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Abstract: Nowadays, research aimed at the development of materials with increased energy density
for lithium-ion batteries are carried out all over the world. Composite anode materials based on Si and
C ultrafine particles are considered promising due to their high capacity. In this work, a new approach
for carbothermal synthesis of C/SiC composite mixtures with SiC particles of fibrous morphology
with a fiber diameter of 0.1–2.0 µm is proposed. The synthesis was carried out on natural raw materials
(quartz and graphite) without the use of complex equipment and an argon atmosphere. Using the
proposed method, C/SiC mixture as well as pure SiC were synthesized and used to manufacture
anode half-cells of lithium-ion batteries. The potential use of the resulting mixtures as anode material
for lithium-ion battery was shown. Energy characteristics of the mixtures were determined. After
100 cycles, pure SiC reached a discharge capacity of 180 and 138 mAh g−1 at a current of C/20 and C,
respectively, and for the mixtures of (wt%) 29.5C–70.5 SiC and 50Si–14.5C–35.5SiC discharge capacity
of 328 and 400 mAh g−1 at a current of C/2 were achieved. The Coulombic efficiency of the samples
during cycling was over 99%.

Keywords: lithium-ion battery; silicon carbide; electrodeposited silicon; composite material; anode
material; Coulombic efficiency

1. Introduction

Graphite is traditionally used as an anode material of lithium-ion batteries (LIBS) due
to its relatively low cost, low volume expansion (up to 10%), high electrical conductivity,
charge rate. On the other hand, this material capacity (up to 372 mAh g−1) [1–3] no longer
meets the requirements of modern devices and machines for an increased energy density.

Promising anode materials with a higher specific capacity for LIBS are transition
metal oxides [4–9], silicon [10–14], germanium [15–17], SiC [18,19], as well as various
composite mixtures of the above materials with carbon [20–27]. Transition metal oxides
seem to be cheap, easy to synthesize. They provide a relatively high capacity (theoretical
up to 718 mAh g−1 [4]; experimental up to 1150 mAh g−1 [4]) and charge rate, but suffer
from high volume expansion (about 96% [8]). Silicon also seems to be a suitable material
that provides maximum capacity (theoretical up to 4200 mAh g−1 [9–12], experimentally
achieved—3900 mAh g−1 [13]) and a sufficiently high charge rate, but drastic volume
expansion (up to 300% [10–12]) still presents the biggest challenge to the realization of Si
anodes. Germanium is a less accessible material with a lower capacity (theoretical, up to
1624 mAh g−1; experimental, up to 1248 mAh g−1 [16]) compared to silicon, but it provides
advantages such as higher electronic conductivity. Moreover, the diffusion coefficient of
lithium ions in germanium is 400 times higher than in silicon [17].
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Silicon carbide is a perspective easily available anode material with high mechanical,
chemical and thermal stability [18,19]. However, for lithiation, pure SiC must have a certain
structure and size. Therefore, it is considered more as a matrix or substrate that allows to
compensate the volume expansion of silicon. Nevertheless, several works have reported
on the LIBs with SiC anode. In [28,29], a decrease in the thickness of SiC films or particles
leads to an increase in their capacity from 300 to 1370 mAh g−1 with a Coulombic efficiency
of about 90%. This also explains the significant scatter of the SiC anode capacity in the
available papers. Finally, recently a significant number of articles have been devoted to
the development of LIBs with composite anode materials represented by silicon, graphite,
SiC, SiOx, etc., including various sizes and structures: core–shell wires, tubes, needles,
fibers, multilayer films of graphene and silicene [30–34]. Calculations showed improved
electrochemical parameters of such structures during lithiation/delithiation [35]. Despite
the advantages of such composite anodes, their relatively complex production should be
noted. Often, single samples are presented in the existing works and nothing is reported
about the large-scale production of the materials. At present, the carbothermal method
is mainly used for the large-scale production of silicon carbide [36,37]. At the same time,
many works are devoted to the metallothermic preparation of SiC [38,39], although these
methods require further purification of carbide from intermediate synthesis products.

Previously, we showed the possibility of synthesizing ultrafine SiC fibers from cheap
materials using carbothermal synthesis [40,41]. The feature of our method is the use of
natural samples of pure quartz and graphite with a certain morphology and particle size.
In this work, in addition to the obtaining of SiC, this approach was also used for obtaining
of C/SiC mixtures suitable for use as composite anodes of lithium-ion power sources.

2. Materials and Methods

Scheme of the synthesis: The synthesis of SiC powder was carried out in a graphite
crucible, which was placed in a protective alumina crucible. Mixture of SiO2 and graphite
powder with molar ratio of 1–3 was prepared by hand mixing in agate mortar and placed
in a crucible. Graphite crucible was covered with graphite cap and buried under extra
graphite layer. Synthesis was conducted at a temperature of 1600 ◦C for 5 h under CO
atmosphere. In such reactor and conditions, the atmosphere maintained stable due to
the oxidation of graphite powder [40,41]. The scheme for the synthesis of SiC-based
mixtures with different compositions is shown in Figure 1. It was shown experimentally
that mixtures with 40–95 wt% SiC and unreacted graphite are formed during synthesis
depending on the given SiO2:C ratio, temperature and synthesis duration; the products
may also contain traces of silicon and its nonstoichiometric oxides, which are removed by
additional treatment in the HF solution. Therefore, the primary synthesis products are the
C/SiC mixtures. The ratio of components in such mixtures can be controlled in order to
obtain required mixture.
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In this work we synthesized a C/SiC mixture and pure SiC that were studied in
the anode half-cell of LIBs. Along with these materials, a composite anode based on the
resulting C/SiC mixture with the addition of electrtodeposited silicon fibers from the
KCl–K2SiF6 melt was also tested [42].

Analysis of the morphology and composition: The chemical and phase composition of
the reagents and products was determined by inductively coupled plasma atomic emission
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spectroscopy (AES-ICP) using iCAP 6300 Duo Spectrometer (Thermo Scientific, Waltham,
MA, USA), X-ray phase analysis (XRD) using Rigaku D/MAX-2200VL/PC diffractome-
ter (Rigaku, Tokyo, Japan) and Raman spectroscopy using U1000 Raman spectrometer
(Renishaw, New Mills, UK). The morphology and elemental composition of the obtained
samples were studied using a Tescan Vega 4 (Tescan, Brno–Kohoutovice, Czech Republic)
scanning electron microscope with Xplore 30 EDS detector (Oxford, UK).

Electrochemical performance: Electrochemical performance of SiC, C/SiC and
Si/C/SiC anodes were investigated in a 3-electrode half-cell. The obtained compositions
were mixed with 10 wt% polyvinylidene fluoride dissolved in N-methyl-2-pyrollidone
without any other additives. LIBs anode half-cell fabrication was performed in an argon-
filled glove box (O2, H2O < 0.1 ppm). Stainless steel mesh with the applied composite
anode material was used as the working electrode and two separate lithium strips as the
counter and reference electrodes. All electrodes were divided by 2 layers of polypropylene
separator and tightly placed in the cell. The cell was filled with 1 mL of electrolyte—1 M
LiPF6 in a mixture of ethylene carbonate/dimethyl carbonate/diethyl carbonate (1:1:1 by
volume). Electrochemical measurements and cycling experiments were performed using a
Zive-SP2 potentiostat (WonATech, Seoul, Republic of Korea).

3. Results
3.1. Samples Characterization

C/SiC mixtures: Figure 2 shows a SEM-image of a C/SiC mixture and maps of
elemental distribution after carbothermal synthesis and treatment in HF solution. The
resulting mixture is represented by particles with a size of about 20–40 microns (graphite)
and smaller fibers (SiC). According to X-ray microanalysis, the content of the elements
was (wt%) silicon 47.5–51.3; carbon 47.7–51.7; oxygen—up to 1.6. The presence of oxygen
could be due to both the insufficient treatment time of the mixture in the HF solution
and the subsequent oxidation of the silicon or SiC presented in the mixture. According to
ICP analysis, the resulting mixture contained 48.8–49.4 wt% silicon (the rest was carbon)
and no more than 0.4 ppm of such impurities as Fe, Al, Ti and Ca. If we do not take into
account the presence of oxygen, the ratio of components corresponds to a mixture of (wt%):
70.5SiC-29.5C.
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Figure 2. SEM-images and elements distribution in a C/SiC mixture after carbothermal synthesis
and treatment in HF solution.

SiC: Figure 3 shows a SEM-image of a typical SiC agglomerate obtained after annealing
of residual carbon from a C/SiC mixture. Its total size is about 50–60 µm. It consists of
fibers with a diameter of 0.1 to 2 µm. The obtained morphology is similar to the previously
obtained samples of ultrafine SiC [40] since the reagents and the synthesis procedure were
reproduced almost completely. The distribution of elements in the resulting SiC are also
shown. Uniform distribution of silicon, carbon and oxygen is observed for this sample.
According to X-ray microanalysis, the average content of elements at different points of the
sample was (wt%): 68–69 silicon, 29–30 carbon, up to 1.6 oxygen. This ratio is close to the
SiC stoichiometric composition.
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Figure 3. SEM-images and elements distribution in a SiC sample after carbothermal synthesis,
oxidation of unreacted graphite, and treatment in HF solution.

Figure 4 shows the X-ray diffraction patterns and Raman spectra for C/SiC and
SiC samples. For the C/SiC sample there are peaks of residual SiO2 (21–22◦), carbon
(26–27◦), as well as peaks indicating presence of two carbide modifications (α-SiC, β-SiC) in
sample (35–36◦, 41.5◦, 44.5◦, 55◦ and 60◦). For the SiC sample, there are no peaks of C and
SiO2; only additional signals of the β-SiC phase appear at 64.5◦. A similar picture is also
observed in Raman spectra, in which responses of α-SiC and β-SiC carbide modifications at
770–793 cm–1 were fixed. In this case, for the SiC sample, there is also a response at 502 cm–1

that can correspond to both residual silicon and the β-SiC modification [43]. Moreover,
there are lines near 1370, 1510 and 1585 cm−1 on both spectra, which indicate the C–C
bonds. In this work, the structure of the used graphite powder was not studied in detail.
However, based on the absence of pronounced peaks and intensity ratio of carbon lines,
one can only note the presence of different carbon structures [44–47]. For the SiC sample,
the intensities of these lines are less pronounced.
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Figure 4. X-ray diffraction patterns (a) and Raman spectra (b) for the obtained C/SiC and SiC samples.

Electrodeposited Si: Figure 5 shows a SEM-image of silicon deposits obtained by
electrolysis of the (wt%) 98KCl–2K2SiF6 melt at a temperature of 780 ◦C and a cathode
current density of 25 mA cm–2. A detailed procedure and parameters for silicon synthesis
were provided earlier [42]. The resulting silicon deposits are arbitrarily shaped fibers with
a diameter in the range of 0.45–0.55 µm and a length of up to 20–25 µm. According to X-ray
microanalysis data, the oxygen content in the obtained silicon was from 1.2 to 1.5 wt% and
other impurities did not exceed 0.18 ppm (mainly iron and nickel). Figure 6 shows the X-ray
diffraction pattern and the Raman spectra of silicon deposit. As can be seen, the sample is
represented by polycrystalline silicon with SiO2 impurities. This is also indicated by the
Raman spectra of the sample in which only the Si–Si bond at 510 cm−1 was found [43].
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Figure 5. SEM-image and the elements distribution in a Si sample obtained by electrolysis of the
(wt%) 98KCl-2K2SiF6 melt at a temperature of 780 ◦C and a cathode current density of 25 mA cm−2.
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Figure 6. X-ray diffraction pattern (a) and the Raman spectra (b) of silicon deposit.

3.2. Electrochemical Performance of the Comosite Anodes

C/SiC composite anode: Figure 7 shows the change in the C/SiC composite anode
potential during lithiation/delithiation, as well as changes in the discharge capacity and
Coulombic efficiency of the sample during cycling. When the C/SiC composite anode
sample was initially charged with a current of 0.1 C (first cycle) its charging capacity was 658
and discharge capacity was 322 mAh g−1 (Coulombic efficiency is 49%). Such capacity loss
is usually attributed to a solid–electrolyte interface (SEI) layer formation. All subsequent
cycling was carried out at a current of 0.5 C. In the second cycle, the discharge capacity
was 308 mAh g−1 (Coulombic efficiency is 92%), and after the 100th cycle the discharge
capacity was 328 mAh g−1 (see Figure 7c). During cycling, the Coulombic efficiency of the
C/SiC anode reached 99% and remained at this level even after capacity began to fade.
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Figure 7c shows current–voltage dependences (CVs) characterizing the kinetics of
charge and discharge of a C/SiC composite anode material. It can be noted that the
beginning of the charge occurs at an electrode potential negatively than 0.22 V relative
to the potential of the lithium electrode. This behavior may be due to the interaction of
lithium ions with the electrode material, which is accompanied by the chemical formation
of compounds. In this case the presence of several peaks in the cathode region of the CVs
indicates the occurrence of several lithiation reactions. At a potential of about 0.05 V a
lithium reduction wave is formed. During discharge in the anodic region of the CVs in the
potential range from 0.05 to 0.5 V there are corresponding discharge (oxidation) peaks of
lithium. Moreover, the shift in the peak potentials of the lithium reduction and oxidation
indicates that the processes is not electrochemically reversible. Obviously, the irreversibility
may be due to the interaction of lithium with the anode material. Since the LIBs capacity
includes the contribution of both diffusion and capacitance reactions the expression [48] is
valid for the usual lithiation/delithiation process:

log(I) = log(a) + blog(ν) (1)

where I—peak current, A; ν—potential sweep rate, V s−1; a and b—constants. In our case,
the calculated b value was of 0.73 (see Figure 7c), which indicates the pseudocapacitive
behavior of the C/SiC anode material [48]. This may be associated with a slow chemical
reaction of silicon carbide with lithium. Figure 7d shows the electrochemical impedance
spectra (frequency range from 100,000 to 1 Hz) of the sample after the forming cycle.
The EIS contains two arcs corresponding to the processes of charge transfer through the
electrolyte layer and between the electrode and electrolyte [49–51]. The obtained data can
be described by a typical for LIBs equivalent circuit. It has two RC circuits connected in
series and a resistance (Figure 7e). Parameters changes in this scheme during cycling have
not yet been studied.

SiC anode: The cycling results of the SiC electrode are shown in Figure 8. When
the SiC electrode sample was initially charged at a current of C/20 (first cycle) its charge
capacity was only 78 and the discharge capacity was of 42 mAh g−1 (Coulombic efficiency is
54%). During further cycling, the capacity gradually increased. After the 60 cycles at C/20,
capacity increased up to 180 mAh g−1. This situation can be caused by gradual activation
of the anode material accompanied by partial destruction of SiC and the formation of Li–C
and Li–Si compounds [28,29] via the reactions:

SiC + xLi+ + xe− → LixSiyC + (1 − y)Si (y < 1) (2)

Si + zLi+ + ze− ↔ LizSi (3)
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Figure 8. Changes in the discharge capacity and Coulombic efficiency of the SiC sample during
cycling at a current of C/20 and C.

As a result, a gradual conversion of SiC to Si and C occurs [28,29]. In turn,
reactions (1) and (2) also explain the reason for the onset of lithium discharge on anodes
with SiC at a potential 0.22 V more positive than the lithium potential (see Figure 7b). With
an increase in the charge current to C, the discharge capacity decreased, while its value was
stable during 100 cycle and the Coulombic efficiency was more than 99.2%. Relatively low
capacity can be explained by the presence of voids (see Figure 3) and a lack of the electrical
contact between stiff SiC wires.

Si/C/SiC anode: Figure 9 shows the changes of the Si/SiC/C electrode potential
during lithiation and delithiation as well as changes in its discharge capacity and Coulombic
efficiency during cycling. A voltage plateau below 0.1 V (Figure 9a) indicates lithiation
of graphite and silicon; delithiation occurs at 0.15–0.4 V. Similar results were obtained for
lithiation of the silicon anode [52]. In the first cycle at a current of C/20, the discharge
capacity was 225 mAh g−1 and the initial Coulombic efficiency was 54%. Coulombic
efficiency gradually increased during further cycling at a current of 0.5C and remained
above 98% after 20 cycles (Figure 9b). The discharge capacity gradually increased up to
525 mAh g−1 after 40 cycles. The higher capacity value can be explained by the silicon
lithiation in the anode material and the additional increase during cycling can be explained
by the gradual activation of the electrode, as in the case of the SiC anode (see Figure 8a).
The subsequent decrease in the discharge capacity to 400 mAh g−1 by the 100th cycle may
be due to the contact loss of part of the anode material with the substrate due to the local
expansion and cracking of silicon.

Figure 9c shows the CVs obtained at different scan rates for the Si/SiC/C electrode.
There are clear redox peaks indicating the charge and discharge of the sample. In this
case the calculated value of b was 0.63 (see Figure 9c). This indicates that the operation of
the Si/C/SiC electrode mainly proceeds under lithium diffusion conditions. A distinctive
feature of the obtained CVs is also the fact that the charge and discharge currents of the
anode sample are observed in a wider potential range (0.8–0.1 and 0.1–1.4 V respectively),
which is due to the higher bonding energy of lithium with silicon and a larger number of
compounds in the Li–Si system [52–54].

Figure 9d shows the electrochemical impedance spectrum of the Si/C/SiC sample
after the forming cycle. One can note the relatively high resistance R1 (7.7 Ω), which can
result in a significant change in the parameters of two series-connected RC chains (R2, C2,
R3 and W1) [49,50]. The decrease in R1 will be the subject of our further research.
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Figure 9. Cycling of Si/C/SiC electrode: (a) potential change during first cycle lithiation (dashed
line) and delithiation (solid line); (b) discharge capacity and Coulombic efficiency; (c) CVs at different
scan rates and log(I)–log(ν) dependencies; (d) EIS data with equivalent circuit diagram.

The lithiation mechanism of of the Si/C/SiC anode as a whole can be represented by
the parallel flow of reactions (2) and (3) as well as reactions (4)–(6):

Si + xLi+ + xe- ↔ LixSi (4)

LixSi + yLi+ + ye- ↔ Li(x+y)Si (5)

C + zLi+ + ze- ↔ LizC (6)

Accurate estimation of the lithiated products and intermediate products (or its absence)
on the basis of peak potentials is difficult. In the literature, there is a very wide spread of
the potentials of the occurring reactions and the available analysis methods (EDX, XRD) do
not allow one to make a local assessment with the required accuracy when a thick SEI layer
is formed.

The partial replacement of SiC with electrodeposited Si leads to an increase in the
discharge capacity of the anode, while the cycling stability of the Si/C/SiC compos-
ite electrode is lower. In this regard, further work will be aimed at studying the mor-
phology and composition of samples after cycling in order to identify ways to optimize
anode composition.

4. Conclusions

Nowadays, one of the most popular issues is connected with the search of anode
materials for high energy density lithium-ion batteries. One of the promising materials
that meet these requirements are composite materials based on Si/C/SiC mixtures. In
such materials, silicon provides increased capacitance, graphite provides high electrical
conductivity and SiC provides strength and thermal stability.
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In this work, we proposed a new approach for the fabrication of composite anodes
based on SiC as well as mixtures of C/SiC and Si/C/SiC. The proposed approach includes
carbothermal synthesis and makes it possible to exclude complex equipment and expensive
reagents for the anode materials synthesis. Using the proposed method, samples of C/SiC
and SiC were synthesized and investigated. A sample of Si/C/SiC was fabricated with
the addition of electrodeposited silicon fibers. It was shown that the synthesized SiC is
represented by agglomerates of carbide fibers with diameter ranging from 0.1 to 2 µm; the
C/SiC mixture is represented by evenly distributed fibers over the matrix of unreacted
graphite; silicon is represented by arbitrary shape fibers with a diameter ranging from 0.45
to 0.55 µm.

Electrochemical behavior of the synthesized samples was studied as part of the anode
half-cell of a lithium-ion battery. The possibility of using the obtained samples as part of
the composite anode is shown. After 100 cycles pure SiC reached a discharge capacity
of 180 and 138 mAh g−1 at a current of C/20 and C, respectively. The mixtures of (wt%)
29.5C-70.5 SiC and 50Si-14.5C-35.5SiC reached a discharge capacity of 328 and 400 mAh g−1

respectively at a C/2 current. The Coulombic efficiency of sample cycling was over 99%.
The parameters of the equivalent circuits of the half-cells were estimated and ways to
optimize their manufacturing process are noted.
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