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Featured Application: The artifact developed in this article is applicable to AGV and produc-
tion planning optimization problems that align with the principles of the job-shop scheduling
problem (JSSP) and the flexible job-shop scheduling problem (FJSSP).

Abstract: Artificial intelligence is considered to be a significant technology for driving the future
evolution of smart manufacturing environments. At the same time, automated guided vehicles
(AGVs) play an essential role in manufacturing systems due to their potential to improve internal
logistics by increasing production flexibility. Thereby, the productivity of the entire system relies on
the quality of the schedule, which can achieve production cost savings by minimizing delays and the
total makespan. However, traditional scheduling algorithms often have difficulties in adapting to
changing environment conditions, and the performance of a selected algorithm depends on the indi-
vidual scheduling problem. Therefore, this paper aimed to analyze the scheduling problem classes of
AGVs by applying design science research to develop an algorithm selection approach. The designed
artifact addressed a catalogue of characteristics that used several machine learning algorithms to find
the optimal solution strategy for the intended scheduling problem. The contribution of this paper
is the creation of an algorithm selection method that automatically selects a scheduling algorithm,
depending on the problem class and the algorithm space. In this way, production efficiency can be
increased by dynamically adapting the AGV schedules. A computational study with benchmark
literature instances unveiled the successful implementation of constraint programming solvers for
solving JSSP and FJSSP scheduling problems and machine learning algorithms for predicting the
most promising solver. The performance of the solvers strongly depended on the given problem class
and the problem instance. Consequently, the overall production performance increased by selecting
the algorithms per instance. A field experiment in the learning factory at Reutlingen University
enabled the validation of the approach within a running production scenario.

Keywords: AGV scheduling; optimization; constraint programming; machine learning; algorithm
selection

1. Introduction

With the introduction of Industry 4.0, production systems have become increasingly
complex within the last few years [1]. This is, on one hand, due to the growing size,
but it is also due to the extended automation influences in manufacturing environments.
As a result, the demands on intralogistics in terms of flexibility and internal control are
increasing. One major development within the technology of material handling is the
evolution of autonomous mobile robots (AMRs), including AGVs [2]. AGVs are wheel-
based and unmanned vehicles that transport small or large unit loads along the floor of
a facility. These load carriers provide the internal and external transport of materials [3].
Two of the main enabling software technologies behind AGVs are scheduling and routing.
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Thereby, dynamic AGV scheduling models have the potential to minimize delays and
reduce production costs by facilitating a minimal production makespan [4].

Scheduling, in general, is a decision-making process that deals with the allocation
of resources to tasks over given time periods, while the goal is to optimize one or more
objectives [5]. Thereby, resources and tasks can take many different forms, and the ob-
jectives themselves may range from a minimization of the completion time of the last
task to the minimization of overall delay, depending on the use case. Scheduling can be
either static or dynamic; in static scheduling, all task information is stable and obtained
in advance, while dynamic scheduling considers uncertainties on the shop floor [6]. The
majority of scheduling problems are NP-hard problems, which are more difficult to solve
than others. This is because the computation time required for solving a problem increases
faster as the size of the problem grows [7]. There are a wide variety of approaches for
solving scheduling problems. However, they differ in their solution quality. Traditional
scheduling approaches include three major areas: heuristic approaches, such as dispatching
rules; metaheuristics, such as simulated annealing, tabu search, local search, and genetic
algorithms; and exact methods, such as mathematical programming (MP), mixed-integer
programming (MIP), linear programming (LP), integer linear programming (ILP), and
mixed integer linear programming (MILP) [8,9]. Another emerging technology for opti-
mizing scheduling problems is constraint programming (CP). The dynamic selection of
the appropriate algorithm for a specific scheduling problem is a new challenge, especially
in the case of changing framework conditions. Considering the new complexity arising
within production systems, the dynamic selection of the most appropriate algorithm for
a specific scheduling problem can be beneficial. Depending on the scheduling problem,
some algorithms might be more efficient than others, especially when considering the
specific instances within a scheduling problem.

Algorithm selection has been part of research for a long time. The algorithm selection
problem was introduced in 1976 [10]. Three major characteristics help to categorize a model
for algorithm selection: the problem space, algorithm space, and performance space.
Algorithm selection has become especially relevant in the last decade, as researchers
are increasingly investigating how to identify the most suitable existing algorithm for
solving a problem instead of developing new algorithms [11]. This is because, in some
scenarios, a new approach will improve the current state of the art but only for some
problems. Selecting the most suitable algorithm for a particular problem aims to mitigating
these problems and has the potential to significantly increase performance in practice [12].
Researchers use the benefits of algorithm selection to explore the details of data and to
make use of data characteristics in order to choose the most promising algorithm to save
computational time and increase performance.

For executing the algorithm selection process, researchers make use of different tech-
niques to select algorithms from several algorithms for solving optimization problems, such
as integration or hyper-heuristics. Hyper-heuristics select between low-level heuristics
for solving optimization problems [13]. They operate at a higher level of abstraction than
traditional heuristics, which makes them more flexible and adaptable to different problem
domains. Additionally, it is possible to use integration as part of an algorithm selection pro-
cess. Therefore, a set of algorithms and performance metrics is defined, and an integration
method calculates the overall performance of each algorithm based on metrics [14]. The
difference between these ideas, in essence, is that the algorithm selection method refers
to the overall process of selecting an algorithm for a given problem, which can involve
a variety of different techniques and approaches. These techniques can be integration,
metaheuristics, or hyper-heuristics, but machine learning also finds frequent application.

Machine learning has received considerable attention in recent years due to its ability
to learn patterns in data relating to a specified output. It extracts useful knowledge from the
generated data throughout the search process and can support the detection of a problem
class by evaluating incoming scheduling problems according to their individual character-
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istics. Therefore, machine learning algorithms were implemented to select algorithms for
several problem areas [15].

The motivation lies in the successful application of algorithm selection approaches in
other domains. One outstanding example within the field of satisfiability problems (SAT)
is the portfolio-based algorithm selection SATzilla [16]. Instead of traditionally choosing
the best solver for a given class of instances, this decision is online on a per-instance basis.
The approach takes a distribution of problem instances and a set of component solvers
as input. It constructs a portfolio that optimizes a given objective function. Furthermore,
Refs. [17,18] introduced algorithm selection approaches for two well-known production
planning problems: the job-shop scheduling problem (JSSP) and the flexible job-shop
scheduling problem (FJSSP). In [17], the authors proposed a CP model with several solvers
for the FJSSP and showed that there was no clear winner over all tested instances. The
same results were obtained in [18] by testing several state-of-the-art algorithms for the JSSP.
They both implemented machine learning algorithms to select the best solver for specific
instances of the individual scheduling problem class.

This article aimed to develop an algorithm selector that is capable of finding the
most suitable scheduling solution strategy with machine learning to determine the best
schedule for a particular AGV problem instance. An automated algorithm selector was built
from two state-of-the-art solvers for the JSSP and FJSSP, which were transferred to AGV
scheduling. Several machine learning models were designed to decide which algorithm to
run on an incoming instance. By selecting the algorithm for every given problem instance,
a scheduling system can react dynamically to incoming scheduling problem types. There is
no static algorithm presented. Instead, the instance is analyzed, and the suitable algorithm,
based on the input features, is chosen. Furthermore, more than one overall problem type
is taken into account. This enables a manufacturing system to be flexible in its approach
to sending transport requests. These can already be assigned to an AGYV, or the scheduler
can allocate the orders to AGVs. The selection of an appropriate algorithm for individual
scheduling scenarios enables a dynamic procedure of scheduling.

To this end, the applied methodology to develop the algorithm selector is first pre-
sented in Section 2. The analysis phase unveils the selection of the algorithm base and the
theoretical concept of the selector. The design phase introduces the problem classification
and the mathematical problem definition. The modeling of algorithms takes place, as well
as the design of the dataset for training the machine learning algorithms. Section 3 presents
the results of the implementation, which include the comparison of scheduling algorithms
and the evaluation of machine learning models. A conclusion summarizing the results and
the discussion follows in Section 4.

2. Materials and Methods

This study followed the principles of design science research [19]. Design science
research aims to develop novel and innovative artifacts as an outcome of research. It reflects
an engineering research tradition, and due to its ability to focus on the construction and
evaluation of an artifact, it is beneficial for developing the intended algorithm selector. In
particular, this article orients towards the cognition process introduced in [20]. The creation
of the artifact takes place in four phases: analysis, design, evaluation, and diffusion.

2.1. Analysis Phase

During the analysis phase, the focus was on the assessment of existing scheduling
algorithms for AGV scheduling to select the algorithm database for the selector. A semi-
systematic literature review served to track the development of scheduling algorithms over
time in order to identify appropriate algorithms for optimizing the AGV scheduling prob-
lems [21]. The literature analysis investigated journals, conference papers, and scientific
books. The sources were in English, except when they contributed substantially to defining
the research gap. Moreover, to ensure high-impact literature, the h-index for referenced con-
ference proceedings needed to be higher than 30, and the Scimago Journal Rank needed to
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be higher than 0.5. The searched databases were Science Direct, SpringerLink, and Google
Scholar. Furthermore, the articles had to contain research on AGV scheduling and consider
disruptions like machine breakdowns, algorithm descriptions for AGV scheduling, or the
classification of problem instances for scheduling. Articles that focused on multi-criteria
optimization, such as multi-objectives, as well as articles focusing on AGV routing or path
planning were not considered.

2.1.1. Scheduling Algorithms

As briefly described in the introduction, there are a variety of algorithms for solving
scheduling problems (Figure 1). Heuristics and metaheuristics find frequent application
for AGV scheduling because they provide exact solutions to scheduling problems in fa-
vor of fast computational times [22]. However, there are some drawbacks in practice, as
the problem and relationship between elements must be well known and heuristics do
not guarantee finding an optimal solution [23]. Besides heuristics, metaheuristics have
been developed as another promising optimization-solving technique for AGV schedul-
ing problems. Tabu search, simulated annealing, and genetic algorithms are high-level
heuristics that guide local search heuristics to escape from local optima [23]. Several studies
have shown the effectiveness of metaheuristics for scheduling in comparison to simple
dispatching rules [24-26]. Nevertheless, despite the successful implementation of genetic
algorithms for improving optimization problems, tabu search and simulated annealing
tend to be more efficient in finding the optimal solution in a reasonable time due to their
operation on a single configuration and not on an entire population [27]. Furthermore,
evolutionary algorithms such as ant colony algorithms, particle swarm optimization, arti-
ficial bee colony, or hybrid water waver optimization are metaheuristics that developed
rapidly in recent years. Several authors have conducted research on their application
in optimization and scheduling scenarios [28-30]. Additionally, exact methods mostly
provide optimal results. However, mathematical optimization can have difficulties in
efficiently handling larger systems, as the computational time often exceeds the time limits
for real-time scheduling [31].

AGV
scheduling
problem

Artificial
Metaheuristics Exact methods intelligence
methods

Dispatching MP, IP, MIP, Reinforcement
rules LP, MILP learning

Simulated Constraint Meural

Hybrid
methods

annealing programming networks

Genetic
algorithm

Neighborhood
search

Evolutionary
algorithms

Water
optim

Figure 1. Algorithms for AGV scheduling problems identified in the literature.
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One emerging optimization approach within the exact methods is CP. CP is a type
of optimization algorithm that uses constraint satisfaction and search techniques to find
solutions for given problems. Constraint-based scheduling is one of the most successful
application areas of CP, a mathematical optimization technique that makes use of artificial
intelligence logic. Researchers explain its success due to the combination of the best of
two fields of research: operations research and artificial intelligence [32]. CP is more flexible
in comparison to mathematical programming. This is because the constraints, as well as
the objective functions, are more general due to the decision variables, besides representing
integer values, real values, and set elements or their subsets of sets [5]. Many researchers
make use of CP for machine scheduling problems such as the JSSP and FJSSP [17,18,33,34].
The major drawbacks of CP were long computational processing times for larger problem
instances and that the building of models required empirical expertise [33,34]. Due to devel-
opments over the last 15 years, CP solvers are now able to solve even large-scale instances
where CP solvers performed worse than heuristics or metaheuristics [9]. Currently, CP
solvers perform exceptionally well for most scheduling problems due to the significant
improvements in recent years for larger problem instances [9,17].

Furthermore, the application of artificial intelligence (AI) for solving scheduling
problems is becoming more common [2]. One of the main application areas of Al to AGV
scheduling that emerged during the review was reinforcement learning [6,22,35-37]. In
addition, Ref. [38] proposed a neural-network-based multi-state scheduling algorithm
for multi-AGVs in a flexible manufacturing system. Besides the individual application
of artificial intelligence to AGV scheduling, more and more studies have focused on the
integration of machine learning for traditional scheduling algorithms, and their findings
illustrate performance improvements compared to individually applied methods [15,39,40].
Usually, state-of-the-art algorithms rely on handcrafted heuristics to make decisions that
are otherwise too expensive to compute or mathematically not well defined [41]. This is
where machine learning comes into play because it has the ability to make these decisions
in a more principled and optimized way.

2.1.2. Theoretical Concept of Algorithm Selector

Due to the identified potential for combining machine learning with state-of-the-art
algorithmes, this article worked on the development of an algorithm selection approach that
makes use of CP solvers as a solution strategy for the scheduling problem and machine
learning algorithms that serve to select the optimal solver for given problem instances.

In the initialization phase, there is no evaluation of algorithms for specific problem
instances available. Therefore, the selected algorithms are applied to a set of training
scheduling problem instances. These instances are solved with several CP solvers. Their
different mathematical solution methodologies and broad application to AGV scheduling
present an interesting viewpoint on AGV scheduling approaches by comparing them.
The objective is, at the same time, the performance metric for evaluating the scheduling
algorithms. Therefore, the overall objective plays an important role in the scoring. After
the application of all algorithms to the test instances, the labeling and feature selection
for the dataset follow. Once the dataset has been labeled, machine learning is introduced.
The input variables are the previously defined features, and the output is the winning
solver measured with the scoring system. During the training phase, the machine learning
algorithms learn the mapping of features to the output variable to select the most suitable
solver for an incoming problem for future applications. The concrete algorithm selection
model is presented in Figure 2. The details of the solvers, scoring system, features, and
machine learning algorithms follow during the design phase.
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Figure 2. Theoretical concept of the algorithm selection approach.

2.2. Design Phase

The creation of the artifact appears during the design phase. The main parts include
the exact problem classification and definition, the modeling of the problem, feature
engineering, the scoring system, and machine learning model implementation.

2.2.1. Problem Classification

Before going into detail about the algorithm selection model, the problem must be
classified. The determination of the exact problem type to solve is important because the
problem type significantly influences the algorithm selection. One of the most discussed
problems within the literature on scheduling is the JSSP. It is considered one of the hardest
combinatorial optimization problems. The JSSP considers a job shop with a number of
machines, where each job would have its own predetermined route to follow [5]. Each job
has a series of tasks that requires the usage of a particular machine for a known duration.
Additionally, the tasks need to be completed in a specified order. The objective is to schedule
the jobs on the machines to minimize the time necessary for processing all jobs. Building
on this, the FJSSP generalizes the job shop and parallel machine environment [5]. The
difference to the job shop is that the flexible job shop considers work centers with a number
of identical machines in parallel. Each job follows its own route and must be processed at
each work center, but any machine can perform the job. Therefore, the scheduling problem
becomes computationally more difficult to solve. This article focuses on the JSSP and FJSSP.
This is because the JSSP is one of the most complex scheduling problems of all scheduling
classes and is therefore a suitable initial scheduling scenario for testing the functionality
of an algorithm selection approach. The reason for FJSSP is the flexibility it offers for
scheduling. It is an extension to the JSSP, and especially as this article focuses on dynamic
AGYV scheduling, the characteristics of FJSSP align with the research objectives. Moreover,
the FJSSP represents one of the most practically relevant problem settings and is of interest
for implementation in real-world productions [17].
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As the JSSP and FJSSP mainly focus on production scheduling, the problem classes
must be transferred to AGV scheduling. AGV scheduling shows similarities to the pro-
duction scheduling problem. Instead of machines as resources, there are AGVs within
the manufacturing environment that need to process a certain number of transport orders
with suboperations. Therefore, the AGV scheduling can be derived from the production
scheduling problem in order to consider different possible AGV scenarios. Depending on
the use case, several scheduling layouts can be displayed and tested. Within JSSP-oriented
scheduling, each job has a series of tasks that require the usage of a particular AGV for
a known duration. For the FJSSP, the processing of a transport order can be performed on
any AGV of a certain AGV group, and the allocation of AGVs to jobs is executed during
the scheduling process.

2.2.2. Problem Definition

The AGV scheduling problem studied in this article focuses on the transportation of
n jobs, where each job has a source or a pickup node as well as a destination or delivery
node. A set of AGVs provides the transportation of jobs. For the model, the fixed parameters
of this optimization problem, the decision variables to be determined, the constraints to
be satisfied, and the objectives to be optimized are described. The mathematical model is
based on previous works [17,18,42,43]. For the JSSP, the following parameters and decision
variables are set:

Set] =1{J1, ..., Jn} of jobs, whereas n = |]| is the number of jobs;

Each job j; € ] consists of a set of q; operations O; = {iy, ... ,igi };
e  They have to be transported on a set A = {Ay, ..., Ay} of K AGVs, and a = | Al is the

number of AGVs;
e  The transportation order of each job (j;) is given by a permutation (fj1, ... , fjs) of A;
e  Eachjob (j) and each AGV (k) is associated with a transport time (tj ).

The schedule is created by assigning each operation a start time (s;) forallj € ], k € A.
In order to be feasible, the schedule has to satisfy the following conditions:

Constraints

The constraints ensure the correctness of the model with regard to certain specifications
of the problem domain. First, it needs to be ensured that all start times are positive.

sj,kZOforalleI,kEA @)

Furthermore, the tasks within one job must be processed sequentially. That means
that the transportation orders must align with the sequenced order of tasks.
Sj/fj,i + tj,f]',i < sj/fj,i+1 for all] €], 1 <i<L |A| (2)
Additionally, there should be no overlap between transport requests processed on the
same AGV.
Sj k > Sik T ti,k V Sik > Sj k + tj,k for all i,j €], ke A i 75] (3)

Objective

For the decision variables, the makespan represents the time needed to complete all
tasks. Furthermore, for each transportation task its start time (s(t) € {0, ..., T}) must be
determined, where T is the scheduling horizon. The scheduling horizon for this scenario is
the sum of all transportation durations.

The makespan (Cmax) is the time of completion of the last job, and the goal is to find a
scheduling order that minimizes the overall makespan of the scheduling.

Cmax = max({sj,k +tx I je], k € A}) 4)

For the FJSSP, the following parameters and decision variables are set:
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o Set]={]Ji,...,]Jn} of njobs;
e  Eachjob J; €] consists of a set of q; operations O; = {iy, ... ,igi };
e  They have to be transported on a set A = {A1, ..., Ay} of K AGVs.

Prerequisite Assumptions:

e  The sets O; are assumed to be linearly ordered for alli € {1,... ,n};
All AGVs and jobs are available at the beginning of the scheduling horizon.

Constraints:

e  Any pair of operations (ij, iy € O;) withj <j’, iy can only start to be transported after
the transportation of i; has completed;

e  Each operation (jj € O;,i € {1, ..., n}) must be processed on exactly one AGV out of
the set of possible AGVs (Ai]. C A) for that operation;

e Each AGV can transport only one operation at a time, and each operation can be
transported by at most one machine at a time;

e  The transportation time of an operation i; € O; of a job Ji€ J on an eligible AGV
(Ag € Ai].) is represented by t% € N*;

e  The set of eligible operations of an AGV (A € A)is Ex = {jj|]; € ]ijj € O3 Ay € Aij}.

Objective:

° Ci]. is the completion time of an operation (j; € O;) of job J; € ] in a schedule;
e  (; is the completion time of job J; € J.

A job is considered to be completed once all its operations are completed, for instance,
G = Ciqi foralli € {1, ..., n}. The main objective is to minimize the makespan.

n}Ci (5)

.....

2.2.3. Dataset

For implementing and training the selector, this study considered benchmark instances
from the literature for the JSSP and FJSSP. This was for several reasons. Firstly, the instances
were publicly available, which ensured transparency and reproducibility. Secondly, several
papers made use of these instances, which facilitated an overall comparison more easily.
Thirdly, the commonly used benchmark instances cover a wide range of problem sizes,
from small instances of six jobs and six machines up to one hundred jobs with twenty
machines. The data type of both instance sets was semi-structured. There was an internal
structure but not one that was suitable for a machine learning process. The data did not
provide any direct features; they had to be designed. The data was organized into a schema
with patterns and logic, which made the data usable for further processing. The JSSP
instances were taken from the instance collection of [44] (http:/ /jobshop.jjvh.nl/, accessed
on 10 December 2022) (Table 1).

Table 1. Overview of the JSSP literature benchmark instance collection.

Source Abbreviation Number of Instances Number of Jobs Number of AGVs
Fisher [45] ft 3 6,10, 20 5,6,10

Lawrence [46] la 40 10, 15, 20, 30 5,10, 15

Adams et al. [47] abz 5 10, 20 10,15

Applegate and Cook [48] orb 10 10 10

Storer et al. [49] SWV 20 20, 50 10, 15

Yamada and Nakano [50] yn 4 20 20

Taillard [51] ta 80 15, 20, 30, 50, 100 15,20

Demirkol et al. [52] dmu 80 20, 30, 40, 50 15, 20
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For the FJSSP, there were also various benchmark instances in the literature. The most
common instances were from [53,54], who transformed the JSSP instances of [45,46]. Table 2
lists all available benchmark instances for the FJSSP and their characteristics.

Table 2. Overview of the FJSSP literature benchmark instance collection.

Source Abbreviation Number of Number of Number of Number of Processing
Instances Jobs Operations AGVs Times
Brandimarte 1993 [53] BR 10 10-20 55-240 4-15 1-19
Chambers and Barnes
1996 [54] CH 21 10-15 100-225 10-18 2-99
Dauzeére-Péres and Paulli
1997 [55] DA 18 10-20 196-387 5-10 10-100
Hurink et al., 1994 [56] HU
edata 65 6-30 36-300 4-15 1-999
rdata 65 6-30 36-300 4-15 1-999
sdata 65 6-30 36-300 4-15 1-999
vdata 65 6-30 36-300 4-15 1-999

20.0 (@)
17.5

15.0

0
G125
I
10.0 [ ]
7.5

5.0
20

To obtain a deeper understanding of the number of jobs and AGVs among the in-
stances, Figure 3 displays the distribution of instance size regarding the number of jobs and
AGVs over the entire dataset. The instances cover the problem space up to larger instances,
but the majority of instances are in the area of 50 jobs x 20 AGVs for JSSP and up to 20 jobs
x 10 AGVs for FJSSP.

JSSP instances FJSSP instances

L ® 18 Instances
16 15
® 30
14
) Y . 45
g 12 ‘ 60
Instances ®
5 < 10 [ ] ®
10 8
@ 15
® 20 6
25
L 4
40 60 80 100 10 15 20 25 30
jobs jobs

Figure 3. Distribution of jobs and AGVs in benchmark instances.

2.2.4. Dataset Labeling

To categorize the problem, the problem instances were labeled in order to obtain
a defined feature set (Table 3). The feature set is crucial for any algorithm selection ap-
proach, as it characterizes the instances and links these characteristics to the performance
of algorithms. First, instance-size-related characteristics seemed evident for one category of
features. These included the number of jobs, the number of AGVs, the number of operations,
the job—AGYV ratio, and skewness. Furthermore, statistical features provided more insight
into the structure of the input data, such as the arithmetic mean of job completion times or
the corrected standard deviation of the job completion times divided by the corresponding
arithmetic mean [17,57]. This labeling created the base for further feature engineering
processes and feature designing to assess which features are the most important for the
desired output.
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Table 3. Feature description for scheduling problem instances.

Group Feature Explanation
Instance-size-related Jobs Number of jobs (n)
AGVs Number of AGVs (k)
Operations Number of operations (i)
Job—AGV ratio Job-to-AGV ratio (n/k)
Skewness Max. of job-to-AGV ratio and AGV-to job-ratio: max(n/k, k/n)
Processing time Travel time of AGV for each operation
Statistical features Mean job Arithmetic mean of job completion times
Min job Minimum job completion times
Max job Maximum job completion times

Standard deviation of the job completion times divided by the corresponding

Deviation job arithmetic mean

Min operation Minimum operation duration time within the entire instance

Max operation Maximum operation duration time within the entire instance

Horizon The estimated total length of a schedule, calculated by summing the estimated

travel times of AGVs

2.2.5. Scoring System

Before being able to appoint the best algorithm for a specific problem instance, the
performances of the algorithms for that instance need to be compared with one another.
Therefore, a scoring system was introduced. In order to measure the performance of the
different algorithms for specific problem instances, each of the proposed solution algo-
rithms was applied to each instance. The performance measure to compare the algorithm
performance in this study was the calculated makespan of the instance. The scoring system
assigns points to an algorithm depending on achieved results. If an algorithm achieves
the optimal solution faster or finds a better solution than all other algorithms, it obtains
a point. If the performance metric is equal, the algorithm requiring less computational time
to solve the instance obtains the point. This scoring system was inspired by the scoring
system used in the MiniZinc Challenge [58].

2.2.6. Modeling of CP Models

After selecting CP as a promising approach for solving scheduling problems during the
analysis phase, the specific solvers still needed to be determined. There were a wide variety
of solvers available for CP, and as the solution quality of traditional scheduling algorithms
varied depending on the problem to solve, so did the performance of different CP solvers.
The MiniZinc Challenge compared different solvers on a set of problem instances. MiniZinc
is a solver-agnostic modeling language for defining and solving combinatorial satisfaction
and optimization problems. The MiniZinc Challenge provided an overview of the current
most successful solvers. OR-Tools is one of the top solvers, winning gold in the international
constraint programming competition for several categories every year since 2013. OR-Tools
is an open-source software suite for optimization developed by Google [59]. For solving
CP problems, they provide two solvers: The CP-SAT solver, a CP solver that uses SAT
methods, and the original CP solver. The CP-SAT solver is the primary OR-Tools solver
for constraint programming and uses techniques for solving SAT problems along with CP
methods. The job-shop scheduling problem is a common problem for the CP-SAT solver.
Additionally, another promising solver is CP Optimizer, developed by IBM, which has the
goal of focusing on industrial optimization problems. Due to their recent developments
and the successful implementation of these solvers in other studies, this study selected
OR-Tools and CP Optimizer for optimizing the scheduling problems.

The OR-Tools implementation for the JSSP and FJSSP was programmed with the
Python API and used the CP-SAT solver provided by Google. The version used was
9.4.1874. CP Optimizer is a constraint optimization solver that is part of the IBM ILOG
CPLEX Optimization Studio, with a focus on scheduling problems. This study used the
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Python API to program the optimization in Python with the CP Optimizer interface, CPLEX
version 22.1.0.0, and docplex version 2.23.221.

2.2.7. Algorithm Selection with Machine Learning

Due to the introduced scoring system, machine learning algorithms can learn which
solver tends to provide satisfying results for a given instance. Machine learning can be
divided into three major areas: supervised learning, unsupervised learning, and reinforce-
ment learning [60]. Supervised learning is the form of machine learning that is most widely
used in practice [61].

The abovementioned problem was modeled as a multi-class classification problem,
which implies classes and a ground truth. The classes were the winning CP solvers, either
CP Optimizer (CPO) or OR-Tools, and the previously determined features. The goal was
to learn a mapping from inputs x that corresponded to the features of the dataset and to
outputs y, wherey € {1, ..., K}, with K being the number of classes, in this case the set of
solution algorithms.

There are several classification algorithms available for predicting the output of
a set of labeled input features. Among the most popular classification algorithms are
logistic regression, decision trees, random forest, K-nearest neighbors (KNN), support
vector machine, and naive Bayes. Furthermore, neural networks are also applicable to
classification problems.

To make the final selection of one machine learning algorithm to determine the optimal
solver, they have to be tested on the dataset. This is because their performance significantly
depends on the given input data. Therefore, only a pre-selection based on preliminary
criteria is reasonable, and the final decision takes place after applying them to the problems.
Due to their characteristics and suitability for the algorithm selection approach, logistic
regression, decision trees, random forest, KNN, and neural networks were pre-selected.
Logistic regression uses the sigmoid function to return the probability of a label. It is often
used for binary classification problems, for instance, true or false and positive or negative.
The decision tree algorithm is one of the most popular algorithms in use today. Decision
trees build tree branches using a hierarchy approach, where each branch can be considered
to be an if-else statement [62,63]. The branches develop by partitioning the dataset into
subsets based on the most important features. Their scale of explainability was ranked
comparably very high in a study assessing several machine learning techniques in terms
of their explainability. Especially when considering the fear of a majority regarding the
black-box character of machine learning, this technique might provide broader consent [64].
Random forest represents a collection of decision trees. Because of the additional layers
added to the model, random forest has better generalization but is less interpretable. KNN
represents each data point in an n-dimensional space and calculates the distance between
one point and another. Afterwards, it assigns labels to unobserved data based on the labels
of the nearest observed data points [63]. Neural networks represent a set of algorithms
that are modeled by the inspiration of the human brain. In this way, they are supposed to
recognize patterns in data.

The algorithms were implemented with the Scikit-learn library, an open-source ma-
chine learning library in Python for predictive data analysis. It is publicly available and
was built using NumPy, SciPy, and matplotlib. Furthermore, the neural network was
implemented with two approaches, one approach with Scikit-learn and the other with
Keras. It is the most widely used deep learning framework among the five top teams on
Kaggle. The parameters were set to defaults if not otherwise mentioned.

3. Results and Discussion

The proposed algorithm selector and the scheduling algorithms were programmed
in Python version 3.9 and run on an 11th generation Intel® Core i7-1165G7 @ 2.80 GHz
processor with 16.0 GB of RAM. The time limits of the solvers were set to 30 s and 300 s
to ensure realistic calculation times and to also test the effects of extending the time limit.
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The experiments were conducted on all presented instances, and the solvers successfully
solved the instances.

In order to ensure the correctness of the algorithms, the results were compared to
the results of [65] for the FJSSP benchmark instances and the JSSP with the benchmark
instance collection [66]. The comparison showed similar results, which ensured the overall
correctness of the algorithms. Furthermore, for some instances, CP Optimizer or the OR-
Tools solver found better values for the makespan. This illustrated the development of
solvers over the years and their improvements in solving larger instances faster.

3.1. Computational Study on Benchmark Instances with CP Solvers

Before going into detail about the solvers’ performances per instance, we present the
evaluation of the overall performance. The solvers achieved optimal results for 27% of the
instances when given a time limit of 30 s and 43% of the instances after the extension of the
time limit to 300 s for the JSSP. Regarding the FJSSP, the solvers calculated the optimum for
71.3% of instances with a 30 s time limit and 76.9% of instances with a 300 s time limit, as
shown in Figure 4.

JSSP FJSSP

300

2

;200

150

2 100

B .,

= 50

#

R 11 A= 308 008

Time limit Optimum Time limit Optimum

Figure 4. Optimal results for JSSP and FJSSP.

After calculating the makespan with the introduced solvers, the results were compared
(Tables 4 and 5). During the computational study, it became clear that there was no overall
winner for all problem instances. The distribution of wins for FJSSP instances was balanced
between both solvers compared to the JSSP results. When extending the time limit to
300 s for calculating the makespan, the results for ]SSP differed compared to the previous
experiments with a 30 s time limit. For the FJSSP, the results were similar to the results
with a 30 s time limit. However, the results showed that the winning solvers sometimes
changed for individual instances when changing the time limit. This means that, for
instance, OR-Tools provided better results with the 30 s time limits for one instance, while
CP Optimizer provided a better makespan with a 300 s time limit. Consequently, the time
limit influenced the performance of an algorithm for a specific instance. Nevertheless,
this was mostly applicable for equal makespan values calculated by both solvers but with
different solving times.

Table 4. Scoring points of CP Optimizer and OR-Tools for JSSP instances.

CP Solver 30s 300s

OR-Tools 50 71
CP Optimizer 192 171
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Table 5. Scoring points of CP Optimizer and OR-Tools for FJSSP instances.

CP Solver 30s 300s
OR-Tools 148 146
CP Optimizer 155 157

To evaluate the effects of the algorithm selection approach for industrial applications,
the assessment of the makespan was important. For 54 instances of the JSSP with a 30 s
solving time, both solvers achieved the same makespan. Based on a time limit of 300 s, the
solvers calculated the same makespan for 72 instances. In addition, it was interesting to
evaluate the impact on the makespan by extending the time limit. For JSSP instances, the
extension of the time limit to 300 s achieved time savings of 2.5% over all tested instances.
Moreover, the makespan improvements by selecting between two solvers achieved a 5.9%
decrease in the makespan for the 30 s time limit and a 2.9% decrease in the makespan for
300 s (Figure 5). Consequently, the selection has the potential to strongly influence the im-
provement in the overall productivity of production. The smaller decrease when extending
the time limit is not surprising because the longer solving time led to a convergence of
solutions at the same time. For instance, with a 300 s time limit, the solvers achieved more
equal values for the makespan compared to the 30 s solving time. Consequently, especially
for use cases where a smaller calculation time is necessary, for example, dynamically react-
ing production systems, an algorithm selection can be useful and can increase production
performance by up to 5.9%.

JSSP 30s JSSP 300s

800,000
"""" 700,000
600,000

500,000

Makespan

400,000

300,000

2nd place Ist place 2nd place Ist place
Figure 5. Makespan differences by algorithm selection per instance for JSSP.

Regarding the FJSSP, the extension of the time limit to 300 s achieved, over all instances,
time savings of 0.18% compared to the winning makespan values for 30 s. Analyzing the
minimization of the makespan by selecting the two solvers revealed a saving of 6329 time
units for the 30 s time limit and 1245 time units for the 300 s time limit, calculated over
all tested instances (Figure 6). This showed that the extension of the time limit did not
substantially improve the overall performance regarding the makespan.

Within 30 s of solving time, both solvers achieved the same makespan for 187 instances.
With a 300 s solving time, both solvers calculated the same makespan for 219 instances.
Therefore, there were only small changes between first and second place regarding the
makespan metrics. For the 30 s solving time, the difference was 1.31%, and for 300 s the
makespan was reduced by 0.3%. Nevertheless, for those instances, the individual solving
times deviated widely. Taking the solver with the smaller calculation time saved 77.5%
in the calculation time for the 300 s time limit in comparison to the solving time of the
second-choice solver and 43.1% for the 30 s maximum calculation time.
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Figure 6. Makespan differences by algorithm selection per instance for FJSSP.

Considering the JSSP instances, there were fewer similar makespan values. Never-
theless, when comparing those instances with the similarly calculated makespan, the time
savings by selecting between solvers was high as well. For the 30 s overall time limit, the
selection saved 50.3% in the calculation time and 22.9% for a 300 s overall time limit.

Although the solvers achieved the same makespan, the difference in calculation time
was high, and the algorithm selection could save up to 77.5% in the calculation time. There-
fore, especially in industrial environments where time is an expensive factor, an algorithm
selection can save costs by reducing the computational time and the production makespan.

3.2. Machine Learning Training and Evaluation

After implementing the selected machine learning models, they were trained on the
designed datasets. Furthermore, feature engineering ensured the assessment of feature
importance. Three different methods were applied for measuring feature importance:
a heatmap with the Pearson correlations, the built-in class feature importance of tree-based
classifiers, and random forest classifiers for evaluating feature importance. After selecting
the features with the highest correlation to the output, the machine learning models were
trained. The evaluation phase was ensured to test the robustness of the models and their
validity. It implied the determination of the correct machine learning models to ensure the
meeting of requirements and to solve the initial problem. For classification problems, the
accuracy, recall, precision, and F1 score are key performance indicators that build on the
principles of true positives, false negatives, true negatives, and false positives. The results
of the JSSP dataset evaluation are presented in Tables 6 and 7.

Table 6. Performance metrics of machine learning models on JSSP datasets.

Machine Learning Algorithm Solving Time Parameter Tuning  Accuracy  Recall Precision  F1 Score
Decision T 30s Depth =1 0.8361 0.8361 0.6990 0.7614
ccision lree 300 s Depth = 17 0.8033 0.8033 0.8487 0.8254
Random F 30s Estimators = 100 0.8033 0.8033 0.8033 0.8033
andom Forest 300 s Estimators = 100 0.8525 0.8525 0.8580 0.8553
Losistic Rearession 30s Max_iter = 1500 0.8197 0.8197 0.8580 0.8384
& & 300 s Max_iter = 1500 0.8197 0.8197 0.8898 0.8533
NN 30s Neighbors = 18 0.8525 0.8746 0.8525 0.8634
300 s Neighbors = 20 0.8525 0.8525 0.8750 0.8636

The tested models for classification problems provided successful implementations.
Nevertheless, depending on the problem class, the performance altered. For the JSSP
dataset with a solving time of 30 s, the neural network using the Keras implementation,
decision trees, and KNN provided the best results, considering the tested performance
metrics. For the 300 s solving time, random forest and KNN provided the best accuracy
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scores. However, the close values of the performance metrics made a concrete decision for
the best machine learning technique difficult. Therefore, the selection of the best machine
learning model must consider the dataset used.

Table 7. Performance metrics of the neural network for JSSP datasets.

Feed-Forward Neural Network Sklearn  Solving Time Accuracy Recall Precision F1 Score
R =4

andom_state = 43 0s 0.6885 0.6885 07416 07116
activation = logistic
max_iter = 1000 300s
hidden layer sizes (50,60) 0.7377 0.7377 0.8470 0.7661
Feed-Forward Neural Network Keras Accuracy Loss
Loss = sparse categorical cross entropy 30s 0.8361 2.8486
activation = ReLU
Optimizer = Adam 300s 0.5902 2.8396

hidden layer = 1 with density of 100

The performance metrics for the FJSSP datasets are presented in Tables 8 and 9.

Table 8. Performance metrics of machine learning models for FJSSP datasets.

Machine Learning Algorithm Solving Time Parameter Tuning  Accuracy  Recall Precision  F1 Score

Decision Tree 30s Depth =2 0.7500 0.7500 0.7611 0.7555
300s Depth =2 0.6711 0.6711 0.6892 0.6800

Random Forest 30s Estimators = 300 0.6842 0.6842 0.6856 0.6849
300s Estimators = 2 0.5789 0.5789 0.5789 0.5789

Logistic Regression 30s Max_iter = 3000 0.6974 0.6974 0.6979 0.6976
300s Max_iter = 3000 0.6447 0.6447 0.6438 0.6442

KNN 30s Neighbors =8 0.7105 0.7105 0.7113 0.7101
300s Neighbors = 21 0.6842 0.6842 0.6865 0.6854

Table 9. Performance metrics of the neural network for FJSSP datasets.
Feed-Forward Neural Network Sklearn  Solving Time Accuracy Recall Precision F1 Score
Rand tate = 4
andom._state = 43 30 0.7500 0.7500 0.7611 0.7491

activation = logistic

max_iter = 1000 300s

hidden layer sizes (50,60) 0.6711 0.6711 0.6892 0.6705

Feed-Forward Neural Network Keras Accuracy Loss

Loss = sparse categorical cross entropy 30s 0.6316 0.5866

activation = ReLU

Optimizer = Adam

hidden layer = 1 with density of 100 300s 0.6579 0.6266

Compared to the JSSP datasets, FJSSP achieved overall weaker results in terms of
accuracy, precision, and recall. The highest scores for the 30 s solving time were obtained
by the neural network with Sklearn and the decision tree, with an accuracy of 75%. For
the 300 s solving time dataset, KNN and decision trees achieved the highest performance
metrics. Consequently, there was not one machine learning algorithm providing the best
results. The structure of the input data is an important criterion for future prediction
accuracy. Therefore, the assessment of machine learning algorithm performance on the
given data structure must be part of implementing the algorithm approach for an AGV
scheduling use case.
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3.3. Validation of Machine Learning Models

An additional measure to test the validity of the machine learning models is cross-
validation. During the evaluation, the splitting of data into training and test datasets
already validated the models in terms of how they react to unseen data. However, this
validation method can lead to sampling bias if one subset includes only some of the
existing instance groups. Therefore, cross-validation served as another method to ensure
the validity of the created models. K-fold cross-validation ensures more reliability in terms
of accuracy and parameter determination. It is a technique that is commonly used to
measure the performance and generalizability of a model and helps to reduce the chances
of overfitting [67]. For the presented models, a five-fold cross-validation was applied to
measure the overall performance (Table 10).

Table 10. Five-fold cross-validation of mean validation accuracy results.

Machine Learning Algorithm with

Fioe Fold Cr s S JSSP30s  JSSP300s FJSSP30s FJSSP300s

Decision Tree 0.7510 0.6934 0.5970 0.5640
Random Forest 0.7263 0.7181 0.5937 0.5378
Logistic Regression 0.8094 0.7266 0.6600 0.6102
KNN 0.7309 0.6315 0.6404 0.5840
Neural network (Sklearn) 0.7843 0.6527 0.6338 0.6001

Furthermore, in order to validate the model, two new datasets were created with
literature data and randomly created test instances. In this way, the machine learning
models were validated with previously unseen data. To properly validate the results of the
design phase, CP Optimizer and OR-Tools both solved the given instances to evaluate the
prediction by the machine learning models. The comparison of the selector predictions with
the actual results of the two solvers showed satisfying results. For the JSSP, the decision
tree achieved an accuracy of 78.5%, the random forest model achieved an accuracy of 70.1%,
and the neural network achieved an accuracy of 67.1%. For the FJSSP validation dataset,
the accuracy scores of the correct prediction were even higher (Table 11).

Table 11. Accuracy of classification models for validation datasets.

Algorithm Accuracy Scores JSSP FJSSP
Decision Tree 0.7848 0.6406
Random Forest 0.7089 0.9531
Logistic Regression 0.3924 0.8750
KNN 0.3797 0.8281
Neural network (Sklearn) 0.6709 0.8750

The testing of the individual machine learning models on the new datasets emphasized
the interdependency between datasets and algorithm performance. Overall, the results
showed high performance metrics and consequently validated the concept of the algorithm
selection approach for AGV scheduling problems.

3.4. Validation of Approach with Disruptions and Rescheduling

To test the approach in a running factory environment, the algorithm selector made
predictions on a dataset created from real-world data from the learning factory “Werk
150" at Reutlingen University. The learning factory represents a scooter production that
uses AGVs to transport goods between different stations. “Werk 150” is a production
company that replicates processes in the areas of product and work system engineering,
incoming goods, storage, order picking, production, assembly, and distribution, which
are fundamental for the verification of a scheduling system for AGVs [68]. All necessary
processes that impact AGV scheduling are present. For delivering parts, there are three
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different transport vehicles available (Figure 7). Two AGVs and one AMR, which travel
with an average velocity of 0.9 m/s. The transport orders of the vehicles vary among
the production, depending on the outstanding work step. The transport orders are in
JSON format and include information about the operation, the machine ID, the area where
the transport takes place, the line, and the planned quantity. This file format complies
with VDAS5050, a standardization approach in the automotive industry in Germany, which
shall ensure conflict-free and transparent interfaces between AGV fleets and the central
executing software system, independent of the manufacturer.

(b) (c)

Figure 7. AGVs in “Werk 150”: (a) AGV from the company Beewatec that navigates on a designed

track, (b) AGV from the company Carrybots that travels along a marked track, and (c) AMR from the
company Neobotix.

To test the functionality of the algorithm selector, the experiment included different
scheduling scenarios. One scenario considered AGVs that were already assigned to tasks,
whereas the second scenario offered alternatives for assigning the AGVs to orders. In
this case, the scheduler allocated the eligible AGVs to individual tasks to minimize the
makespan of the entire scenario. Furthermore, disruptions within the system were included
to test the reaction of the approach to disturbances. The entering disruption included
a timestamp that specified the already executed orders. These were deleted in the original
scheduling problem in order to reschedule only the pending orders. In the tested scenario,
an AGV failure appeared, and the system replaced the defective AGV with the correspond-
ing substitute. After the adaptation, a new schedule was generated, and the execution of
the plan continued, considering the downtime of the respective AGV.

4. Conclusions

This research focused on the analysis of AGV scheduling and on potential fields of
artificial intelligence to improve the performance of current solutions. The purpose was
to discover the possibility of increasing efficiency with the help of artificial intelligence
for traditional scheduling approaches. By investigating current scheduling algorithms,
constraint programming emerged as a promising solution technique, and the suitability of
the developed artifact for dynamic scheduling approaches was tested with real-world data
from a learning factory environment.

The algorithm selection model resulting from this research helped to save compu-
tational time and improve production efficiency by minimizing the makespan. The ex-
perimental study showed that the automated selection process can increase production
performance by up to 5.9% and can decrease computational power by up to 77.5%. Fur-
thermore, the research supported the statement of other researchers that CP improved
and can solve large instances in a reasonable time. Additionally, CP is easy to adapt to
different constraints and goals, which makes them dynamically adjustable for industrial
requirements. The detailed performance evaluation of the two tested CP solvers showed
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great potential for selecting between both solutions, depending on the instance. Machine
learning algorithms evaluated the performances of existing methods based on the charac-
teristics of a given scheduling instance and achieved up to 88.9% precision in predicting
the optimal solver for a given scheduling problem.

In the future, further parameters such as job priorities, real-time AGV location data,
and battery constraints could be included. Additionally, the application of more objectives
could be of great interest, especially when it comes to how this influences the performances
of algorithms among various problem instances. This work concentrated on the imple-
mentation of constraint programming to solve the scheduling problem. Future research
could test more algorithms, such as tabu search or genetic algorithms, to compare the
performances among the algorithm categories.
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