + H
and SL =

L
F

(1)

Here, L is the sum of the lengths of all the low-angle boundaries; H is the sum of the
lengths of all the high-angle boundaries; and F is the area of the microstructure image on
which the sum of the lengths of all the low-angle boundaries L was determined. These
parameters were determined from the data obtained by EBSD. The average grain diameter
D was calculated based on a sample that included grains containing at least 3 indexed
points. To describe the evolution of the microstructure parameters, we used one-, two-,
and three-layer neural networks. Their general scheme is shown in Figure 4. The neural
networks were built using the scikit-learn library.
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3. Results
3.1. The Rheological Behavior and Microstructuring of the Composite

Under high deformation temperatures, relaxation processes occur in metallic materials
and composites based on them, which affect the form of flow stress curves. The flow stress
curves for the AlMg6/10% SiC MMC (Figure 3a) can be divided into several portions
(stages). At stage I, the composite undergoes hardening until the peak (maximum) flow
stress value is reached. Moreover, the strain corresponding to the peak stress decreases
with increasing temperature and increases with an increasing strain rate. The hardening
stage is followed by a portion corresponding to material softening, where the flow stress
value decreases with increasing strain. At stage III (the steady-state portion), the hardening
and softening rates are close, and the flow stress value remains almost unchanged with
increasing strain. This rheological behavior of the composite at high temperatures means
that dynamic recrystallization occurred during deformation, which can follow the discon-
tinuous, continuous, or geometric recrystallization mechanisms [23]. In order to identify
the recrystallization mechanism, an EBSD analysis of the specimens was performed after
various thermomechanical loading conditions.

Figures 5–7 show the EBSD images of the microstructures of the AlMg6/10% SiC
MMC after deformation as dependent on temperature, strain, and strain rate. The black
spots in the figures correspond to non-indexed zones, which generally are zones with a high
content of silicon carbide falling out from the matrix during electrochemical polishing. The
values of strain ε and the strain rate

.
εwere determined from the results of the finite element

simulation of specimen compression. The formulation of the finite element problem is
described in Section 2.

Although the specimens have the same height after compression, the accumulated
strain in the same zones varies at different temperatures (Figure 8). Thus, it is difficult
to analyze the occurring softening processes depending on temperature and strain-rate
loading conditions without using any approximating equations. Table 3 shows the experi-
mentally obtained values of the average grain diameter D, and the fraction PL and density
SL of low-angle boundaries depending on temperature, strain, and strain rate. According
to these data, maps of the formation of the average grain diameter, and the fraction and
density of low-angle boundaries are plotted against the thermomechanical parameters of
deformation in Figures 9–11. As can be seen from these maps, increasing strain decreases
the average grain diameter, while an increasing deformation temperature forms larger
grains in the composite matrix. The effect of strain rate on grain evolution is nonmonotonic.
In the grain map (Figure 9), there are portions where the diameter of the formed grains
decreases with an increasing strain rate, and there are portions where, in contrast, the
average grain diameter decreases with a decreasing strain rate.
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.
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.
ε = 0.26 s−1.
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.
ε = 0.54 s−1; (b) ε = 0.11 and

.
ε = 0.22 s−1; (c) ε = 0.17 and

.
ε = 0.05 s−1;

(d) ε = 0.34 and
.
ε = 2.32 s−1; (e) ε = 0.43 and

.
ε = 0.81 s−1; (f) ε = 0.49 and

.
ε = 0.15 s−1; (g) ε = 0.60

and
.
ε = 4.06 s−1; (h) ε = 0.63 and

.
ε = 4.29 s−1; (i) ε = 0.79 and

.
ε = 1.47 s−1; (j) ε = 0.83 and

.
ε = 0.25 s−1; (k) ε = 0.88 and

.
ε = 1.64 s−1; (l) ε = 0.92 and

.
ε = 0.28 s−1.
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500 ◦C for (a) ε = 0.02 and

.
ε = 0.3 s−1; (b) ε = 0.05 and

.
ε = 0.1 s−1; (c) ε = 0.1 and

.
ε = 0.03 s−1;

(d) ε = 0.33 and
.
ε = 2.36 s−1; (e) ε = 0.4 and

.
ε = 0.81 s−1; (f) ε = 0.51 and

.
ε = 0.16 s−1; (g) ε = 0.66

and
.
ε = 4.57 s−1; (h) ε = 0.73 and

.
ε = 5.0 s−1; (i) ε = 0.77 and

.
ε = 1.54 s−1; (j) ε = 0.92 and

.
ε = 1.84 s−1; (k) ε = 0.97 and

.
ε = 0.29 s−1; (l) ε = 1.15 and

.
ε = 0.35 s−1.
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temperature, ◦C: (a) 300, (b) 400, (c) 500. The dependences are plotted from the results of the EBSD
analysis of the microstructure.

Table 3. Microstructure parameters of the AlMg6/10 % SiC MMC at temperatures of 300, 400, and
500 ◦C.

Temp., ◦C 300

Strain 0.12 0.13 0.17 0.37 0.40 0.45 0.58 0.63 0.63 0.66 0.73 0.76
Strain rate, s−1 0.83 0.26 0.05 2.48 0.8 0.15 3.85 1.25 4.18 1.32 0.24 0.26

D, µm 5.07 3.52 5.45 2.73 2.56 4.49 1.67 1.82 1.61 1.83 3.33 2.68
PL 0.5 0.7 0.43 0.82 0.73 0.55 0.76 0.64 0.67 0.57 0.58 0.43

SL, µm−1 0.13 0.17 0.1 0.73 0.97 0.23 1.30 1.50 0.97 0.97 0.20 0.53

Temp., ◦C 400

Strain 0.07 0.11 0.17 0.34 0.43 0.49 0.60 0.63 0.79 0.88 0.83 0.92
Strain rate, s−1 0.54 0.22 0.05 2.32 0.81 0.15 4.06 4.29 1.47 0.25 1.64 0.28

D, µm 5.46 3.89 5.6 3.63 2.9 2.89 2.98 3.66 2.73 1.81 1.92 1.86
PL 0.35 0.77 0.38 0.63 0.76 0.79 0.60 0.44 0.57 0.65 0.85 0.76

SL, µm−1 0.07 0.43 0.13 0.43 0.9 0.63 0.47 0.13 0.47 1.10 1.20 1.20

Temp., ◦C 500

Strain 0.02 0.05 0.1 0.33 0.4 0.51 0.66 0.73 0.77 0.92 0.97 1.15
Strain rate, s−1 0.3 0.1 0.03 2.36 0.81 0.16 4.57 5.00 1.54 1.84 0.29 0.35

D, µm 5.13 2.85 5.27 4.56 3.04 4.76 3.37 3.53 2.43 2.27 3.55 3.91
PL 0.38 0.83 0.39 0.49 0.8 0.49 0.46 0.62 0.81 0.79 0.34 0.39

SL, µm−1 0.10 0.70 0.10 0.27 0.67 0.17 0.20 0.27 0.77 1.03 0.20 0.13
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The comparison of the initial microstructure (Figure 1a) with the microstructure
formed during deformation (Figures 5–7) testifies that, after high-temperature deformation,
small grains appear in the microstructure. It can also be seen that inside the initial large
grains, there are subgrains with low-angle boundaries (highlighted in gray in Figures 5–7).
At the same time, new elongated grains and nearly equiaxed ones are formed in the initial
elongated grains along the composite matrix flow direction; the prevailing majority of
them retain their geometry throughout the range of temperatures and strain rates under
study. At a strain of at least 0.7, some subgrains have an almost equiaxed shape, and
the other ones are elongated but with a greater equiaxiality coefficient than the grains
containing these subgrains. Another experimentally determined fact is that the matrix
grains are formed inside large, deformed grains. Thus, we can say that the grain formation
process in the composite matrix is associated with the mechanism of continuous dynamic
recrystallization [23,43]. At the same time, the subboundary migration rate in the matrix
is high enough for a significant number of the subgrains to remain equiaxed. Note also
that the high-angle boundaries of the new grains also have a migration rate sufficient for
a significant part of the recrystallized grains to be equiaxed at strains of at least 0.7. The
obtained experimental data confirm the need to construct physically based mathematical
models of microstructure evolution that take into account the migration of low- and high-
angle boundaries during continuous dynamic recrystallization [43,44,62,63].

It was reported in [11,62,64] that, during continuous dynamic recrystallization, the
fraction of low-angle boundaries changes nonmonotonically with increasing strain. That
is, the curve representing the strain dependence of the fraction of low-angle boundaries
may have portions of decreasing and increasing fractions of low-angle boundaries. It is
obvious from the plotted map of the formation of low-angle boundaries (Figure 10) that the
composite under study has similar nonmonotonic dependencies.

It can be seen from the microstructure image (Figures 5–7) that increasing temperature
induces the formation of larger subgrains and that, at a temperature of 500 ◦C, in some
large grains, there are no subgrains at all (Figure 7). This temperature effect stems from the
increasing rate of dislocation annihilation due to an increase in the velocity of their chaotic
motion caused by increasing temperature [23].

It was noted above that, in real experiments at high temperatures and large plastic
deformations, due to friction, the strain and strain rate loading conditions can hardly be
maintained constant. As a result, at the same speed of the punch of the testing machine but
different temperatures, the specimen strain rate is different. To estimate the influence of the
thermomechanical parameters on microstructure formation, the experimental values of D,
PL, and SL must be determined at the same strains and strain rates; therefore, the values of
the microstructure parameters obtained for different thermomechanical conditions must be
approximated. In this paper, polynomials are used to plot maps of the formation of grains
and low-angle boundaries (Figures 9–11) depending on temperature, strain, and strain rate.
However, it is not possible to use polynomials to predict nonmonotonically changing data
due to a low prediction level. As a result, Figures 9–11 show the maps of the formation
of grains and low-angle boundaries only within the experimental range. For a complete
analysis of the forming microstructure in the entire strain and strain rate range studied,
the constructed maps are insufficient. This problem can be solved by the use of neural
networks. They allow us to predict changes in the parameters with acceptable engineering
accuracy if the correct architecture and training data are chosen [65,66].

3.2. Constructing the Architecture of Neural Networks and Their Training

To describe changes in the average grain diameter D, the fraction of low-angle bound-
aries PL, and the density of low-angle boundaries SL during deformation at temperatures
between 300 and 500 ◦C, three neural networks with a general scheme (multilayer per-
ceptron) were constructed (Figure 4). The neural networks were trained according to the
experimental data from Table 3. Verification was performed according to the experimental
data from Table 4, which were obtained at temperatures and strain rates different from those
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used for training. The images of the microstructures obtained with the thermomechanical
deformation parameters from Table 4 are shown in Figure 12.

Table 4. Microstructure parameters of the AlMg6/10 % SiC MMC at temperatures of 350 and 450 ◦C.

Temp., ◦C 350 450

Strain 0.10 0.35 0.54 0.08 0.34 0.54
Strain rate, s−1 0.30 1.14 1.75 0.30 1.20 1.90

D, µm 4.41 3.02 2.19 4.71 3.58 2.67
PL 0.59 0.80 0.64 0.44 0.64 0.54

SL, µm−1 0.06 0.18 0.23 0.03 0.15 0.19
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(a) ε = 0.10 and

.
ε = 0.30 s−1; (b) ε = 0.35 and
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.
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.
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As it was shown in Section 3.1, the average grain diameter, and the fraction and
density of low-angle boundaries vary nonmonotonically. Therefore, in order to take into
account correctly the nonmonotonicity of the relations of the microstructure parameters
to the thermomechanical parameters of deformation, which have a form similar to those
shown in Figures 9–11, it is necessary to use a large number of neurons (usually more
than 20). It should be borne in mind that the number of weight coefficients that need
to be determined by training significantly exceeds the number of neurons in the hidden
layer. If we choose a neural network structure with one hidden layer and three input
neurons (Figure 4), the number of the weight coefficients of the neural network is four
times the number of neurons in the hidden layer. In this study, 36 sets of experimental data
relating the average grain diameter to temperature, strain, and strain rate were obtained.
Similar sets were obtained for the fraction and density of low-angle boundaries. Thus,
the maximum number of possible neurons in the hidden layer with such a single-layer
neural network is nine. A neural network with this number of neurons makes it possible to
describe the evolution of the average grain diameter depending on the thermomechanical
parameters of deformation with an average relative deviation of 111%. The average relative
deviation for each investigated microstructure parameter is calculated using the formula

δ =
1
N

N

∑
i=1

∣∣ϕi − zi

∣∣
zi

· 100% (2)

whereϕi and zi are the calculated and experimental values of the compared values obtained
under the same conditions (in this paper, these values are the average grain diameter D,
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and the fraction PL and density SL of low-angle boundaries); and N is the total number of
compared values.

To increase the number of hidden neurons in the neural network, it is necessary to
increase the size of the sample by which the neural network is trained. Augmentation is one
of the possible ways of increasing the sample size by which the neural network is trained.
The essence of this method is experimental data noising. Certainly, this method sometimes
allows the problem of neural network uncertainty to be solved. However, as computational
experiments have shown, it is impossible to achieve a significant reduction in the average
relative deviation for the dependences obtained in this study. As a result, a method of
processing experimental data was proposed, which consists of approximating experimental
data using a surface, followed by adding data to the training sample. The values of the
microstructure parameters from an arbitrary point of the constructed approximating surface
are added to the training sample. Let us now consider the algorithm for creating a training
sample for the average grain diameter obtained at 500 ◦C (Figure 13). In this figure, the
experimental points are shown in red.

1. First, planes are built on the three nearest points. Then, we select a part of the plane
bound by straight intersections with neighboring planes and with a triangle form
(Figure 13a).

2. We remove the planes located inside the body. Here, the body means a part of the
space bound by the constructed triangles.

3. If the line connecting the experimental point with its projection on the strain–strain-
rate plane intersects the triangles, they are removed from the constructed surface of
the body (the removed planes are shown in yellow in Figure 13a). This results in a
surface approximated by planes in a certain strain and strain rate range (Figure 13b).
In this case, a one-to-one correspondence of the strain and strain rate values to the
microstructure parameter is achieved.

4. We take an arbitrary point of the constructed approximating surface and add its
coordinates to the training sample.
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According to this technique, 1814 values for three test temperatures were included in
the training sample. Similar procedures for constructing a training sample were used for
experimental data describing the evolution of the fraction and density of low-angle boundaries.
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To describe the evolution of the parameters of the composite matrix microstructure
depending on the thermomechanical parameters of deformation and single-, two-, and
three-layer networks, as well as various activation functions, were considered. The criterion
for choosing the composition of the hidden layer and the activation function was the mini-
mum value of the average relative deviation of the experimental data from the calculated
ones. Based on this, a single-layer network with 100 neurons in the hidden layer was
selected for the dependence of the average grain diameter D and the fraction of low-angle
boundaries PL on the thermomechanical parameters; a two-layer neural network with
75 neurons in the first hidden layer and 11 neurons in the second hidden layer shows the
best results for the dependence of the density of the low-angle boundaries SL on the thermo-
mechanical parameters (Figure 4). A logistic activation function was chosen for all the three
neural networks as neural networks using it show the best results in approximating the
microstructure parameters depending on the thermomechanical parameters of deformation.
The average relative deviation of the experimental data from the calculated ones for the
selected neural networks during their training was 5.4, 4.8, and 4.6% for the average grain
diameter D, and the fraction PL and density SL of low-angle boundaries, respectively.

In order to test the ability of a neural network to correctly predict these microstructure
parameters depending on the thermomechanical conditions, neural networks were verified
under deformation conditions different from the conditions of training. These microstruc-
ture parameters and the corresponding thermomechanical parameters are summarized in
Table 4. The average relative deviation of the experimental data from the predicted ones
was 4.2, 5.8, and 5.6% for the average grain diameter D, and the fraction PL and density
SL of low-angle boundaries, respectively. The obtained error values are acceptable for
predicting the evolution of the microstructure parameters, and this enables the constructed
neural networks to be used to study the mechanisms of softening in the AlMg6/10% SiC
metal matrix composite. The constructed neural networks were used to obtain maps of the
microstructure parameters, which describe the behavior of the average grain diameter D,
and the fraction PL and density SL of low-angle boundaries as dependent on temperature,
strain, and strain rate. These maps are shown in Figures 14–16.
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Figure 14. The effect of strain and strain rate on the average grain diameter D depending on
temperature, ◦C: (a) 300, (b) 350, (c) 400, (d) 450, and (e) 500. The dependences have been obtained
from neural network predictions.
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Figure 15. The effect of strain and strain rate on the fraction of low-angle boundaries PL depending
on temperature, ◦C: (a) 300, (b) 350, (c) 400, (d) 450, and (e) 500. The dependences have been obtained
from neural network predictions.
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Figure 16. The effect of strain and strain rate on the density of low-angle boundaries SL depending
on temperature, ◦C: (a) 300, (b) 350, (c) 400, (d) 450, and (e) 500. The dependences have been obtained
from neural network predictions.

3.3. Analysis of Microstructure Formation Based on Neural Network Data

Figure 17 shows the dependences D− ε, PL− ε, and SL− ε at a strain rate of 0.5, 2, and
4 s−1 for temperatures between 300 and 500 ◦C. These dependences are based on the maps
shown in Figures 14–16. The analysis of these dependences and maps of the microstructure
parameters (Figures 14–16) yields the following generalizing conclusions.

1. The strain dependences of the fraction of low-angle boundaries (PL − ε) for the entire
studied temperature and strain rate range of deformation have a peak (shown by
asterisks in Figure 17).

2. For the temperature range between 300 and 350 ◦C, the strain corresponding to the
peak on the dependences decreases with an increase in strain rate. Conversely, for
the temperature range between 450 and 500 ◦C, the strain corresponding to the peak
increases with strain rate.

3. For the temperature range between 300 and 500 ◦C and strain rates above 3 s−1,
the strain corresponding to the peak value of the dependence PL − ε increases with
temperature (Figures 15 and 17).

4. At low strain rates (
.
ε < 1s−1), for the temperature range between 300 and 450 ◦C,

the dependence D− ε consists of two characteristic portions. In the first portion of
the curve D − ε, the average grain diameter decreases, and it remains unchanged
with increasing strain in the second portion (steady-state portion). Moreover, as the
deformation temperature rises, the strain corresponding to the boundary between
these two portions (ε′) shifts towards higher strains.

5. For the temperature range between 350 and 500 ◦C, at strain rates exceeding 1 s−1,
the value of the average grain diameter decreases monotonically.

6. An increase in the deformation temperature leads to the formation of a coarser-
grained microstructure.

7. The density of low-angle boundaries SL at the initial stage of deformation increases
with strain for the entire range of temperatures and strain rates.

8. At a temperature of 300 ◦C, after reaching a certain strain value (indicated by squares
in Figure 17), the density of low-angle boundaries decreases with further deformation,
as is the case with 350 ◦C, but at strain rates above 3 s−1. For all the other deformation
temperatures, the density of low-angle boundaries increases with strain or remains
almost unchanged.

9. At a temperature of 300 ◦C, the strain at which the density of low-angle bound-
aries SL decreases with increasing strain shifts towards lower strains with increasing
strain rate.
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The temperature, strain, and strain rate dependences of the fraction of low-angle
boundaries PL for continuous dynamic recrystallization characterizes the influence of these
thermomechanical parameters on the formation of new low-angle boundaries and their
transformation into high-angle ones. At strains below the strain corresponding to the peak
of the dependence PL − ε, the rate of the formation of new low-angle boundaries prevails
over the rate of the transformation of low-angle boundaries into high-angle ones. When
the peak is passed, in the region of higher strains, the rate of the transformation of low-
angle boundaries into high-angle ones prevails over the rate of the formation of low-angle
boundaries. As can be seen from Figure 17, the dependence PL − ε of the composite matrix
for the temperature and strain rate range under study is described by a convex upwards
function. At the same time, under certain strain rate conditions, at temperatures of 300
and 350 ◦C, the strain dependence of the density of low-angle boundaries (SL − ε) also
has a peak, after which the fraction of low-angle boundaries decreases (Figure 17a–f). This
indicates slower polygonization. Judging by the obtained microstructure images for these
temperatures, the grains are close in size to the previously formed subgrains, and this
indicates the transformation of subgrains into grains. At the same time, at a deformation
temperature of 300 ◦C, the diameter of many subgrains at strains above 0.6 is close to the
grain thickness (Figure 5). Together with the data on the evolution of the density and
fraction of low-angle boundaries, this testifies that geometric recrystallization occurs in
the composite matrix [43,67,68]. The composite matrix has a similar strain dependence of
the fraction and density of low-angle boundaries at a temperature of 350 ◦C and strain
rates above 3 s−1. This gives grounds to assert that geometric recrystallization occurs
in the composite matrix simultaneously with dynamic continuous recrystallization at a
temperature of 350 ◦C, strains above 0.6 (Figures 15–17), and strain rates above 3 s−1.
Apparently, geometric recrystallization is not implemented at temperatures between 400
and 450 ◦C, strain rates between 0.1 and 4 s−1, and strains below 1.

4. Conclusions

The rheological behavior and softening mechanisms in an AMg6/10% SiC metal
matrix composite at temperatures from 300 to 500 ◦C and strain rates ranging between
0.1 and 4 s−1 have been studied. It has been found from mechanical tests that, for the
studied range of thermomechanical action, the flow stress curve has a peak value shifted
towards higher strains with decreasing temperature and increasing strain rate in the entire
range of temperatures and strain rates. This rheological behavior of the composite is due to
the interaction of hardening and softening processes. In order to study the mechanisms
of softening occurring during deformation, neural networks were built, which required
the development of a new technique for processing experimental data, which allows one
to form a training sample necessary for a correct description of the initial experimental
data by the neural networks. The constructed neural networks have made it possible
to describe the evolution of the average grain diameter, and the fraction and density
of low-angle boundaries depending on strain, strain rate, and deformation temperature
with acceptable accuracy. The use of neural networks together with EBSD images of
the formed microstructure during deformation has allowed us to identify the occurrence
of the following relaxation mechanisms depending on the thermomechanical conditions
of deformation:

1. At a temperature of 300 ◦C and strain rates ranging between 0.1 and 4 s−1, the
composite matrix softens by dynamic recovery and continuous recrystallization, and
when a certain value of strain is reached, geometric recrystallization occurs in some
grains. At the same time, the strain at which geometric recrystallization starts to
intensify in the grains shifts towards lower strains with an increasing strain rate.

2. At a temperature of 350 ◦C, geometric recrystallization, together with continuous recrys-
tallization, occurs in the composite matrix at strain rates above 3 s−1.

3. At temperatures from 400 to 500 ◦C and strain rates ranging between 0.1 and 4 s−1, the
main softening processes are dynamic recovery and continuous dynamic recrystallization.
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