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Abstract: Slipping detection and avoidance are key issues in dexterous robotic manipulation. The
capability of robots to grasp and manipulate objects of common use can be greatly enhanced by
endowing these robots with force/tactile sensors on their fingertips. Object slipping can be caused
by both tangential and torsional loads when the grip force is too low. Contact force and moment
measurements are required to counteract such loads and avoid slippage by controlling the grip force.
In this paper, we use the SUNTouch force/tactile sensor, which provides the robotic control system
with reliable measurements of both normal and tangential contact force components together with
the torsional moment. By exploiting the limit surface concept and the LuGre friction model, we
build a model of the object/fingertip planar sliding. This model is the basis of a nonlinear observer
that estimates the sliding velocity and the friction state variable from the measured contact force
and torsional moment. The slipping control system uses the estimated friction state to detect the
slipping event and the estimated sliding velocity to control the grasp force. The control modality
is twofold: the first one is aimed at avoiding object slip, while the second one allows the object to
perform a controlled pivoting about the grasping axis. Experiments show that the robot is able to
safely manipulate objects that require grasping forces in a large range, from 0.2 N to 10 N. This level of
manipulation autonomy is attained by a suitably identified dynamic model that overcomes the limited
generalization capability of existing learning-based approaches in the general roto-translational
slip control.

Keywords: force and tactile sensing; grasping and manipulation; robotics

1. Introduction

Humans can grasp and manipulate a variety of objects with dexterity and safety
without knowing a priori their physical properties by perceiving the motion of the object
upon contact with the fingertips by means of the sense of touch [1]. On the basis of tactile
perception, they control the magnitude of the friction force and torque by acting on the
grasp force, which the fingertips exert on the object, thereby avoiding grasp failure. Thus,
tactile sensing is of paramount importance for humans to interact with the environment.
In the last two decades, many designs of tactile sensors have been proposed in the scientific
literature by robotics researchers with the aim of mimicking the human sense of touch.
Comprehensive reviews of tactile sensing systems for dexterous robotic hands can be
found in [2,3]. The proposed solutions are based on two alternative concepts: sensors
based on an array of independent contacts or tactile receptors that easily allow for the
identification of contact location and sensors based on a continuous deformable medium
between the contact and the receptors, which allows a few receptors to interpolate the
information among them. The latter are more frequently used to measure contact force
intensity or magnitude. Both sensor principles may be supported by different transduction
technologies, e.g., resistive, capacitive and magnetic, which can be selected depending on
their costs, weights, integration levels, and dimensions. The perception of the torsional
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moment is a key requirement to select the appropriate tactile sensor to securely grasp an
object when it is subject not only to force but also to moment loads. Only a few sensors are
capable of measuring the full 6-D wrench; moreover, sensors that are also able to measure
torque, e.g., the 6-axis version by Optoforce, use an array of 3-D sensors coupled with a
rigid surface that limits the frictional torque that the fingertip can apply to the grasped
object. Recently, the GelSight visuotactile sensor, which uses a vision system to translate
the deformation of the gel layer caused by the contact with the environment into tactile
information [4,5] has been proposed to estimate shear force and contact geometry. A review
of visuotactile sensors with an emphasis on GelSight can be found in [6]. In this paper, we
use the SUNTouch force/tactile sensor [7,8] developed in our robotics lab. The SUNTouch
force/tactile sensor has been demonstrated to be able to provide the grasp controller with
accurate measurements of the 6-D contact wrench [9].

Mimicking human ability, slip detection, slipping avoidance and controlled sliding
are key facets of making robots capable of grasping and manipulating objects. This means
that the robot should be able to detect the incipient grasp failure and control the grasp
force to avoid it without damaging the grasped object, or, to change the object/fingertip
relative position, to execute controlled sliding of the fingertips without losing contact with
the object. Several methods of slip detection have been proposed in the last decade [10].
The approaches can be classified as model-based and model-free approaches. In [11],
using the BioTac sensor and resorting to the friction cone concept, the authors compared
various slip detection methods. However, slipping detection algorithms based on the
friction cone concept fail when a torsional load acts on the grasped object. In [9], the
authors presented a model-based approach to slipping detection and avoidance in the
presence of both shear and torsional load by resorting to the concept of the limit surface [12].
Model-free approaches, the prevailing trend in recent years, refer to learning-based slip
detection methods, mostly based on the use of visuotactile sensors such as GelSight and
TacTip. In [13,14], the authors proposed a slip classification framework by resorting to
a convolutional long short-term memory network. In [15], the authors, by endowing a
three-fingered hand with the TacTip integrated optical tactile sensor, present a method to
perform slip detection based on a support-vector machine (SVM).

The decision to adopt a model-based approach here is related to the difficulty of current
data-driven methods for robotic slipping detection and avoidance to generalize to manipu-
lated objects made of different types of materials and surface conditions. A re-training of
the learning-based strategy is still required for such a class of solutions, especially when
surface conditions change due to environmental variability, e.g., moisture or temperature.
On the contrary, the superior generalization capabilities of the model-based approach ap-
pear to be still attractive to attain a high level of autonomy of the robotic system. Moreover,
in all the model-free approaches, after detecting a slip, the reaction designed to stabilize
the grasp is of a heuristic type, which means increasing the grasp force until the object
stops sliding; the selection of an increasing force of the grasp force should be a trade-off
between the desired speed to stop slipping and the caution needed to not damage the
object. Differently from the method used in [16] to compute the grasp force to avoid slip,
here, the control algorithm, owing to the nonlinear observer, distinguishes the static friction
contribution from the viscous one, thus leading to the true minimum amount of grasp
force necessary to compensate for the external load and avoid slippage. A recent work
proposing this sort of approach is [17], where the slip event was predicted by a classifier
based on random forests and the proposed grasp force controller does not compensate for
rotational slips.

In this paper, we do not follow the learning-based prevailing trend, but following the
approach already presented in [9,16], we present a revisited model-based approach to slip
detection/avoidance and controlled sliding. General in-hand manipulation tasks involve
both translational and rotational motion; thus, it is necessary to model the relationship
between the friction force and torque and the sliding motion. The approach adopted
to describe such a relationship, assuming that the contact is planar, is the limit surface
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concept (LS) [12,18], which relates the sliding motion, described as a rotational motion
about the instantaneous center of rotation (CoR), to the maximum friction force and torque
as functions of the normal force. The LS concept is a generalization of the Coulomb friction
cone concept when friction torsional torque is involved in the soft contact. In order to
perceive the object’s motion upon contact with the fingertips using only a force/tactile
sensor, it is necessary to estimate the relative velocity between the object and the fingertips.
In [19], we introduced a nonlinear observer based on the celebrated LuGre dynamic friction
model [20,21] extended to the case of rotational sliding about the CoR. Such a model
describes the friction as a pure friction torque with respect to the CoR. The maximum
friction torque is provided by the limit surface method. The dynamic model requires the
knowledge of the CoR position estimated by using the measurement of the dry friction
provided by the force/tactile sensor at the fingertips. The nonlinear observer in [19] has
been used in [22] to estimate the sliding velocity with the aim of avoiding object slipping
and in [16], where a generalization of the LS method has been proposed by considering not
only the effects of the dry friction but also the effects of the viscous one. An additional
advantage of the adoption of nonlinear dynamics to model the transition from a no-slip to a
slip condition is its numerical stability compared to traditional threshold-based approaches
also adopted in tribology, such as in [23].

With the objective of controlling a robot that should be able to grasp and manipulate
objects of unknown weight and made of different materials, in this paper, we propose a
revisited version of the nonlinear observer to estimate the relative velocity, which also
considers the viscous damping depending on the motion of the micro-asperities in contact
during the sliding. Introducing this viscous term avoids physically inconsistent oscillations
of the internal friction state variable. Although such oscillations do not macroscopically
affect the sliding velocity dynamics, as the dynamics of the friction state variable are
very fast, they can affect the controlled grasp force if this variable is involved in the
control algorithm. We use the friction state variable estimated by the nonlinear observer
to detect the slip by means of an indicator, which involves such a state variable and the
maximum friction torque provided by the LS with the estimated COR. Then, we design
a control scheme, which regulates the estimated sliding velocity to zero if the slipping
avoidance modality is selected; alternatively, it allows controlled sliding, which can be
rotational, e.g., object pivoting, or linear depending on the estimated COR position. Several
experiments will be illustrated in the experiment section to show the effectiveness of the
proposed planar sliding model and the proposed grasp control strategy.

2. Contact Modeling

In this paper, the manipulated object is modeled as a planar slider. With reference
to Figure 1, a planar slider is a rigid body that can rotate and translate in a 2-D space.
The robotic finger is modeled as a hemispherical soft pad that makes contact with the slider
with a non-zero contact area. This way, the fingertip exchanges both friction forces and
torques with the slider. The friction can be indirectly controlled by acting on the normal
force that the fingertip exerts on the body, which in turn changes the maximum friction
force and torque that the contact can sustain.

Any 2-D roto-translational motion can be instantaneously described as a pure rotation
about the CoR. Based on our previous friction modeling [19] and inspired by the revisited
LuGre friction model [21], in this paper, we propose a novel planar slider dynamic model
that considers the micro-damping between the micro-asperities in contact [21]. The slider
motion about the CoR is modeled as

ż = ω− σ0

g( fn, c)
z|w| (1)

Jω̇ = −σ1( fn, c)ω− σ0z− σz ż + τe, (2)

where τe is the external torque acting on the slider, ω is the slider’s rotational velocity about
the CoR, z is the friction state variable, which represents the deflection of the micro asperi-
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ties, σ0 and σz are the so-called stiffness and damping of the micro asperities, respectively,
J is the inertia moment of the slider about the CoR; g( fn, c) is the maximum rotational
friction torque about the CoR depending on the normal force fn and the CoR position c,
and finally, σ0z and σ1( fn, c)ω are the dry and viscous friction torques, respectively. The
relevant difference of the model in (1) and (2) with respect to the classical revisited LuGre
friction model is the extension to the roto-translational case. This generalization is achieved
by incorporating the LS method into the model and, specifically, in the computation of the
maximum friction torque g( fn, c), which requires the estimation of the instantaneous CoR.

𝐶𝑜𝑅

𝜔

Soft Pad

𝑓𝑡

𝜏

𝐶𝑜𝑅 axis

Figure 1. Planar slider and the fingertip that exchanges force and torque with it. The CoR axis
is highlighted.

The only available control input is the normal force fn that is nonlinearly related to
the maximum dry friction and the viscous one. The greater the value of fn, the greater the
fingertip deformation (and the contact area), and the greater the available friction. This
relationship can be found by resorting to the limit surface concept (LS) [18]. The LS is a
closed surface defined in the space of the friction force and torque (Figure 2) and represents
the maximum dry friction that a contact can sustain without sliding. With reference to
Figure 1, we define a contact frame located in the center of pressure (CoP) of the contact
area, with the y-axis along the direction of the tangential force ft and the z-axis normal
to the contact surface and aligned to the normal force fn. It is well known that, assuming
an axisymmetric pressure distribution [24], the limit surface is axisymmetric as well, and
we can represent it using any radial cross-section. Moreover, the CoR position is always
orthogonal to the tangential force, and, thus, it lies on the x-axis [18]. Consequently, it is
possible to represent the CoR position with the scalar c. Finally, taking into account the
load-motion inequality [12], the friction torque τ and c have opposite signs.

Given one particular CoR position, it is possible to generate a point on the LS. Two
values are of paramount importance: the point corresponding to a pure translation (c→ ∞)
and a pure rotation (c = 0), which represent the maximum possible values for the transla-
tional and torsional friction, respectively [24], i.e.,

ftmax = µ fn (3)

τmax = µξδ f γ+1
n , (4)

where µ is the Coulomb friction coefficient, ξ is a parameter that weakly depends on the
particular pressure distribution and varies between 3π

16 (Hertzian) and 2
3 (uniform) [18],

and finally, δ and γ are additional parameters that relate the radius ρ of the contact area to
the normal force [24] according to the relationship ρ = δ f γ

n .
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𝜏

𝑓𝑡

𝑓𝑥

𝑓𝑦

𝑓𝑡max

(𝑓𝑡𝐿𝑆, 𝜏𝑛𝐿𝑆)

𝜏𝑛max

Figure 2. Limit surface represented in the 3-D space.

The point on the LS ( ftLS, τLS) can be computed as a function of the CoR position c [16]

ftLS = − sign(ω) f̃ ∗tLS(c̃) ftmax (5)

τLS = − sign(ω)τ̃∗LS(c̃)τmax (6)

where c̃ = c
ρ is the normalized CoR position, and f̃ ∗tLS(c̃) and τ̃∗LS(c̃) are known functions

whose shape weakly depends on the parameter ξ [16] and are shown in Figure 3. Given
their very weak variation with respect to this parameter, in the following, we will consider
the intermediate value ξ = 0.6354 already experimentally identified in [16].

−4   −3    −2   −1  1  2 3  4 

−4   −3    −2   −1  1  2 3 4 

Figure 3. Graph of the functions f̃ ∗tLS(c̃) and τ̃∗LS(c̃) and their weak variation on the pressure distribu-
tion type.

The LS theory was originally conceived as an extension of the Coulomb dry friction for
the rototranslational case. During the slippage, viscous friction should also be taken into
account to describe the motion. Such a component is modeled by the term σ1( fn, c)ω in (2).
In our previous work [16], we extended the limit surface theory to also take into account
the viscous friction, which corresponds to points in the force/torque space outside the LS
(Figure 2). Thus, the viscous friction as a function of the CoR position can be expressed as

ftv = πβAδ2 f 2γ
n ωc (7)

τv = −π

2
βAδ4 f 4γ

n ω. (8)

The dynamic model (1) and (2) describes the motion as a pure rotation about the CoR
axis, and thus, it is important to estimate the CoR position. The LS theory is typically
used to solve the forward problem given the CoR position (i.e., the instantaneous motion)
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by computing the friction force and torque. We are interested in the inverse problem,
i.e., estimating the CoR position c given the measured friction force and torque. Moreover,
when there is no motion (ω = 0), the CoR is meaningless, but the dynamic model also
needs the CoR to be defined in this case. To solve this issue, it is possible to define a virtual
CoR [16], i.e., when the velocity is zero, the virtual CoR is the CoR that would result if we
lowered the normal force down to the point that a sliding motion occurs. In the following,
we will use the acronym CoR to refer to the CoR and the virtual CoR indistinctly.

To estimate the CoR from the measurements, it is useful to represent the LS in a space
normalized with respect to the maximum friction force and torque (3) and (4). Applying
such normalization, the complete expression of the normalized friction force f̃t and torque
τ̃ (i.e., the superposition of the dry (5) and (6) and viscous (7) and (8) components) can be
written as

f̃t = − sign(ω) f̃ ∗tLS(c̃) +
πδ3βA f 3γ−1

n
µ

ωc̃ (9)

τ̃ = − sign(ω)τ̃∗LS(c̃)−
1

2ξ

πδ3βA f 3γ−1
n

µ
ω. (10)

Such expressions relate the friction forces and torques with the CoR position c only
outside and on the LS, but not inside it. To also define the CoR when the forces are inside
the LS, we have to resort to the virtual CoR definition and consider what happens when
the normal force varies. Inside the LS, there is no viscous friction; hence, the friction force
and torque are simply given by the normalization formula

f̃t =
ft

ftmax
(11)

τ̃ =
τ

τmax
, (12)

where the dependence on the normal force is in the definition of the maximum friction
force and torque ftmax (3) and τmax (4). The (virtual) CoR in such a case can be computed
by considering that the sliding happens when fn is such that the point ( f̃t, τ̃) coincides with
the normalized LS point ( f̃tLS, τ̃LS).

Finally, by combining (11) and (12) when the forces are inside the LS and (9) and (10)
when they are outside it, the CoR position c can be estimated with the following algorithm:

c̃ : |σ| =
∣∣ f̃ ∗tLS(c̃)

∣∣γ+1

τ̃∗LS(c̃)
s.t. sign(c̃) = − sign( ft) sign(τ)

,
if ( ft, τ) ∈ VL

and τ 6= 0

c̃ :
f̃t = sign(τ) f̃ ∗tLS(c̃)+

− 2ξ c̃(τ − sign(τ)τ̃∗LS(c̃))
,

if ( ft, τ) 6∈ VL

and τ 6= 0

(13)

where

σ =
ξδ

µγ

| ft|γ+1

τ
, (14)

and VL is the limit volume, i.e., the set of points inside the LS. The conditions in (13) can be
easily checked by resorting to the convexity of the LS, i.e.,

( ft, τ) ∈ VL ⇐⇒ f̃ 2
t + τ̃2 < f̃ ∗tLS(c̃)

2 + τ̃∗LS(c̃)
2. (15)

Given the CoR position, it is possible to write the expression of the torques about the
CoR axes needed by the dynamic system (1) and (2). The friction torque about the CoR axis
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τc can be obtained by transforming the wrench in the contact frame to a pure torque about
the CoR axis as

τc = τ − c ft. (16)

By following the same arguments, the viscous friction torque in the dynamic equation
can be computed with the same transformation, i.e.,

−σ1( fn, c)ω = τcv = τv − c ftv

= −πρ4βA

(
c̃2 +

1
2

)
ω,

(17)

from which the expression of σ1 is straightforward. The maximum rotational friction
g( fn, c) can be computed in the same way. It is the LS point ( ftLS, τLS) transformed as a
pure torque about the CoR axis. It is important to underline that g( fn, c) is always positive;
it is the magnitude of the maximum friction, and ftLS and τLS independently contribute to
g( fn, c), i.e.,

g( fn, c) = |τLS|+
∣∣c ftLS

∣∣
= τ̃∗LS(c̃)τmax( fn) +

∣∣c f̃ ∗tLS(c̃)
∣∣ ftmax( fn).

(18)

where τmax and ftmax are the same variables from (3) and (4) explicitly written as functions
of the normal load fn.

3. Velocity Observer

The control law proposed in Section 5 needs the state of the system (1) and (2), which
is not directly measurable. We need to estimate the state and, in particular, the sliding
velocity of the planar slider by resorting to only force and torque measurement at the
fingertips. To this aim, in addition to the state Equations (1) and (2), we also consider the
following output equation:

y = h(z, ω) = σ0z + σ1( fn, c)ω, (19)

which is the superposition of the dry and viscous friction torque about the CoR axis.
The measurable output y can be obtained by the measured force and torque similarly
to (16) as

y = τ − c ft (20)

where τ and ft are the components of the measured wrench at the fingertip.
It can be proved that the system (1), (2), and (19) is locally weakly observable [25], and,

thus, it is possible to use the following nonlinear observer to estimate the velocity ω:

˙̂z = ω̂− σ0

g
ẑ|ω̂| (21)

˙̂ω = l
(
−σ0ẑ− σ1ω̂− σz ˙̂z + y

)
, l > 0 (22)

ŷ = σ0ẑ + σ1ω̂z. (23)

The observer structure is the same as the original dynamic system (1)–(2) with the
measured friction y playing the same role of the external torque τe. The inertia moment is
substituted by the observer gain l; the higher the gain, the faster the observer convergence.
The local observability is proved by the following proposition.

Proposition 1 (Observability). LetM =
{
(z, ω) ∈ R2 : ω > 0

}
. Then, the system (1), (2),

and (19) is locally weakly observable [25] at any initial state (z(0), ω(0)) ∈ M. The same result
holds when considering the domainM′ =

{
(z, ω) ∈ R2 : ω < 0

}
.
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Proof. The nonlinear system in (1), (2), and (19) can be written in the more compact form

ẋ = f (x, τe) (24)

y = h(x) = Hx, (25)

where x = [z, ω]> is the state vector, f (x, τ) is a vector function whose components are the
second members of the state-space Equations (1) and (2), and the output matrix is

H =
[
σ0 σ1

]
(26)

According to [26], the local observability of the system (24) and (25) is ensured at any
initial state (z(0), ω(0)) ∈ M if the following matrix has rank 2 ∀(z, ω) ∈ M:

Θ(x) =
[

dh
L1

f dh

]
, (27)

where dh represents the Jacobian of the vector function h, and L1
f represents the Lie

derivative operator along f of order 1.
For the system (24) and (25), Θ(x) can be written as[

σ0 σ1

− σ0σ1
J −

σ0
g (σ0 − σ1σz

J )|ω| σ0 − σ1(σ1+σz)
J − σ0

g (σ0 − σ1σz
J )z sign(ω)

]
(28)

with sign(·) being a version of the signum function regularized around zero, which means
considering an absolute value function regularized around zero as well to make it differen-
tiable. The rank of the matrix above would be lower than 2 if and only if

1− σ1σz

σ0 J
− σ0

g

(
1− σ1σz

σ0 J

)
z sign(ω) +

σ1

g

(
1− σ1σz

σ0 J

)
|ω| = 0. (29)

This equation has no solutions, nor does it inM and inM′. In fact, for (z, ω) ∈ M, it
is equivalent to

z =
σ1

σ0
ω +

g
σ0

(30)

which has no solutions because the LuGre friction model ensures that |z| ≤ g/σ0 [21].
The same result holds for ω < 0 in the domainM′, yielding to the non-solvable equation

z =
σ1

σ0
ω− g

σ0
. (31)

4. Data Collection and Parameter Estimation

The sliding velocity observer relies on the knowledge of the system physical parame-
ters, which needs to be estimated. In particular, friction coefficients such as µ and βA are
of paramount importance to detect the slip and estimate the slip velocity. For this reason,
in this work, we conducted an extensive data collection campaign to validate the ability of
the observer to estimate the sliding velocity.

The experimental setup used to this aim is depicted in Figure 4. The SUNTouch finger
was mounted on a reference 6-axis force/torque sensor, the ATI Nano43, by ATI Industrial
Automation, USA, which was able to accurately measure the friction forces exchanged
between the fingertip and the slider. The planar slider was a flat object rigidly mounted
on a Meca500 robot by Mecademic Robotics, CA. The robot was commanded to push the
slider against the fingertip and apply various combinations of forces and torques, resulting
in sliding motions. The ground-truth velocity ω was measured as the robot end-effector
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velocity obtained via joint encoders and forward differential kinematics. The data were
collected with a ROS network and MATLAB.

Meca500

SunTouch

F/T Sensor

Planar Slider

Figure 4. Setup for data acquisition.

A cardboard layer was attached to the slider. If the slider was rigid, the deformation
of the fingertip depended only on the soft fingertip material and not on the slider [24];
thus, the only parameters that depended on the slider were the friction parameters µ
and βA. The remaining parameters can be estimated once and also used for other rigid
planar sliders.

The parameter estimation problem can be formalized as the following optimization algorithm:

min
P

1
N

N

∑
k=1

(ω̂k −ωk)
2 (32)

s.t.
[

ẑk
ω̂k

]
= fd(ω̂k−1, yk−1;P) (33)

where fd is a discrete-time version of the observer (21) and (22), k is the sample-time instant,
and N is the total number of samples. The vector P contains the model parameters to be
identified, i.e., µ, βA, σ1, σz, δ, and γ. The time discretization of the observer equations
is not trivial. The dynamics of the internal friction state variable z is very fast, yielding a
very stiff equation. This means that simple numerical methods for solving the equation are
numerically unstable unless the step size is extremely small. We found that, to discretize
the observer, it was not possible to adopt the classical Euler discretization, thus, we adopted
the fourth-order Runge–Kutta method (RK4).

The results of the parameter estimation problem (32) are reported in Figure 5, and the
corresponding parameters are in Table 1. The figure shows 1342 sliding maneuvers applied
with the setup in Figure 4; the robot pushes the slider against the fingertip with increasing
forces and torques, resulting in increasing sliding velocity. Finally, the ground-truth sliding
velocity ω, together with the tangential force ft and torque τ measured by the F/T sensor,
were used as input to the optimization problem (32) solved with the sequential quadratic
programming (SQP) algorithm. To facilitate the convergence, it was useful to bound the
parameter space. Some parameters could be theoretically bounded (e.g., 0 < γ < 1/3 [24]),
and others could be roughly estimated with a single sliding maneuver. Thus, it was also
possible to provide a reasonable initial guess for the optimization algorithm. The resulting
parameters (Table 1) yielded the estimated velocity ω̂ in Figure 5 (red line). The results



Appl. Sci. 2023, 13, 921 10 of 20

clearly show that the velocity observer is able to correctly estimate the ground-truth
sliding velocity and catches all the sliding events with a root-mean-square error (RMSE) of
0.0222 rad/s.

Zoom 1

Zoom 2

Figure 5. Results of the estimation of the slippage velocity after the estimation of parameters with a
cardboard slider. Ground-truth robot velocity ω (blu), estimated velocity ω̂ (red), estimation error
(magenta). The inner plots are zooms that show details of the single repetitions; the zoomed areas are
highlighted in the black boxes.

Table 1. Model parameters estimated on a rigid cardboard slider.

µ βA σ0 σz δ γ

0.47 4.9 ·109 Ns/m 16.66 Nm/rad 2 Nms/rad 0.0018 m/Nγ 0.254

5. Sliding Controller

This section presents a novel slipping control strategy based on the observer presented
in the previous section. The basic idea is similar to the one presented in our previous
work [16], but with a substantial difference: the control law involves the full state feedback
estimated by the observer.

The control scheme works in two possible control modes, “slipping avoidance” and
“pivoting”. With reference to Figure 6a, in slipping avoidance mode, the objective of the
sliding controller is to regulate the estimated slipping velocity ω̂ to zero by modulating
the grasping force fn. The pivoting mode allows an in-hand manipulation; it consists of
letting a manipulated object rotate in hand subject to the gravity so as to change the relative
orientation between the gripper and the object. In this modality, the controller allows
rotational sliding between the fingertip and the slider. The control strategies for the two
control modalities are very similar. We will describe the slipping avoidance mode first, in
which all the control components are active.
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Figure 6. Control scheme: (a) closed loop system with the interconnections; (b) details of the slippage
controller. The control mode can be either slipping avoidance or pivoting.

The control law is composed of two components (Figure 6b):

fn = fns + fnd. (34)

where fns is the static contribution and represents the normal force that is able to avoid
the slippage by bringing the maximum torsional friction around the CoR g( fn, c) above
the actual dry friction σ0z in (1) and (2). It is computed by exclusively using the estimated
dry friction and not the viscous friction, yielding lower grasping forces with respect to the
strategy in [16]. The static contribution is able to avoid slippage only in static or quasi-static
conditions. In fact, it is well-known that when the load is time-varying, the maximum
friction that the contact between the slider and the fingertip can sustain decreases as the
rate of variation of the load increases [27]. Thus, the dynamic contribution fnd is introduced,
and it is synthesized by means of the estimated velocity ω̂ as

fnd = |Cdω̂|, (35)

where Cd is a suitable linear differential operator, and the absolute value operator ensures
that fnd > 0 both for positive and negative slipping velocities. Cd can be represented with
a transfer function

Cd = kcd
s + zcd
s + pcd

, (36)

where the real zero and pole (−zcd and −pcd, respectively) were selected to reduce the high-
frequency gain (zcd > pcd > 0) so as to reduce the control sensitivity to the high-frequency
noise. The gain kcd > 0 was selected to obtain a quick reaction to any relative velocity ω̂.
The parameters of the controller were tuned to the values kcd = 10, pcd = 7, zcd = 250.

The static contribution was designed by resorting to the feedback of the estimated
friction state variable ẑ. The main idea was the definition of the following slippage indicator

S =
σ0|z|

g( fn, c)
. (37)

It is well-known that the LuGre state z is bounded by the maximum friction [21], and it
always holds that σ0|z| ≤ g( fn, c). In particular, when σ0|z| = g( fn, c), the dry friction has
reached its maximum, and slippage can take place. This implies that the slippage indicator
S ≤ 1, and, when S = 1, the slider can slip with respect to the finger. Moreover, note that
the greater the grasp force fn, the greater the maximum friction g( fn, c); thus, S decreases
as fn increases. Given these considerations, the objective of the static contribution fns is
to regulate the slippage indicator S to the value S̄a < 1 designed, taking into account the
desired degree of slipping avoidance robustness. The lower the value of S̄a, the greater the
resulting grasp force. In the experiment section, we will select S̄a = 0.8. The regulation of S̄
is carried out by a classical PI controller with the proportional gain kp = 4 and the integral
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gain ki = 10 tuned so as to obtain the fastest possible response time with the hardware
used in the experiments (Section 6).

In pivoting mode, which is the controlled sliding maneuver considered here, the con-
trol scheme is almost the same as the slipping avoidance mode, as depicted in Figure 6b.
This time, the objective is to allow slippage; S has to be regulated to 1, and the grasping
force has to be continuously decreased as long as the sliding motion is complete. To this
aim, it is sufficient to activate the switches in Figure 6b. The dynamic contribution is deacti-
vated ( fnd = 0) because the sliding velocity does not have to be controlled to zero, and the
reference slippage indicator is set to the value S̄ = S̄p > 1. Additionally, the static control
law is switched to a first-order filter with a time constant τp. This way, the grasp force
will decrease down to the point for which S = 1 reaches its maximum; then, the constant
error S̄p − 1 will cause an exponential decrease in the static contribution fns governed by
the time constant τp. As soon as the pivoting motion has been completed, the slipping
avoidance mode is reactivated.

At the beginning of the pivoting, the object is grasped far from its center of grav-
ity (CoG), and the friction sustains the gravitational torque. Decreasing the grasp force
would cause the object to rotate about the grasp axis in a pendulum-like motion until its
equilibrium point, where the gravitational torque is zero and the object is in a “vertical”
configuration (with the CoG just below the grasp axis). In the beginning, the object is more
prone to rotationally slide subject to the torque; at the end, the object is more prone to trans-
late. These two phases can be discriminated by the estimated CoR position (13); low values
of c̃ mean that the object will rotate, and high values mean that the object will translate. This
can be graphically visualized in Figure 7. The figure shows the normalized LS parametrized
with respect to c̃. Low values of c̃ correspond to high-friction torque values and vice versa.
Thus, c̃ can be used in the pivoting mode to detect the end of the pivoting maneuver and
stop the decreasing of the grasping force. In the experiments, as soon as the normalized
CoR position is such that c̃ > 1, the pivoting maneuver is considered completed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure 7. Normalized LS with the corresponding values of c̃.

6. Experiments

This section presents a series of experiments performed on a real system to evaluate
the control strategy presented in Section 5. The experiments were carried out in a lab-scale
in-store logistic scenario [28,29]. The experimental setup for the manipulation experiments
is depicted in Figure 8.
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SunTouch

WSG50

iiwa

Slider

Figure 8. Manipulated objects. From left to right: big resin block, small resin block, plastic bottle,
aluminum can.

The grasping device was a commercial 1DOF WSG50 parallel gripper by Weiss
Robotics, DE, equipped with the SUNTouch force/tactile sensor [8] designed and produced
in our laboratory. The sensor has an accuracy of 0.1 N and 0.002 Nm in the measurement of
forces and torsional moments, respectively. This end effector was mounted on a LBR iiwa
robot by Kuka, DE, and the whole system was controlled via a ROS network. The gripper
was commanded at 50 Hz, the fingertips provided the tactile data at 500 Hz, and the iiwa
robot was controlled via the FRI interface at 1 kHz.

Four objects were selected (Figure 9): two resin blocks (a big and a small one), a plastic
bottle, and an aluminum can. We considered the objects rigid so that all the parameters,
except µ and βA, estimated in Section 4 could also be used with these objects. Obviously,
not all the objects in Figure 9 were perfectly rigid, but we could approximate them as rigid
compared to the sensor soft pad. The two remaining friction coefficients µ and βA could
be roughly estimated online by rubbing the fingertips on the object and comparing the
measured force with the robot velocity with a procedure similar to the one described in [30].
The object-dependent parameters are reported in Table 2.

Table 2. Friction parameters estimated for the manipulated objects.

Big Resin Block Small Resin Block Plastic Bottle Aluminum Can

µ 0.85 0.7 0.85 0.75
βA (Ns/m) 1.24 ·107 1.825 ·107 1.963 ·107 2.121 ·107
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Figure 9. Experimental setup.

The first experiment involved the big resin block. At the beginning, the block rested
vertically on the picking desk, and the robot was commanded to grasp it above its CoG
(Figure 10a) and lift it. As soon as the gripper grasped the object, the slipping avoidance
algorithm was activated. The results are shown in Figure 11. At t = 1 s, the lift began,
the sudden increment of the external load due to the object weight caused the velocity
observer to detect a sliding velocity. Thanks to the dynamic contribution, the controller
responded by increasing the grasp force up to 5 N. Since the object was grasped above
the CoG and almost no gravitational torque was applied to the fingertip, after the lift
(Figure 10b), the estimated normalized CoR position c̃ was high (middle plot red line).
The CoR should be theoretically infinity in this condition; however, to avoid numerical
issues, we saturated the normalized CoR to an upper limit of 1.5. When the lift was
completed and all the dynamic effects vanished, the static contribution stabilizes our
slippage indicator S (middle plot, blue line) to the reference value S̄a = 0.8. To test and
stress our algorithm, at t = 14 s, a human operator applied various disturbance forces by
hands on the resin block (Figure 10c,d). The observer detected such events as slippage
velocity peaks that were counteracted by the dynamic contribution. At the same time,
as soon as the disturbances were applied, the slippage indicator increased, and the static
controller also helped to regulate the force to higher values.

(a) (b) (c) (d)

Figure 10. Snapshots of the first experiment: (a) grasp configuration; (b) after lifting; (c,d) disturbance
applied by a human operator.
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Figure 11. First experiment: lifting the big resin block. Top plot: grasping force. Middle plot:
slippage indicator (blue) and estimated c̃ (red). Bottom plot: estimated slippage velocity around the
CoR ω̂.

The second experiment was carried out with the lighter small resin block. This time,
the block rested horizontally on the picking desk (Figure 12a), and the robot did not grasp
it in its CoG so that a gravitational torque was applied on the fingertips. The results are
shown in Figure 13. Once again, as soon as the lift began, the observer estimated a slippage
velocity (bottom plot), and the controller responded by increasing the grasping force (top
plot, blue line). Even if the small black was lighter than the big one, after the lift (Figure 12b),
the grasping force reached similar values (5 N). This was because this time, the torsional
moment (top plot, magenta line) also had to be sustained. The effects of the torsional
load were also evident in the estimated CoR position c̃. In the previous experiment, it
was saturated to 1.5, but now, the CoR estimation algorithm computed a much lower
value, i.e., c̃ = 0.4. This means that, if the grasping force decreased, the slider would be
more prone to a rotation than a translation. Additionally, in this experiment, the control
algorithm was stressed at t = 17 s by applying disturbances (Figure 12b). Even in this
different configuration, the results were analogous to the previous experiment. As soon
as the disturbances were applied, the observer detected slippage velocity peaks, and the
controller responded by increasing the grasping force to avoid the slippage.

(a) (b) (c)

Figure 12. Snapshots of the second experiment: (a) grasp configuration; (b) after lifting; (c) distur-
bance applied by a human operator.
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Figure 13. Second experiment: lifting the small resin block far from the CoG. Top plot: grasping force
(blue), tangential load (red), torsional torque (magenta). Middle plot: slippage indicator (blue) and
estimated c̃ (red). Bottom plot: estimated slippage velocity around the CoR ω̂.

The third experiment shows how the manipulation ability developed in this work
can be used in a collaborative scenario. The robot had to grasp a plastic bottle that was
knocked over the picking desk (Figure 14a) and had to hand it over to a human partner
in a vertical orientation. The results are shown in Figure 15. The first phase was similar
to the previous experiment. The robot grasped the bottle far from its CoG so that the
slippage controller had to also counteract the gravitational torque. This time, after the
lift (t = 6 s, Figure 14b), the measured torque (top plot, magenta line) increased up to
15 Nmm, and the slippage controller automatically modulated the grasping force to 16 N
(top plot, blue line). In this configuration, the estimated CoR position was very low (c̃ = 0.3,
bottom plot). Thanks to this information, we can tell in advance that, if the grasping
force is decreased, the manipulated object would start to rotationally slip about the grasp
axis, and the translational slippage would be negligible. This means that it is possible
to activate the pivoting control modality to reorient the object in hand to the vertical
configuration depicted in Figure 14c. At t = 11.5 s the pivoting began, the grasp force
exponentially decreased, and the bottle started to rotate. Since the object was moving,
the viscous friction caused an initial increment of the torsional torque, but, as the object
rotated toward the vertical configuration, the gravitational torque decreased. While the
bottle rotated, the CoR increased, and as soon as c̃ > 1 (at t = 16 s), the pivoting maneuver
was considered completed and the grasp force stopped its descent since the object had
reached the configuration in Figure 14c and can be handed over to the human partner.
The final handover phase (Figure 14d) and the control of the forces exchanged between the
robot and the human was carried out with the algorithm in [31].

The fourth experiment demonstrates the slipping avoidance algorithm’s ability to
automatically choose the grasp force when handling objects of very different weights.
The objective of this experiment was to hand the aluminum can over to a human partner.
The task was repeated two times with a full and an empty can, respectively. The can was
grasped above its CoG, as shown in Figure 16a. The results are shown in Figure 17. The top
plot shows the grasp force synthesized by the slipping controller as well as the measured
tangential and torsional loads. After the lift (t = 3 s, Figure 16a), the forces reached very
different values in the two task repetitions. When the can was full, the tangential load was
4 N, while the torsional load was 6 Nmm; thus, the controller applied a grasping force of
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8 N to avoid slippage. When the can was empty, it was much lighter: the tangential force
was 0.24 N, and the torsional moment was almost zero. Thus, the controller needed a very
low grasp force of 0.32 N to safely hold the aluminum can without damaging it.

(a) (b) (c) (d)

Figure 14. Snapshots of the third experiment: (a) grasp configuration; (b) after lifting; (c) after
pivoting; (d) handover.

Figure 15. Third experiment: lifting the plastic bottle far from the CoG. Top plot: grasping force
(blue), torsional torque (magenta). Bottom plot: estimated c̃.

(a) (b) (c)

Figure 16. Snapshots of the fourth experiment: (a) grasp configuration; (b) after lifting; (c) handover.
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Figure 17. Fourth experiment: lifting the aluminum can. Top plot: grasp force, tangential force,
and torsional moment for the full can (blue, red, and cyan respectively), grasp force, tangential force,
and torsional moment for the empty can (magenta, green, and yellow respectively). Bottom plot:
slippage indicator for the full and empty cans (blue and red, respectively).

A video of all the experiments is available as Supplementary Material (Video S1).

7. Discussion

The experimental results presented so far give evidence of the ability of the robot
to handle different types of objects made of different materials (resin, plastic, and metal)
and with large differences in their weight and friction properties. The robot is able to
grasp and lift the objects without any knowledge of their weight by applying the minimum
grasping force to hold them without any translational or rotational slippage. This is shown
especially in the lifting of the empty aluminium can, which requires a grasping force as
low as 0.2 N, while lifting the full can requires a 40 times larger force. The manipulation
ability of the robot is not limited to safely grasping any object with no slipping; the grasp
force can be suitably controlled to allow an intentional slip, which might be useful to
change object orientation in hand even with a simple parallel gripper. The selection of a
model-based manipulation method is motivated by the objective of allowing the robot to
manipulate different types of objects without requiring an excessive learning and training
burden. Indeed, the off-line learning phase is limited to the experimental identification of a
few parameters of a friction dynamic model that is the basis of the manipulation control
strategy. The few remaining parameters that depend on the specific object to be handled
are estimated at run time by a simple and quick exploration phase (see the accompanying
video). The main limitations of the method, at the present development stage, are related
to the limited accuracy of the force/tactile sensor when it interacts with largely deformable
objects and with rigid objects characterized by a curvature radius smaller than the one of the
soft pad. Moreover, the model learning phase, even though robotized, is still quite lengthy.

8. Conclusions

This paper presented a model-based control strategy for slipping avoidance and
pivoting using a simple parallel gripper. The control system is able to automatically regulate
the grasping force without knowing the object’s weight, instead using the measurement
of the friction force and torque between the fingertip and the manipulated object. The
revisited model presented in this paper is used to build a slippage observer that has been
validated with more than a thousand sliding manoeuvres at different velocities and forces.
By using the full-state feedback of the observer, we proposed a novel sliding control scheme
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that considers the internal friction state by defining a novel slippage indicator to be suitably
controlled to the desired value. The experimental tests evaluated the proposed control
scheme in a lab-scale real-world environment in which the robot manipulated everyday
objects that differed in weight, material, and grasp configuration. Future research efforts
will be devoted to exploring sensor calibration methods more suitable for deformable
objects and to generalize the manipulation control to multi-fingered hands, where not only
the magnitude but also the direction of the grasping forces can be exploited to control the
object grasp and its in-hand manipulation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13020921/s1, Video S1: Video of the Experiments.
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