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Abstract: Cardiovascular disease (CVD) risk prediction shows great significance for disease diagnosis
and treatment, especially early intervention for CVD, which has a direct impact on preventing
and reducing adverse outcomes. In this paper, we collected clinical indicators and outcomes of
14,832 patients with cardiovascular disease in Shanxi, China, and proposed a cardiovascular disease
risk prediction model, XGBH, based on key contributing characteristics to perform risk scoring of
patients’ clinical outcomes. The XGBH risk prediction model had high accuracy, with a significant
improvement compared to the baseline risk score (AUC = 0.80 vs. AUC = 0.65). At the same time,
we found that with the addition of conventional biometric variables, the accuracy of the model’s
CVD risk prediction would also be improved. Finally, we designed a simpler model to quantify
disease risk based on only three questions answered by the patient,with only a modest reduction
in accuracy (AUC = 0.79), and providing a valid risk assessment for CVD. Overall, our models may
allow early-stage intervention in high-risk patients, as well as a cost-effective screening approach.
Further prospective studies and studies in other populations are needed to assess the actual clinical
effect of XGBH risk prediction models.

Keywords: cardiovascular disease; machine learning; risk score

1. Introduction

CVD is a series of diseases involving the circulatory system, including angina pectoris,
myocardial infarction, coronary heart disease, heart failure, arrhythmia and else, which is
generally related to atherosclerosis [1]. According to the 2019 Global Burden of Disease Re-
port statistics [2], the number of CVD patients has steadily increased, reaching 523 million
in 2019, of which 18.6 million died, accounting for one-third of the total deaths [3]. Studies
have found that cardiovascular disease is often associated with a number of factors, includ-
ing age, smoking, high blood pressure, diabetes, blood lipid levels, chronic kidney disease,
alcohol consumption, insufficient physical activity, unreasonable diet, family history and
so on [4]. Therefore, we need to explore the relationship between risk factors and diseases,
and use data analysis as the theoretical support to find its inherent laws to achieve accurate
prediction of disease occurrence.

Because of the high fatality rate of cardiovascular disease, many institutions have
carried out prospective studies of cardiovascular disease. Typical representa tives include
the method recommended by the American Heart Association/American College of Cardi-
ology (ACC/AHA) [5], Coronary risk assessment study in European system [6], UK disease
risk study based on QResearch database [7,8], cardiovascular disease cohort study in many
provinces and cities in China [9], etc. These institutions have launched risk assessment
tools for cardiovascular disease, coronary heart disease, stroke, heart failure and other
diseases. However, existing CVD risk assessment models have an implicit assumption
that each risk factor has a linear relationship with the probability of CVD [10]. Such an
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assumption may oversimplify the relationship because it includes a large number of Risk
factors with nonlinear interactions [11]. Because of their restrictive modelling assumptions
and limited number of predictors, the existing algorithms usually fail to predict CVD risk
correctly [12], especially for certain subgroups [13].

Recent years have seen remarkable advances in the application of machine learning
(ML) in healthcare and medical research, thanks to high-performance computers [14]. The
machine learning model can establish a complex nonlinear relationship between risk factors
and diseases by minimizing the error between the predicted results and the real results [15].
This kind of machine learning algorithm has good prediction ability and can also detect
potentially risk variables, such as early screening imaging tools or medical therapy (e.g.,
anti-platelet therapy) [16]. In the field of cardiovascular disease prediction, Typical of this
is Sabrina Mezzatesta et al. [17] who used non-linear SVC to predict CVD risk of patients in
the US and Italy, P.Unnikrishnan et al. [18] used 8 indicators to establish a risk assessment
model based on Support Vector Machines (SVM) to predict the sensitivity and specificity of
CVD [19]. Although they have obtained good model accuracy, the number of indicators
chosen can cause more burden to the patient when actually applied to the clinical setting.
Existing models can make predictions but do not provide an accurate score of risk of disease.
Therefore, this paper aims to establish a CVD risk scoring model with less features and
high accuracy.

In this work, we propose XGBH model, which is based on a small number of features
to achieve high-precision prediction. The key step of XGBH is to introduce histogram
algorithm, which can effectively reduce the number of features in the sample and save
memory space. To supplement previous studies, we simulated the performance of the real
world on 14,832 retrospective data on cardiovascular patients and the kaggle competition
cardiovascular disease dataset. At the same time, the XGBH model is compared with
four previous machine learning models, and the superiority of the model is proved. We
also analyze the importance of the characteristics of the data set, select features with
high impact to build a CVD risk prediction model with with less characteristics and high
accuracy. Finally, we introduce the scoring card model into XGBH, which can predict the
probability of patients and quantify the risk of patients, so as to effectively evaluate the risk
of cardiovascular disease.

2. Materials and Methods
2.1. Data Description

The dataset used in this study contains data from the real Baiqiuen Hospital in Shanxi,
China, which is stored in the data centre. The data provided by the hospital includes
EHR, medical imaging data and genetic data. Secure access mechanisms have been created
to protect the privacy and security of our patients. We used a three-year dataset from
2017 to 2020. Our data focus on inpatient data, including 1913 inpatients with a total of
14,832 medical records, including 8179 disease samples and 6653 health samples. Inpatient
data consists mainly of structured and unstructured text data. Structured data includes
laboratory data and basic information about the patient, such as age, gender and lifestyle.
The unstructured text data includes the patient’s account of the condition, the doctor’s
interrogation notes and the diagnosis.

The study protocol was approved by the Shanxi Bethune Hospital (Shanxi Academy of
Medical Sciences) Medical Ethics Committee (approval number: YXLL-2022-094), and the
methods used in this study were conducted in accordance with the approved guidelines.
Participants were informed of the objectives and methods of the study, informed consent
was obtained from the participants or their guardians by written signature or thumbprint,
and they could withdraw from the study at any time without giving any reason.

In the past, European populations have mainly been considered for studies using
machine learning for CVD risk prediction, and a sample of 55,168 cases of the kaggle
competition CVD dataset was added to the dataset in order to make the model more
widely available. A total of 70,000 samples, and each sample has 12-dimensional features,
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including four objective features (Age, Height, Weight, Gender), four inspection features
(Ap_hi, Ap_lo, Chol, Gluc), three subjective features (Smoke, Aclo, Active), and one target
feature(Cardio), which contains 35,021 health samples, accounting for 49.97% of the total,
34,979 disease samples, accounting for 50.03% of the total, and the ratio of the number of
patients with disease to not suffering from disease is close to 1:1. The target class cardio
is equal to 1 when the patient has cardiovascular disease and 0 if the patient is healthy.
objective characteristics include height and weight characteristics, so a new characteristic
of BMI was constructed. The detailed characteristic information is shown in Table 1:

Table 1. Characteristics of the dataset.

Variable Type Feature Value Type Feature Meaning

Objective

Age int (days) count in days
Height int (cm) count in centimeters
Weight float (kg) count in kilograms
BMI float (kg/m2) Body mass index
Gender categorical code 1: women, 2: men

Examination

Ap_hi int (mmHg) Systolic blood pressure
Ap_lo int (mmHg) Diastolic blood pressure

Chol categorical code
Cholesterol 1: normal, 2:
above normal, 3: well above
normal

Gluc categorical code Glucagons 1: normal, 2: above
normal, 3: well above normal

Subjective
Smoke binary whether patient smokes or not
Aclo binary Alcohol intake
Active binary Physical activity

Target variable Cardio binary Presence or absence of
cardiovascular disease

BMI = Height/(Weight * Weight).

2.2. XGBoost Histogram Model

By comparing four machine learning models:logistic regression [20], linear support
vector machine [21], random forest [22], XGBoost [23], we validated the algorithm based
on the Kaggle competition cardiovascular disease dataset and chose XGBoost, which had
the highest accuracy, as the base model. As XGBoost uses a pre-ranking method to handle
node splitting, although the splitting points calculated in this way are more accurate .
However, the training time in use is long and the memory usage is large. In this paper, the
XGBH model is proposed as a fast high-performance gradient enhancement framework,
a tree-based learning algorithm [24]. XGBH introduces a histogram algorithm based on
XGBoost, by which the introduction of this algorithm can reduce the number of features in
the sample and save memory space.

The basic idea of the Histogram algorithm is to discretize the data by partitioning
the continuous feature values into k boxes. The feature histogram is constructed using
the k discrete boxes. Instead of traversing all the sample points to find the segmentation
points, the algorithm looks between the boxes, speeding up the process and reducing
memory. Instead of losing accuracy it will have the effect of regularisation and improve
the generalisation ability of the algorithm. The specific implementation process is as
Algorithm 1:
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Algorithm 1 Find Best Split By Histogram

Require: Training data X,Current Model TC−1(X)
Ensure: First order gradient G,second order gradient H

for all Leaf p in TC−1(X) do
for all f in X.Features do

H = new Histogram()
for i in (0,num_of_row) do

H[f.bins[i]].g +=gi; H[f.bins[i]].n+=1
end for
for i in (0,len(H) do

SL+= H[i].g; nL+=H[i].n
SR=SP-SL;nR=nP-nL
4 loss=SL

2/nL+ SR
2/nR+SP

2/nP
end for
if 4 loss > loss(pm, fm,vm) then

(pm, fm,vm)= (p,f,h[i].value)
end if

end for
end for

From the algorithm: the histogram optimisation algorithm needs to pre-transform the
feature values into bin values before training, make a segmentation function on the values
of the features, divide the values of all samples on that feature into a certain segment (bin),
and finally discrete the values of the features.

Where H[f.bins[i]].g is the sum of the gradients of the samples in each bin, H[f.bins[i]].n
is the number of samples in each bin, SL, SR, SP represents the gradient sum on the left
side of the current bin, the gradient sum on the right side, and the total gradient sum, nL,
nR, and nP represent the number of samples on the left side, the right side and the total
number of samples.

2.3. Feature Importance

The problem with these new methods is that they are “black boxes” where the basis of
the prediction is unknown [25]. Ideally, the model should provide operational advice for
prevention, with the explanation of what needs to be improved to change a poor state or the
identification of early risks determining the usefulness of the model. The existing method
requires the patient to test more indicators in clinical practice, which increases the burden
and inconvenience to the patient due to the high number of indicators used. Interpretable
analysis of machine learning models can capture the most influential features, from which
simpler predictive models can be constructed. Therefore, we need to use machine learning
models to evaluate the importance of features in the dataset. The basic idea of feature
importance assessment is to calculate the degree of decline in model performance scores by
randomly ranking a particular feature, with the more fluctuating values playing a more
important role. The specific method is as follows (Algorithm 2):

Algorithm 2 Feature Importance

1: Input: trained mode f̂ , feature matrix X, target vector Y, and error function Ł
(
Y, Ŷ

)
2: Calculate the original prediction error: eorig

(
f̂
)
= L

(
Y, f̂ (X)

)
3: For each feature j = 1, 2, 3...p, by randomly arranging the j feature,perturbed character-

istic matrix Xpermj

4: Calculate the new error: eperm

(
f̂
)
= L

(
Y, f̂

(
Xpermj

))
5: Calculate the importance parameters: FIj = eperm

(
f̂
)

/eorig

(
f̂
)

6: Sort by size FIj



Appl. Sci. 2023, 13, 893 5 of 12

Ŷ represents the target vector predicted after training. Finally, the importance of each fea-
ture can be obtained through the ordered FIj which is helpful for our subsequent experiments.

2.4. Scorecard Model

Although feature importance assessment of machine learning models allows a simple
model to be built using a small number of high importance features. However the model
can only determine if a patient has cardiovascular disease and the risk of disease cannot be
accurately predicted. A means of measuring the risk probability in the form of scores is
the scorecard in the risk control scenario [26], which is a prediction of the probability of
default, overdue and other behaviors within a certain period of time in the future. In this
paper, the scorecard is applied to medical treatment, which can predict the probability of
disease and quantify the disease risk of patients, so as to carry out effective risk assessment
of cardiovascular disease. The scorecard works as follows:

Suppose that the prevalence probability of the sample is p, and 1− p is the normal
probability of the sample. The formula for calculating the Odds is shown in Formula (1):

Odds =
p

1− p
(1)

Equation (2) is derived from (1):

p =
Odds

1 + Odds
(2)

The expression of the score card is shown in Equation (3):

score = A− Blog(Odds) (3)

Point to double odds (PDO) means the score increased when Odds doubled. Setting
the score of a particular point with Odds of θ0 to score0 and the score of a point with Odds
of 2θ0 to score0 + PDO. Taking the above formula into account gives (4) and (5)

score0 = A + Bln(θ0) (4)

score0 + PDO = A + Bln(2θ0) (5)

where A and B are constants. Solving the above equation will give you the values of A and B.

B =
PDO
ln 2

(6)

A = score0 − Bln(θ0) (7)

Suppose that when the score1 is, the Odds value is x1, and when the Odds value is 2x1,
the score is score2, which satisfies Formula (8).

score2 = A− PDO
ln 2

· log(2x1) = score1 + PDO (8)

Then the total scorecard formula is

scoretotal = A + Bln(Odds) = A + B(θTx) = A + B(w0 + w1x1 + ... + wnxn) (9)

w is the regression coefficient of the logistic regression model, x1 is the value of each
characteristic transformed into WOE, WOE essentially means that when a characteristic
variable takes on a certain value, that variable acts as an effect of the independent variable
on the proportion of default cases. In this way the average of the scores on the individual
characteristics is obtained.
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Therefore, given a particular Odds corresponding to the Score value and PDO, the
calculation can be substituted into Formulas (7) and (6) to find A and B. Through the above
calculation process, the scorecard calculation can be converted into a problem of finding
the log(Odds) of a user being ill log(Odds).

2.5. Statistical Analysis

Quantitative variables that obey the normal distribution are described by mean ± standard
deviation, and quantitative variables that do not obey the normal distribution are described
by median ± interquartile range. The categorical variables are described as quantity and
proportion. Statistical differences were determined using the t-test with Welch correction
or the Mann-Whitney U test, the Wilcoxon signed-rank test, or the Kruskal-Wallis test. The
analysis was performed using RStudio version 7.2 (RStudio, New York, NY, USA). The
baseline characteristics of the data are detailed in Table S1.

Evaluation metrics play an important role in determining how well a trained model
performs. The performance of the XGBH model in prediction of CVD and the dataset
was quantitatively evaluated using the testing Area Under Curve(AUC), Recall, Precision,
F1-score. In other research fields, precision is also known as positive predictive value
(PPV), and recall is also known as sensitivity. These metrics would help identify where
the model is unable to predict correctly. Some terms help us to calculate these metrics.
They include True Positive (TP), which represents that the positives are correctly identified
aspositive. True Negative (TN) means that the negatives are correctly identifed as negative
False Positive (FP) denotes that the negatives are wrongly identifed as positive, and False
Negative (FN) where positives are wrongly identified as negative. These formulations
related to the evaluation metrics are defined in Formulas (10)–(12):

The discrimination ability of the model was evaluated by using receiver operator
characteristic (ROC) curve analysis. The AUC > 0.5 indicated better predictive values, the
closer the AUC to 1, the better the model performance. The area under the ROC is the
AUC, which is created by plotting the true positive rate versus the false positive rate at
different thresholds.

Recall = Sensitivity =
TP

TP + FN
(10)

Precision = PPV =
TP

TP + FP
(11)

F1-score =
2TP

2TP + FP + FN
(12)

The KS (Kolmogorov-Smirnov), which measures the difference between the cumula-
tive distribution of normal and default samples, is used in this paper to assess the ability
of the model to discriminate between CVD risks. The KS value gives an indicator of the
model’s discriminatory ability expressed in quantitative terms. The greater the cumulative
difference between the normal and sick samples, the greater the KS value, then the greater
the model’s ability to discriminate between CVD risks.Greater than 0.3 indicates that the
model has strong discriminative ability. The formula for calculating KS values is given in
Formula (13):

KS = max(TPR− FPR) (13)

3. Results
3.1. Model Evaluation

In this paper, the XGBH model is compared with four machine learning models of
logistic regression, linear classification support vector machine, random forest and eXtreme
Gradient Boosting(XGBoost). 80% of the kaggle competition dataset and 80% of the Shanxi
Bethune Hospital dataset were randomly selected as the training set and 20% as the test
set to cross-validate the performance of the model, and adjust the classification model
according to the parameters of the classification algorithm.
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Table 2 provides the results of the quantitative evaluation of five machine learning
models, logistic regression, linear categorical support vector machine, random forest,
XGBoost and XGBH, in terms of AUC, Recall, Precision and F1-score. Firstly, as shown in
Table 2, the XGBH prediction model is superior to the other four baseline models in terms
of AUC, Recall, Precision and F1-score, regardless of BMI characteristics. The AUC and
Precision reached 0.8059 and 0.7578 respectively, indicating that the XGBH model not only
performed best but also had higher accuracy in predicting the risk of CVD. Then we tried
to add the new feature BMI to the prediction model. As shown in Table 2, after adding
the BMI feature, the Precision had a small decrease but the rest of the metrics increased,
showing higher predictability than before. There is also an improvement in runtime, with
an XGBoost runtime of 4.263 s and an XGBH runtime of 3.742 s.

Table 2. Characteristics of the dataset.

Dataset Model AUC Recall Precision F1 Score

Without BMI

LinearSVC 0.651 (0.643–0.659) 0.601 0.664 0.631
Logistic Regression 0.697 (0.689–0.704) 0.657 0.709 0.682
Random Forest 0.713 (0.706–0.720) 0.697 0.717 0.707
XGBoost 0.802 (0.795–0.809) 0.686 0.755 0.719
XGBH 0.806 (0.799–0.813) 0.703 0.758 0.729

With BMI

LinearSVC 0.656 (0.648–0.664) 0.613 0.666 0.638
Logistic Regression 0.712 (0.705–0.720) 0.675 0.726 0.699
Random Forest 0.715 (0.707–0.722) 0.703 0.717 0.710
XGBoost 0.803 (0.796–0.810) 0.687 0.753 0.718
XGBH 0.807 (0.800–0.814) 0.704 0.757 0.730

3.2. Feature Importance Analysis

To estimate the contribution of each feature to the prediction, we analysed the feature
importance of each prediction model using the PermutationImportance method [27]. The
specific method is to randomly arrange the values of a feature column in the data set,
trained the model using the disordered feature values. Feature importance is identified
by looking at the extent to which the feature values affect the performance of the model.
The PermutationImportance method is used to calculate the feature importance of the
target variable, and then the feature importance weights are ranked and a table of feature
weights is drawn as shown in Table 3. As can be seen from Table 3, the ranking of the
importance of the features of the models with higher prediction accuracy is much closer.
Among them, the important features of the two models with the best prediction accuracy:
XGBoost and XGBH are consistent, namely systolic blood pressure (Ap_hi), cholesterol
(Chol), Age, diastolic blood pressure (Ap_lo), and body mass index (BMI). And systolic
blood pressure (Ap_hi) showed the greatest feature weighting of all four models, which
indicated that it was the most predictive feature.

In order to reduce the burden of patients, the previous feature importance analysis
drives us to establish a simpler prediction model based on a small number of high im-
portance features instead of the model based on all features. According to the order of
feature weights of the XGBH model in Table 3, taking CVD as the target feature. The XGBH
model proposed in this paper was used to make predictions based on different numbers
of features and to plot ROC curves, as shown in Figure 1. As can be seen from the figure,
the AUC of the model is 0.6353 [0.6262, 0.6444] when predictions are made using the most
influential feature Ap_hi. Then using the top three features in terms of influence (ap_hi,
chol, age), the AUC of the model reached 0.7999 [0.7926, 0.8072], and finally using the top
five features in terms of influence (ap_hi, chol, age, ap_lo, BMI) for prediction, the AUC of
the model reached 0.8030 [0.7957, 0.8102], with the AUC increasing from 0.6353 to 0.803
as the number of features increased.When increasing from three to five features, the AUC
rise only increased from 0.7999 to 0.803, indicating that ap_lo, BMI provided a smaller
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contribution to the increase in model accuracy. Taken together, we can perform an accurate
CVD risk assessment using a questionnaire with only three questions (1. blood pressure
2. Is cholesterol normal? 3. What age?).

Table 3. Feature importance of each prediction.

Model Logistic Regression Random Forest XGBoost XGBH

1 Ap_hi (0.1383 ± 0.0070) Ap_hi (0.1326 ± 0.0028) Ap_hi (0.13750 ± 0.0065) Ap_hi (0.1406 ± 0.0047)
2 Weght (0.1218 ± 0.0056) Chol (0.0302 ± 0.0052) Chol (0.0321 ± 0.0050) Chol (0.0358 ± 0.0034)
3 BMI (0.0473 ± 0.0030) Age (0.0239 ± 0.0058) Age (0.0268 ± 0.0030) Age (0.0276 ± 0.0043)
4 Height (0.0434 ± 0.0050) Active (0.0024 ± 0.0016) Ap_lo (0.0059 ± 0.0007) Ap_lo (0.0063 ± 0.0007)
5 Age (0.0319 ± 0.0079) Ap_lo (0.0023 ± 0.0026) BMI (0.0045 ± 0.0026) BMI (0.0036 ± 0.0023)
6 Chol (0.0012 ± 0.0008) Smoke (0.0008 ± 0.0017) Active (0.0020 ± 0.0011) Active (0.0034 ± 0.0017)
7 Smoke (0 ± 0.0000) Gender (0.0002 ± 0.0043) Height (0.0018 ± 0.0015) Gender (0.0016 ± 0.0010)
8 Alco (−0.0000 ± 0.0001) Alco (−0.0000 ± 0.0008) Gender (0.0014 ± 0.0009) Gluc (0.0015 ± 0.0011)
9 Active (−0.0001 ± 0.0004) Gluc (−0.0012 ± 0.0014) Smoke (0.0012 ± 0.0009) Smoke (0.0012 ± 0.0005)

10 Gluc (−0.0001 ± 0.0003) BMI (−0.0092 ± 0.0022) Weight (0.0010 ± 0.0024) Weight (0.0010 ± 0.0007)
11 Gender (−0.0002 ± 0.0003) Height (−0.0100 ± 0.0049) Aclo (0.0003 ± 0.0003) Height (0.0010 ± 0.0012)
12 Ap_lo (−0.0003 ± 0.0006) Weight (−0.0125 ± 0.0023) Gluc (0.0002 ± 0.0005) Aclo (0.0004 ± 0.0006)
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 Five Features AUC= 0.8030[0.7957,0.8102]
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 Three Features AUC=0.7999 [0.7926,0.8072]

Figure 1. ROC curve.One feature(ap_hi), Three features(ap_hi, chol,age), Five features(ap_hi, chol,age,
ap_lo,BMI.

3.3. Scorecard Model

The XGBH model was used to build a scorecard model for a data set containing three
features. According to the principle of scorecard, the value of score0 and PDO are taken as
600 and 20 respectively, then the highest score for medical scoring of the test set through
the scoring card constructed by the model is 754, and the lowest score is 586. The dataset
is equally divided into 20 groups according to interval prevalence and score, draw the
number of sick and non sick patients in each group as shown in Figure 2. The group with
high interval prevalence rate corresponds to a smaller group number, the prevalence curve
is gradually reduced, and the overall number of patients is increasing.
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Figure 2. Scoring results and the number of patients.

KS evaluates the risk discrimination ability of the model by measuring the difference
between the cumulative distributions of good and bad samples. Greater than 0.3 indicates
that the model has strong discriminative ability. The performance graph of the scorecard
model is plotted according to the value of KS as shown in Figure 3. It can be seen from the
table that the maximum KS value in group 9 indicates that this group has the best effect on
distinguishing normal samples from diseased samples. The passing rate of about 95% is
used as the criterion for whether or not to be sick, and the fractions correspond to [683, 689].
If the sample is lower than 683, it is judged to be sick, and further medical tests such as
electrocardiogram and cardiac color ultrasound are required to achieve effective prevention
and treatment for cardiovascular disease.
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Figure 3. Performance graph of the scorecard model. The blue line represents the passing rate within
the group, the orange line represents the change in the KS value, and the purple line represents the
probability of disease within the group.
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4. Discussion

In this study we present an XGBH model to predict the possibility of CVD occurrence
by applying the model to the treatment data of 70,000 patients in Europe and Asia. Among
the four baseline algorithms of logistic regression, linear classification support vector
machine, random forest and XGBoost, the XGBH model has the highest accuracy, AUC
and precision reached 0.8059 and 0.7578 respectively. The strength of our study is that
with increasing health awareness, most people conduct health screening every 1–2 years,
which contributes to the availability of patient treatment data. As the prediction model is
only based on the retrospective data of patients, ML algorithm can be used for simpler and
more effective CVD prediction. Compared with the traditional CVD prediction model, this
method avoids the additional cost and burden of baseline data collection.

In addition, several previous studies have analysed cardiovascular patient data to
assess the risk of various cardiovascular events, but they have mainly used statistical
analyses [28,29] and have only been done on European patients. In contrast, in this study
we used a hospital dataset containing data from the real Baiqiuen Hospital in Shanxi, China,
including 1913 inpatients with a total of 14,832 medical records, allowing the model to be
applied more widely. As well, the importance of missing values or non-response is not
usually assessed in the development of conventional CVD risk prediction tools. This study
suggests that the addition of conventional biological characteristic variables, such as BMI
in particular, will also have an improved accuracy for CVD risk prediction.

Our study also has several limitations. Firstly, there are no published cholesterol
thresholds, therefore we are unable to accurately assess the effect of specific cholesterol
values on cardiovascular disease. Secondly, the outliers ap_ho and ap_hi that appeared
in the original dataset were not processed because the model accuracy was reduced after
trying to delete the outliers. Thirdly, the feasibility and acceptability of the new three-
question risk assessment model proposed in this paper has not been further investigated
in clinical practice. And the current study uses a range of machine learning algorithms,
which suggests that the importance of different risk factors changes in interesting ways
depending on the modelling technique. The models based on decision tree are very similar
to each other, and the performance of gradient hoist is better than that of random forest.
Neural networks and logistic regression place more emphasis on categorical variables
and CVD-related medical conditions, clustering patients with similar characteristics into
groups. This may facilitate further exploration of various predictive risk factors and the
development of new risk prediction methods and algorithms in the future.

Our work has shown that accurate CVD prediction can be achieved based on a small
number of characteristics of European and Asian patients. These results may have many
implications for the subsequent treatment of patients. Our predictive models can form the
basis of the initial CVD diagnostic screening process to prevent the development of CVD
and its associated adverse health outcomes. Future prospective studies and research with
other populations are needed to assess the clinical impact of the model.

5. Conclusions

With the recent introduction of ACC/AHA and similar guidelines internationally,
CVD risk prediction has become increasingly important in clinical decision making. And
the emergence of machine learning methods offers an exciting prospect for improved and
more personalized cardiovascular disease risk assessment. Globally, there are still a large
number of individuals at risk of CVD who have not been identified by previous tools,
while some individuals who are not at risk receive unnecessary prophylactic treatment.
For example, about half of all myocardial infarction (MI) and stroke will occur in people
who are not expected to be at risk of cardiovascular disease. Machine learning (ML) offers
an alternative to standard predictive modelling that can address current limitations. This
may help drive the development of personalized medicine as it allows for better risk
management for individual patients.
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By introducing the histogram idea, the XGBH model in this paper reduces the num-
ber of samples and features without loss of accuracy, saves memory space, and shows
better prediction performance. Our proposed model obtained the best results in all four
evaluation metrics compared to the four models of logistic regression, linear classification
support vector machine, random forest and XGBoost, with AUC, Precision reaching 0.8059
and 0.7578 respectively. The dataset used in this study contains data from the real Baiqi-
uen Hospital in Shanxi, China, including 1913 inpatients with a total of 14,832 medical
records. To make the model more widely available, a portion of the kaggle competition
cardiovascular disease dataset was added to the dataset, with a total of 70,000 samples.
Then we analysed the five most influential features on the model (ap_hi, chol, age, ap_lo,
BMI) by feature importance analysis, using different numbers of features for prediction,
and the final AUC of the model reached 0.7999 [95% CI, 0.7926, 0.8072], making only three
features (1. systolic blood pressure 2. Whether cholesterol is normal 3. Age) is needed to
make a more accurate risk assessment of CVD. Finally we have developed a cardiovascular
disease risk scale based on the XGBH model, which is able to quantify the patient’s risk of
developing the disease and thus provide a valid risk assessment for cardiovascular disease.
In conclusion, the method proposed in this paper is superior to the existing XGBoost
model in terms of accuracy and is more applicable to the prediction of CVD risk in a wider
range of patients. Only three indicators of the patient are required for accurate predic-
tion. Finally, the disease risk of patients is quantified according to the scoring model, and
the risk of developing the disease is objectively evaluated for early warning and prevention.
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