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Abstract: In this work, first-principles calculations have been utilized to predict the existence of a
new Cu2TeO6 monolayer. It is shown that the predicted material is dynamically and thermally stable.
The Cu2TeO6 monolayer is also found to be a narrow band gap semiconductor with a band gap
size of 0.20 eV. Considering the obtained properties of the Cu2TeO6 monolayer, it is proposed for
applications in various nanodevices in electronics and straintronics.
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1. Introduction

Two dimensional (2D) materials are atomically thin sheets that exhibit unique proper-
ties with lots of potential for technological applications, and they possess an abundance of
applications which remain unexplored by fundamental science. Two dimensional materials
also serve as building blocks for a variety of the next generation layered and composite
materials [1,2]. Since the isolation of the first 2D material, graphene, from a bulk graphite,
thousands of 2D materials have been developed. For example, graphene-like 2D materials
such as the boron nitride (h-BN) monolayer [3,4] and transition metal dichalcogenides
(TMDs), e.g., MoS2, WS2, MoSe2, and WSe2 [5,6], MXenes [7], mono-layered silicon carbides
(SixCy) [8], and monochalcogenides (GaSe) [9], etc.

The reliable synthesis of 2D materials is an important first step towards characterizing
the size-related changes in their properties, which provides ways to integrate them into
many applications [10]. Synthesis strategies can be divided into top-down and bottom-up
methods. In the bottom-up approach, nano-scale materials are constructed from atomic
or molecular precursors which grow into complex structures [11,12]. On the other hand,
the top-down approach carves nano-scale structures by the removal of materials from bulk
solids using various exfoliation methods [13–15]. Two dimensional materials synthesized
using the methods described above have many unusual properties. For example, MoS2
has a tunable bandgap, and it can be used as a hole transport layer in solar cells [16], and
mono-layered titanium oxide (TiO2) can be used to enhance the dielectric properties of
polyvinylidene fluoride [17], etc.

However, it is difficult to carry out experimental studies on such thin materials due to
experimental constraints, as the experiments are costly and time consuming. This means
that theoretical and computational studies can be considered as an integral part of the
research on 2D materials. At the moment, there are many theoretical methods for studying
2D materials such as machine learning-based approaches [18], first-principles calculations
based on the density function theory [19], the Monte Carlo method [20], and finite element
simulations [21], etc. More specifically, first-principles calculations have been found to
be a powerful tool for predicting the structures and properties of materials due to their
consistency with the experimental results. Using first-principles calculations, the structure
and properties of various 2D materials such as the novel Dirac material TiZrB4, with its
negative Poisson ratio [22], V2O3, with its quantum anomalous Hall effect [23], and high
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temperature ferromagnetic Co2Ti2Sn2 [24] and BiXenes [25] have been predicted. It is also
notable that many 2D materials, in particular, hematene [26], Fe2O3 [27] and FeTiO3 [28],
have been synthesized based on first-principles simulations results.

In this work, a new material, the Cu2TeO6 monolayer, which is 2D analog of bulk
Cu2TeO6 [29], is predicted using first-principles calculations. Its dynamic and thermal
stability is studied. The comprehensive analysis on the properties of the predicted Cu2TeO6
monolayer is also conducted. Particularly, its electronic and mechanical properties are
investigated.

2. Materials and Methods

The unit cell structure of the Cu2TeO6 monolayer was designed based on the geometry
of primitive unit cell of a bulk Cu2TeO6, which was available in the Materials Project
database (mp-1188594) [30]. The structural and thermodynamic stabilities of the opti-
mized unit cell were defined based on the phonon dispersion spectra using the Phonopy
code [31] and ab initio molecular dynamics (AIMD) calculations [32]. Calculations were
performed using the plane-wave method and implemented in the Vienna Ab initio Simula-
tion Package [33]. The calculations were performed using the Perdew−Burke−Ernzerhof
(PBE) exchange−correlation functional under the generalized gradient approximation
(GGA) [34]. The optimization was stopped once all of the components of all of the atomic
forces were smaller than 10−4 eV/Å and the change in total energy was less than 10−8 eV.
The first Brillouin zone was sampled with a 12× 12× 1 k-mesh grid, and the kinetic energy
cut-off of 520 eV was selected. The periodic boundary conditions were applied for the
two in-plane transverse directions, while a vacuum space of 20 Å was introduced to the
direction that was perpendicular to the surface plane. The methodology for the calculation
of the mechanical properties can be found in previous works [35,36].

3. Results

The atomic structure of the predicted Cu2TeO6 monolayer is shown in Figure 1a. It
has a monoclinic unit cell, similarly to its bulk counterpart. Structural parameters of the
predicted Cu2TeO6 monolayer can be found in Table 1. Firstly, to show a kinetic stability of
the predicted Cu2TeO6 monolayer, the phonon dispersion spectra along the high symmetry
directions Γ→Y→M→A→Γ→L2→Γ→V2 of the Brillouin zone for the Cu2TeO6 monolayer
were calculated. According to Figure 1b, the phonon dispersion curves of the Cu2TeO6
monolayer are positive in whole of the Brillouin zone, and the transverse, longitudinal, and
out-of-plane acoustic modes show a normal linear dispersion around the Γ point, which
confirms the kinetic stability of the Cu2TeO6 monolayer.
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Table 1. Structural parameters of the Cu2TeO6 monolayer.

a 5.272 Å
b 5.272 Å
α 100.25
β 100.25
γ 112.43

Thermal stability of the Cu2TeO6 monolayer is verified though the estimation of its
formation energy Eform:

Eform = Etot − NCu·ECu − NTe·ETe − NO·EO (1)

where Etot is the total energy of the Cu2TeO6 monolayer, ECu, ETe, and EO are the energies
of single Cu, Te, and O atoms, and NCu, NTe, and NO are the numbers of the Cu, Te, and O
atoms. The negative Eform = −1.72 eV/atom that was found suggests the thermodynamic
stability of the Cu2TeO6 monolayer.

To confirm the thermal stability of the materials, AIMD simulations conducted at a
room temperature of 300 K are usually used. Figure 2a shows the total energy fluctuation of
the Cu2TeO6 monolayer system at 300 K for the time of 4 ps. It can be seen that there were
no artificial energy fluctuations. In addition, according to Figure 2b, there were no visible
changes in the structure of the Cu2TeO6 monolayer happening after 4 ps, which suggests
its thermal stability. To clarify the application temperature range of Cu2TeO6 monolayer, its
stability at higher temperature of 320 K for the time of 4 ps was also evaluated via an AIMD
simulation. Figure 2c presents the total energy fluctuation of the Cu2TeO6 monolayer
system at 320 K for the time of 4 ps. It is seen that there are also no artificial energy
fluctuations. In addition, according to Figure 2d, there were no structural changes in the
Cu2TeO6 monolayer after 4 ps, which suggests its thermal stability at 320 K.
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Figure 2. Total energy fluctuation obtained from AIMD simulations conducted at 300 K (a) and 320 K
(c) for the time of 4 ps for the Cu2TeO6 monolayer. The atomic structure of the Cu2TeO6 monolayer
at 300 K (b) and 320 K (d) after 4 ps.

To identify the bonding type in the Cu2TeO6 monolayer, the electron localization
function (ELF) is simulated and analyzed. It is known that the ELF value, which is in the
range from 0 to 1, reflects the degree of charge localization in the real space, where the
values close to 0 represent the existence a free electronic state, while the values close to 1
represent a perfect electron localization [37–39]. The ELF plot for the Cu2TeO6 monolayer
with the isosurface value of 0.70 is presented in Figure 3a. According to Figure 3a, the
electron localization is high at the regions around the sites of the O anions, while at the
Cu and Te cations sites the value of ELF is low. A large difference found in the ELF plot
proposes the existence of an ionic bonding in the Cu2TeO6 monolayer. This conclusion is
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in line with the fact that an ionic type of bond is characteristic of the bonded metal and
non-metal, the difference in the electronegativity of which is higher than 1.5. Particularly,
the electronegativity of O (3.5) and Cu (1.9) is higher 1.5, and the electronegativity of Te
(2.1) is lower the electronegativity of O (3.5) by 1.4.
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The work function (WF) is a critical parameter to characterize a material [40]. It is
defined as follows:

WF = Evac − EFermi (2)

where Evac is the energy level of a stationary electron in the vacuum, and EFermi corre-
sponds to the Fermi level of the system. The calculated WF of the Cu2TeO6 monolayer is
found to be 7.76 eV, as shown in Figure 3b, which is much higher than it is for the most
of the 2D materials such as graphene (4.60 eV) [41] and borophene (5.31 eV) [38] and 2D
metal chlorides [35] and bulk metals [41] such as Ni (5.23 eV) and Pt (5.65 eV). Importantly,
the materials with such a high WF value can be efficiently integrated, for instance, in
photovoltaic devices based on a high-WF material/low-WF material hybrid junctions [42].

The calculated band structure and the local density of states (LDOS) of the Cu2TeO6
monolayer are shown in Figure 4. It is predicted that the Cu2TeO6 monolayer is a direct
band gap semiconductor with the conduction band minimum (CBM) and valence band
maximum (VBM) located at the Y and M points, and its band gap size is found to be 0.20 eV
(Figure 4a). According to the LDOS plot in Figure 4b, both the CBM and VBM of the
Cu2TeO6 monolayer are formed of the Cu d states and O p states. Such a narrow band gap
monolayer semiconductors can be used in infrared nanodetectors [43].

The mechanical stability of the Cu2TeO6 monolayer is also evaluated using the condi-
tions presented by Mazdziarz [44]. As the elastic tensor is calculated based on the periodic
boundary conditions, an arbitrary vacuum is presented in the out-of-plane direction when
one is dealing with the monolayer. Therefore, the output values of the calculated elastic
constants should be correct by eliminating the arbitrariness of the vacuum padding. Partic-
ularly, the Cij components (i, j 6= 3) should be adjusted by multiplying them by the length of
the vacuum padding [45]. For the considered Cu2TeO6 monolayer elastic constants matrix
is further calculated, the values of the obtained elastic constants Cij are collected in Table 2.
According to [44], the mechanical stability criteria for the oblique Bravais lattice are the
following:

C11 > 0

C11C22 > C2
12 (3)

det
(
Cij

)
> 0
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Table 2. The calculated elastic constants Cij for the Cu2TeO6 monolayer.

C11 101.18 N/m
C22 73.29 N/m
C12 27.26 N/m
C44 34.65 N/m

Based on the data presented in Table 2, the Cu2TeO6 monolayer is found to be me-
chanically stable as it satisfies the criteria in Equation (3). In addition, the mechanical
properties of the Cu2TeO6 monolayer such as Young’s modulus, Poisson’s ratio, and the
shear modulus are calculated.

Young’s modulus of the monolayer for strains in the x and y directions can be calcu-
lated as [46,47]:

E[x] =
C11C22 − C2

12
C11

, and E[y]=
C11C22 − C2

12
C22

(4)

The shear modulus of the monolayer can be calculated as [46,47]:

G = C66 (5)

Poisson’s ratio of the monolayer in the x and y directions can be calculated as [46,47]:

v[x] =
C12

C11
, and v[y] =

C12

C22
(6)

The spatial dependence of Young’s modulus, the shear modulus, and Poisson’s ratio
of the Cu2TeO6 monolayer are presented in Figure 5. It is found that these quantities are
direction dependent. Young’s moduli of the Cu2TeO6 monolayer in the x and y directions
are found to be Ex = 65.95 N/m and Ey = 91.04 N/m, respectively. The shear modulus of
the Cu2TeO6 monolayer is found to be G = 34.65 N/m. Poisson’s ratios of the Cu2TeO6
monolayer in the x and y directions are found to be vx = 0.21 and vy = 0.37, respectively.
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4. Discussion and Conclusions

In this work, a novel material, the Cu2TeO6 monolayer, is discovered. Its dynamic
and thermal stability is studied and confirmed. Importantly, an application of the Cu2TeO6
monolayer is possible at various temperature conditions and geographical locations, from
Nordic countries to the tropics, as its stability is confirmed at a room temperature of 300 K
and at the elevated temperature of 320 K.

It is found that the Cu2TeO6 monolayer exhibits a narrow band gap of 0.2 eV and a
high WF value of 7.76 eV. In addition, the Cu2TeO6 monolayer has anisotropic mechanical
properties with the highest Young’s modulus of 91.04 N/m, shear modulus of 34.65 N/m,
and Poisson’s ratio of 0.37.

These properties make the Cu2TeO6 monolayer a good candidate for applications in
various nanodevices. Particularly, due to its exceptionally high WF value, the Cu2TeO6
monolayer is a good candidate material for photovoltaic devices [42], metal–insulator–
metal capacitors [48], and high-WF anodes [49], etc. In addition, despite the Young’s
modulus of the Cu2TeO6 monolayer being ~3 time lower than that of graphene [50], which
suggests its lower stiffness compared to graphene, the Cu2TeO6 monolayer possesses higher
elasticity relative to graphene [51]. This offers the application of the Cu2TeO6 monolayer in
straintronic nanodevices [52].
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