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Abstract: Depth extraction generative adversarial network (DE-GAN) is designed for artistic work
style transfer. Traditional style transfer models focus on extracting texture features and color features
from style images through an autoencoding network by mixing texture features and color features
using high-dimensional coding. In the aesthetics of artworks, the color, texture, shape, and spatial
features of the artistic object together constitute the artistic style of the work. In this paper, we
propose a multi-feature extractor to extract color features, texture features, depth features, and shape
masks from style images with U-net, multi-factor extractor, fast Fourier transform, and MiDas depth
estimation network. At the same time, a self-encoder structure is used as the content extraction
network core to generate a network that shares style parameters with the feature extraction network
and finally realizes the generation of artwork images in three-dimensional artistic styles. The
experimental analysis shows that compared with other advanced methods, DE-GAN-generated
images have higher subjective image quality, and the generated style pictures are more consistent
with the aesthetic characteristics of real works of art. The quantitative data analysis shows that
images generated using the DE-GAN method have better performance in terms of structural features,
image distortion, image clarity, and texture details.

Keywords: generative adversarial network; style transfer; image processing; artistic design

1. Introduction

Artworks represented by drawings are the oldest form of artistic expression and an
important carrier of human civilization, containing the rich and unique thoughts and
emotions of their creators. Any excellent work of art contains the unique creative style of
the artist. The study of the uniqueness of this artistic style is of great value to creators for
improving their creative skills. In this regard, in addition to traditional art theory training,
computer vision and image processing are receiving more and more attention with the
rapid development and application of computer technology. The rational application of
computer vision technology in the creation of artworks can help artists to systematically
understand how to present a unique artistic creation style by observing real scenes or
photos and using appropriate painting techniques.

In recent years, the generative adversarial network (GAN), as an important branch of
deep learning, has been gaining attention from experts and scholars in the field of artificial
intelligence. The GAN is a kind of generative network with antagonism, the main body of
which is a generative network stacked with self-encoders, and this part of the structure is
called generator; the network also has the structure of a binary classification network, and
this part of the structure is called discriminator. The generator generates data close to the
real sample using noise; the discriminator is used to bifurcate the generated data and the
real sample and adjusts the parameters of the generator to improve the authenticity of the
generated data. Through the adversarial training of the generator and the discriminator,
the classification accuracy of the discriminator and the prediction accuracy of the generator
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are improved at the same time; finally, the network generates data close to the real sample
to accomplish the target task. Moreover, with the progress of research, more and more
GAN variants have been applied, and the application of the GAN in the image field has
become more and more extensive. For example, in the field of image coloring, the GAN
architecture is widely used in automatic coloring models based on deep learning, etc.

GAN-based style migration strategies for artworks have also been adopted by many
scholars. For example, Efros et al. [1,2] achieved the migration of painting styles to im-
ages using the texture synthesis of the underlying image features, but they ignored the
semantic information of the images. Gatys et al. [3] used a Convolutional Neural Network
(CNN) [4,5] to achieve the extraction of high-level semantic information from images for
style transformation to show realistic images. Li et al. [6] proposed a generalized style
migration method using whitening and coloring transformations to directly match the
feature covariance of content and style images to achieve the single-model migration of
arbitrary image styles. Zhu et al. [7] proposed a generative adversarial network named Cy-
cleGAN to implement image style migration. CycleGAN designs a cyclic consistency loss
and builds a framework on which image transformation can be performed using unpaired
data. DistanceGAN [8] builds on the CycleGAN architecture by adding the constraint
that the distance between two samples in a domain remains constant when mapping to
another domain.

With the progress of GAN research, this architecture has been employed in computer
vision, medicine, natural language, processing, and other fields [9–11]. In the field of image
processing, Chen et al. [12] proposed CartoonGAN, a network architecture applicable to
animation style migration that works by extracting generic features of animated images and
adding edge enhancement loss to GAN networks, which successfully achieves the image
animation effect. He et al. [13] proposed an architecture based on an end-to-end generative
adversarial network-based architecture, ChipGAN, to achieve migration from photos to
traditional Chinese ink painting style. Karras et al. [14] proposed the StyleGAN image style
migration method by improving the network architecture of generators, reducing feature
entanglement, and improving style control. Upchurch et al. [15] put forward a method of
depth feature interpolation to modify the content of images with high quality. Li et al. [16]
added an optical flow regression module to the usual U-Net-like person image generation
model to guide pose transformation. Hicsonmez et al. [17] proposed a GANILLA network
model for style migration in children’s illustrated comics, effectively improving the effect
of style migration by adding jumping connections between layers of the network.

It can be seen that GAN-based image style migration methods are increasingly, widely
used in the design of various types of painting artworks, and good product design results
have been achieved. However, based on current research work, if the training data are
sufficient, though most of the artworks generated using style migration methods can retain
most of the contour and overall color information of real pictures, they are still not artwork-
level perfect. For example, in some images with significant subject features and more
complex semantic information, it is difficult to use style migration to match the content
structure of the images, resulting in some generated images with missing and blurred local
details, local color distortion, and non-emphasized image subjects. In order to better realize
style migration from artworks, from the perspective of artistic deconstruction, we propose
a solution for image-to-artwork style migration based on depth extraction generative
adversarial network (DE-GAN). Deep learning modeling is applied to the conversion of
real pictures to artwork styles; the aesthetic characteristics of artworks are combined with
the elements of color, texture, shape, and spatial features, and the design is realized to
generate artwork images in three-dimensional artistic styles.

2. Basic Theory
2.1. GAN

Generator and discriminator together constitute the basic GAN. The classic generator
has a self-encoder as the bone network, whose function is to generate fake images using
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Gaussian white noise or random noise. The discriminator is usually a classifier whose func-
tion is to clarify whether the input is from the training dataset or the generator. Therefore,
the output probability of the discriminator complies with binomial distribution.

Generators and discriminators in GAN networks are trained in turn. In the initial
training, the weights of the discriminator are frozen. Gaussian noise z, complying with
noise distribution Pz, is fed to the generator with real images from the training dataset as the
label. The generator is trained to reduce the mean square error between the output of the
generator and the real image, so as to make the generator outputs fit the distribution of the
real images. Then, the weights of the generator are frozen, and those of the discriminator are
activated. With the discriminator trained, the classification performance is increased, and
the true-positive rate of identifying the real image is improved. When training the generator
again, the discriminator weight is frozen; the mean square error of the discriminator is
taken as the loss function, and the generator weights are trained to improve the quality of
output images from the generator. The weights of the generator and discriminator are fixed
in turn so that the generator and discriminator have optimal generation performance and
discrimination performance, respectively. Since this process is similar to the maximum and
minimum game between the generator and the discriminator, the objective function of the
GAN network is as shown in Equation (1).

min
G

max
D

V(D, G) = Ex∼Pdata [log D(x)] + Ez∼Pz [log(1− D(G(z)))] (1)

where Ex is the mathematical expectation of the discriminator distinguishing the correct
image; Ez is the mathematical expectation that the discriminator misjudges the generated
image as true; z is a noise vector (such as Gaussian noise) that obeys the Pz distribution;
and x is a training set image that obeys the real data distribution, Pdata. By maximizing the
discriminator (D) loss, the discriminant ability of discriminator D on the generated images
is improved. This process implicates that the closer the generated image is to an image
in the training set, the smaller the loss is. Therefore, the generator is not able to produce
creative images. Such a system can only imitate existing images but cannot create new
images. The reason is that there is a lack of motivation within the system to encourage
generators to explore creative space, which is also a basic limitation of the process of artistic
creation using generators versus networks.

2.2. Depth Extraction GAN

Depth extraction GAN consists of three sub-networks: multi-feature style encoder,
style transfer network, and discrimination network. Among them, style encoder and
style transfer network are used to form image generator G. The discrimination network
is used as a discriminator to distinguish whether the generated image and style image
are in the same style. Given content image x ∈ X, image content is provided; style image
yc ∈ Y provides the style, and yc is an image with the cth kind of style class extracted
from N style images. Generator G in DE-GAN uses content image x to generate image x̃c.
Discriminator D guarantees whether x̃c is consistent with the style image, and its network
structure is shown in Figure 1.

In order to assemble the contribution of the four kinds of features to the image style,
four feature extractors are used to extract shape feature Fs, texture feature Ft, color feature
Fc, and spatial depth Fd of the style image. Image xs ∈ R3×H×W provides the style as the
input of the multi-feature extractor, and the multi-feature extractor outputs are multi-meta
features Fm = {xs, Fs, Ft, Fc, Fd} ∈ RC×H×W. The structure of the input style extractor is
shown in Figure 2.
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Figure 1. Structure of DE-GAN. 
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Shape feature extractor. The semantic segmentation model can quickly extract multi-
object objects from the image and output the mask information of multiple objects. Due 
to the lack of effective panoramic semantic annotation for image datasets, the shape fea-
ture extractor is applied to a pretrained U-net model [18]. The output of the shape feature 
extractor is shape feature Fs ∈ RH × W. The value of Fs corresponds to the category result of 
each pixel with semantic segmentation. The network structure of the shape feature extrac-
tor is shown in Figure 3. 
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Shape feature extractor. The semantic segmentation model can quickly extract multi-
object objects from the image and output the mask information of multiple objects. Due to
the lack of effective panoramic semantic annotation for image datasets, the shape feature
extractor is applied to a pretrained U-net model [18]. The output of the shape feature
extractor is shape feature Fs ∈ RH×W. The value of Fs corresponds to the category result
of each pixel with semantic segmentation. The network structure of the shape feature
extractor is shown in Figure 3.

Although we use U-net as the shape feature extractor, it gives no importance to the
correctness of the category of the object corresponding to the label in the mask, because
the shape feature extractor plays a semi-supervised learning role here. The most valuable
information in Fs refers to the segmentation boundaries of different objects.

Texture feature extractor. The shape special texture extractor can extract texture
feature Ft from the original image, yc. The texture feature is mixed with discontinuous color
information, including the three channels of RGB, so Fs ∈ R3×H×W. In order to avoid the
interference of shape features and depth features, the object in the texture extractor should
be different from the original image [19]. The network structure of the texture feature
extractor is shown in Figure 4. In the texture feature extractor, Gi is the loss value of texture
features in different dimensions. If the weighted loss of each layer Gi is minimized, the
output texture map can better express the original image texture.
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the fast Fourier transform is used to calculate the color histogram to calculate the color 
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Color feature extractor. Color is the visual experience resulting from the mixing
of photons at different frequencies in the range of visible light. In digital images, the
distribution of color can be represented by the distribution of pixel values of the three RGB
channels within the range of [0, 255]. The most common feature representation method is
the color histogram, but it is difficult to keep the same feature shape using color histograms
in multi-feature extractors. Therefore, in the color extractor with different pixels, the fast
Fourier transform is used to calculate the color histogram to calculate the color distribution
of the style image, and the kurtosis maps of the three color channels are calculated as color
features Fc ∈ RH×W×3.

Spatial feature extractor. The spatial distribution of objects in artworks cannot be
represented accurately in the world coordinate system with cartesian coordinates. Thus,
local spatial relationships mainly refer to the pixel coordinate system and the depth values
obtained by means of monocular estimation of the image.

The depth extractor is used to extract the spatial features of different objects in works
of art, Fd ∈ RH×W. In the depth image, due to the limitation of pixel values, the range of
depth values is [0, 255]. In order to recover the real depth information from the depth
map, the output of the depth estimation network can be de-normalized [20]. The network
structure of the spatial feature extractor is shown in Figure 5.
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Through the extraction performed by the multi-feature extractor, multi-channel feature
Fm is obtained. Fm is used as the input to the style coding network.

We use style codes for the shared parameter of the dynamic residual block (Dynamic
Res-Block) in the style transfer network. Dynamic convolution (D-Conv) and adaptive
instance normalization structure (Ada-IN) are used in the dynamic residual block structure.
The style coding network generates style codes based on the style image.

We connect pre-trained VGG-net and the self-learning encoder in parallel; the pa-
rameters of VGG-net are frozen, while the parameters of the self-learning encoder are
kept active. Style coding is used in the migration network of content images. VGG-net is
pre-trained on the COCO dataset; this is so that VGG-net learns the rich image textures
and materials in the COCO dataset and thus has the generalization ability to extract image
textures. Considering the gap between the COCO dataset and the images of different works
of art, the encoding network with frozen parameters is not enough to adapt to complex
style feature extraction. Therefore, a self-learning encoder is introduced as a supplement to
VGG-net to realize the extraction of different styles.

Inspired by class activation mapping [21], we use a classification weight sc to recali-
brate our style code Fs. The attention mechanism is based on the trained auxiliary classifier,
Dcls, to predict style classification probability wc. wc is used to represent the maximum
likelihood estimation that the input style image belongs to the cth class. The style code is
recalibrated to

sc = wcFs (2)

The recalibrated style code is used as the input of multilayer perceptron H, and the
output of H is used as the shared parameter of the dynamic residual block.

Considering that style coding is applicable to any image style, two multilayer percep-
tron style codes are used as shared parameters for the DConv layer and the AdaIN layer of
the dynamic residual blocks.{

θc
w, θc

γ,β

}
=
{

Hw(sc), Hγ,β(sc)
}

(3)

where θc
w is the filter weight of the DConv layer and θc

γ,β is the affine parameter of the
Ada-IN layer.

We adapt a weighted average strategy to extend the arbitrary style code of set style
transformation. Specifically, we calculate the overall style code as the weighted average
and the corresponding weight of the “style code” of several representative works by the
same artist. For the kth style image in the set, its weight is determined according to the
similarity between the style image and the content image. Therefore, we can express the
overall style code as

{θc
w, θ

c
γ,β} = {

1
K

K

∑
k=0

πkθc
wk,

1
K

K

∑
k=0

πkθc
γk|c ∼ N} (4)

where K is the number of style images used to calculate the average weight in the test phase
and c is the style type of the target style domain.

2.3. Loss Function

Global loss function L is the weighted sum of loss Ladv of adversarial capability,
perceived loss Lper, and style classification loss Lcls. Moreover, λper and λcls are the weights
of Lper and Lcls, respectively.

L = Ladv + λperLper + λclsLcls (5)

Ladv is the loss value of the discriminator, which is used to distinguish whether the
generated image and the input batch of the original style images belong to the same
style category.
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Ladv = Eyc ,yc
i∼Y,c∼N [− log D(yc

i , {yc
i }

M
i=0)] + Ex̃c∼G(x),yc

j∼Y,c∼N [− log(1− D(x̃c,
{

yc
j

}M

j=0
))] (6)

where M is the number of style images with value. When M > 2, anti-loss Ladv should have
a good convergence effect with iteration.

Lper of perceived loss can be expressed as follows:

Lper = λcLc + λsLs (7)

where Ls is calculated with the mean and label difference of style features.

Ls = El∼Nl((µ
1
yc − µ1

x̃c)
2
+ (Gram1

yc − Gram1
x̃c)

2
) (8)

Content loss Lc is the expected L2 distance between the target feature (the extracted
feature of the style image) and the output image feature.

Lc = Ex∼X,c∼N‖φ(x)− φ(x̃c)‖ (9)

where φ(x) represents the characteristics of layer 41 of Relu layers. When training the
network, the style image is randomly selected from the target style dataset. The content
image is transferred to the target style domain, and all the mappings in multiple artistic
style areas are learned.

Loss of style classification Lcls uses discriminator function Dcls to determine whether
the style category of the generated image is correct.

Lcls = Ey∼Y,c∼N(− log Dcls(c
∣∣yc)) (10)

3. Process of Artistic Style Transfer Based on DE-GAN

We propose DE-GAN to transfer artistic design styles, which mainly integrates U-net
network, MiDaS network, texture extraction network, and color histograms. It is used for
style transfer from works of art using four features: shape, texture, color, and space. After
determining the content image and style image, the network art image is used to train
DE-GAN. In each iteration of training, two groups of pictures are randomly selected as
DE-GAN style image input xs and content image input xc. The network is generated to
generate the image, and network extraction is lost to generate the image in the training
process; then, the generator generates image xg. When the discriminator loss of DE-GAN is
no longer reduced, the DE-GAN model with optimal weight is obtained. At this time, the
style image of the target is used as the style input, and the target content image is used as
the content input; DE-GAN outputs the migrated artistic appearance image. The whole
process is shown in Figure 6.
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The result of applying our method to a real image is shown in Figure 7. The left
pictures are the real pictures, while the middle images are the pictures of the selected
styles, and the right images are the pictures obtained by applying the method in this paper.
The styles chosen are the oil painting style and the sketch style. Through the subjective
feelings provoked by the generated images, we can see that this method can be applied to
different scenes for photo-generated color unity, style harmony, and details, preserving the
integrity of the artistic image; the method can keep the structure of the real picture as much
as possible and realize the artistic style of the picture. Further subjective and objective
comparative analyses are introduced in detail in the next part of the experimental analysis.
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4. Experiment and Discussion
4.1. Convergence of Loss Function

The loss function curve corresponding to the training of DE-GAN is shown in Figure 8.
With the iteration of training, the confrontation loss keeps decreasing and tends to converge,
which indicates that the training of DE-GAN tends to be stable and that the migration
ability of the network gets stronger. Content loss reflects the consistency of image content
of the generated image and content image, and the smaller the content loss is, the more
consistent the style is. The content loss keeps decreasing until convergence, which indicates
that the difference in content between the generated image and content image is gradually
reduced and stabilized while DE-GAN learns migration ability. Style loss reflects the
style loss between the generated image and the style image, and the reduction in style
loss indicates that the probability of the generator “cheating” the discriminator increases
and finally stabilizes, after which the style learning ability of DE-GAN is not further
improved to prevent the transition of the learning style from causing content loss and
confrontation loss.
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4.2. Experimental Setup

The hardware environment used for the experiments was a A4000 graphics card
with 16G video memory, and the deep learning framework was PaddlePaddle. We
used the Kaggle open-source artistic image dataset and part of the image material col-
lected by the authors from the network as the training set for DE-GAN, which contained
4410 sample images of artworks; the artistic styles covered sketches and reliefs. The train-
ing set contained 4410 sample images of artworks, covering various types of art, such
as drawings, reliefs, prints, paintings, and sculptures. In the experiments, Batchsize was
set to 4; the learning rate was set to 0.0002; and the learning rates of the generator and
discriminator were set to 0.0005. The Adam optimizer was used to optimize the network.

4.3. Qualitative Evaluation

In this section, DE-GAN is compared with two state-of-the-art GAN methods, Style-
GAN [12] and CycleGAN [7], using unpaired data. Figures 9 and 10 show the qualitative
comparison effect diagrams of DE-GAN and the two compared methods. The same real
photo was used as the input test image, and two types of artworks, sketch (Figure 9) and
oil painting (Figure 10), were used as style images, respectively. It can be seen that all
three methods successfully generated artistic images that were consistent with the style
images. In the sketch style pictures in Figure 9, the reconstructed sketch renderings of
different algorithms are subjectively visual. The vase image reconstructed using DE-GAN
has a clearer visual effect, and the transition between the main content of the picture and
the background is more natural and clearer. The relationship between light and shade is
more harmonious, and the main content is more three-dimensional. In contrast, the image
background obtained by applying the StyleGAN and CycleGAN algorithms is slightly
messy, which does not conform to the characteristics of real images. In the vase image
obtained by applying StyleGAN, it can be clearly seen that the overall image is blurred; the
main content of the image is not prominent enough; and the main body and the background
are integrated. It can be seen that the sketch style images reconstructed using the algo-
rithm in this paper have relatively better contour edge information, and the lines contain
more detailed information, which can better highlight the main content of the images
and present a more realistic sense of brush strokes. Novice painters can learn the painting
techniques of artists by examining the subtle differences between the original photo and our
generated painting.
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From the style transfer of the oil painting style shown in Figure 10, it is obvious that
DE-GAN, StyleGAN, and CycleGAN could all effectively transfer the oil painting style;
however, it can be clearly seen that because StyleGAN and CycleGAN only produce simple
image styles, the obtained artistic images have the problems of gradation blur, image
distortion, and so on, and local areas are easily over-stylized. The resulting image loses the
content of the original photograph. Relatively speaking, the artistic images obtained using
our method have better performance. In this method, the feature information style of the
four elements is extracted, and the relevant features of the content image are matched, so
that the sense of hierarchy in the content image is well preserved, while the artifacts are
eliminated; thus, style images with clear structure and fine details can be obtained.

From the style transformation of the traditional Chinese ink painting style shown
in Figure 11, it can be seen that although all three methods achieved style transfer, the
migrated images obtained using DE-GAN and StyleGAN show contrast between the
light and shade of the main body of the image and retain most of the details of the main
body. This makes the generated image look clearer and more three-dimensional, which is
where CycleGAN falls short. Compared with DE-GAN, the overall color obtained with
the StyleGAN algorithm is redder. However, it should be noted that with the traditional
Chinese ink painting style, the three methods cannot deal with the image background
details and cannot keep the details of the original image background.
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4.4. Quantitative Evaluation

It is difficult to objectively evaluate the algorithms using only visually subjective
evaluation of the stylized images; therefore, in terms of quantitative objective evalua-
tion, this section introduces multi-metric evaluation criteria to quantitatively compare the
performance of each method in multiple aspects.

• Feature similarity index (FSIM)

In terms of objective metrics for image quality assessment, the structural similarity
index method (SSIM) [22], which evaluates image quality in terms of three dimensions,
image structure, brightness, and contrast, is widely used. SSIM takes values in the range of
0 to 1, and larger values indicate higher image similarity. Moreover, the feature similarity
index matrix (FSIM) [23] is an extension of the SSIM based on the algorithm that considers
that not all pixels in an image have the same importance; for example, the pixel points
at the edges of an object are certainly more important for defining the structure of the
object than the pixel points in other background areas, which can be described by the
following equation:

FSIM =
∑ x∈ΩSL(x)PCm(x)

∑ ∑ x∈ΩPCm(x)
(11)

where PCm denotes phase consistency and SL is a function of the gradient.

• Mean SSIM index (MSSIM)

The mean SSIM index (mean SSIM; MSSIM) [24] characterizes the average of the SSIM
values of content images and migrated images, and the SSIM values of style images and
migrated images. The formula for calculating the index of mean SSIM can be expressed as

MSSIM(X, Y) =
1
M

M

∑
j=1

SSIM(xj, yj) (12)

where X and Y are the reference image and the distorted image, respectively; and xj and
yj are the image contents of the jth local window. Moreover, M is the number of local
windows in the image.

• Image average gradient

The average gradient of the image reflects the clarity and texture variation of the
image; the larger the average gradient is, the clearer the image is, and the more detailed
content it contains. It can be calculated with Equation (13).

AvG =
1

M× N

M

∑
i=1

N

∑
j=1

√√√√(
∂ f
∂x

)
+
(

∂ f
∂x

)
2

(13)

where M × N denotes the size of the image, ∂ f
∂x denotes the gradient of the horizontal

direction of the image, and ∂ f
∂y indicates the gradient of the image in the vertical direction.

Figure 12 gives the quantitative evaluation results of three methods, DE-GAN, StyleGAN,
and CycleGAN, using the three metrics. At the same time, to ensure the correctness of the
comparison and to reduce chance, three sets of images were used for each method in the
comparative analysis.
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As can be seen from Figure 12, the migrated images obtained using the DE-GAN
algorithm in this paper have small improvements in FSIM, MSSIM, and average gradient
compared with the StyleGAN and CycleGAN algorithms, which indicates that the method
in this paper has better performance in terms of structural features, image distortion, image
sharpness, and texture details than the other three methods and achieves stylization while
preserving the details of the content images to the greatest extent. However, it should be
noted that due to the more complex network, the inference speed of DE-GAN is lower than
that of StyleGAN and CycleGAN. The comparison of the time taken is shown in Table 1.

Table 1. Comparison of time taken by CycleGAN, StyleGAN, and DE-GAN.

Method Average Reasoning Time for a Single Picture (ms)

StyleGAN 15.64
CycleGAN 26.78
DE-GAN 42.63

5. Conclusions

In this paper, a style migration model based on DE-GAN for images of artworks is
established. Applying this model can transform real images into artworks in different
style types by means of style migration. In the model, U-net, multi-element extractor,
fast Fourier transform, and MiDas depth estimation network are applied as multi-feature
extractors to extract color features, texture features, depth features, and shape masks from
style images, which are composed of multiple features, as the input of the style extraction
network. The self-encoder structure is also used as the content extraction network kernel to
generate the network, which shares the style parameters with the feature extraction network
and finally achieves the generation of artwork images in three-dimensional artistic styles.
After an experimental comparison with StyleGAN and CycleGAN, the images generated
using DE-GAN are shown to possess higher image quality subjectively, and according
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to the quantitative analysis, their structural features, image distortion, image sharpness,
and texture details, as well as other related indexes, are better than those obtained using
other advanced methods. However, we must point out that DE-GAN is a general artistic
style migration network. Compared with some special style migration methods, such as
CartoonGAN, in the field of animation, the style migration network of DE-GAN has a
worse migration effect than CartoonGAN.
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