
Citation: Wang, B.-Y.; Yen, Y.-C.;

Cheng, Y.C. Specifying Internet of

Things Behaviors in Behavior-Driven

Development: Concurrency

Enhancement and Tool Support. Appl.

Sci. 2023, 13, 787. https://doi.org/

10.3390/app13020787

Academic Editors: Christos

Markides, Achilleas Achilleos and

Georgia Kapitsaki

Received: 16 December 2022

Revised: 26 December 2022

Accepted: 30 December 2022

Published: 5 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Specifying Internet of Things Behaviors in Behavior-Driven
Development: Concurrency Enhancement and Tool Support
Bing-Yun Wang , Yi-Chun Yen and Yu Chin Cheng *

Department of Computer Science and Information Engineering, National Taipei University of Technology,
Taipei 10608, Taiwan
* Correspondence: yccheng@ntut.edu.tw

Abstract: The Internet of Things (IoT) systems are inherently distributed with many concurrent
behaviors. In order to apply behavior-driven development (BDD), a proven agile practice of software
development that brings many benefits, we must ensure that the specification of sequential and
concurrent behaviors is supported at the specification level and that tool support is in place to execute
the specification. This study proposes a minimal semantic enhancement to the Gherkin language,
the most popular specification language in BDD, to distinguish sequential and concurrent behaviors.
At the same time, a tool called concurrentSpec is developed to support the correct execution of
specifications written in the enhanced Gherkin language. With two IoT examples involving both
sequential and concurrent behaviors, it is shown that the enhanced Gherkin with concurrentSpec
can correctly specify and execute the specifications, while the original Gherkin with existing tools is
unable to do so. Hence, the contribution of this study is to eliminate a technical impediment for the
IoT development community to adopt BDD and receive its benefits.

Keywords: Internet of Things; software engineering; concurrency; behavior-driven development

1. Introduction

The Internet of Things (IoT) development community has been embracing new soft-
ware development methodologies to make IoT system development faster, better, and
cheaper [1,2]. With success stories of the adoption of agile methodologies in IoT-related
areas such as embedded systems and hardware [3–5], the IoT development community can
be expected to continue to look into new methodologies, especially the ones with proven
results in the broader software development community.

In this context, this paper explores applying behavior-driven development (BDD) [6]
for IoT systems development. As a relatively new agile software development method
evolved from test-driven development (TDD) [7], BDD broadens collaboration by moving
from developer-centric tests to whole-team executable specifications. BDD has gained
a lot of traction in the software development community. According to a recent vendor
survey, 37%, 44%, and a projected 50% of software development teams were adopting
BDD in 2017, 2018, and the 3–5 years beyond, respectively [8]. With an ample amount of
the literature (e.g., [9–12]) and many supporting tools available (e.g., [13]), BDD makes
a good candidate methodology for IoT system development. Indeed, we are beginning
to see positive results in applying BDD for developing real-time embedded systems [14],
automotive systems [15,16], and avionic systems [17]. In our own experience, we have
also benefited from BDD in the development of a smart cone system for protecting road
maintenance crews working on highways [18].

Key to the success of BDD is the patterns that encourage the development team to
specify collaboratively and illustrate with examples [9–12], thereby minimizing the gaps of mis-
understanding between members of the IoT development team including domain experts,
analysts, hardware and software developers, and testers. The captured specifications are

Appl. Sci. 2023, 13, 787. https://doi.org/10.3390/app13020787 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13020787
https://doi.org/10.3390/app13020787
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2103-1434
https://orcid.org/0000-0001-6281-1210
https://orcid.org/0000-0001-9965-7384
https://doi.org/10.3390/app13020787
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13020787?type=check_update&version=2


Appl. Sci. 2023, 13, 787 2 of 16

recorded in textual descriptions written in a simple natural language template; an example
is the Given-When-Then template of the Gherkin language [19]. Since well-written Gherkin
specifications are readable and understandable by all team members, the specifications
can be continuously refined throughout the life cycle of an IoT system for feature changes,
extensions, and bug fixes. Further, through tool support, the Gherkin specifications of an
IoT system are executable specifications that serve as acceptance tests to drive the subsequent
coding and testing activities [9]. When frequently executed and maintained, the specifica-
tions turn into living documentation to replace the traditional requirements and specifications
documentation that is prone to be out of sync with the current system behaviors [9,12].

Despite the merits of BDD described above, in developing the smart cone system
which encompasses both sequential and concurrent behaviors [18], we found that the
Gherkin language does not yet support the specification of concurrent behaviors. This
inadequacy created some difficulties in writing specifications with Gherkin for our inter-
disciplinary team consisting of traffic safety specialists, hardware engineers, embedded
system developers, and software developers. In particular, the traffic safety specialists
were unable to use Gherkin to precisely specify the concurrent behaviors of the smart cone
system and had to depend on the developers to interpret the intended concurrent behaviors
at the implementation level. We will further show that the concurrency inadequacy of
Gherkin can lead to specification errors with two IoT examples in Section 3.

To fix this inadequacy, we propose an enhancement to Gherkin to support the specifi-
cation of concurrent behaviors. We follow the parsimony principle [20] by not adding new
keywords to Gherkin. Instead, we introduce the concept of sequential groups of concurrent
steps by limiting the use of Gherkin keywords And and But for concurrency. Specifically,
the groups are interpreted sequentially in the order they appear in a Gherkin specification.
Each group is led off by a step that begins with keyword Given, When, or Then. Inside each
group, the steps beginning with keyword And or But are interpreted as steps concurrent
with the leading step. The enhancement brings concurrency support without adding lexical
complexity of Gherkin. Existing sequential Gherkin specifications can be translated into
the enhanced Gherkin by simply replacing And and But keywords in the steps with the
closest Given, When, or Then keyword before them, respectively.

To fully support the concurrency enhancement, we develop an embedded Gherkin
tool support named concurrentSpec in Python [21]. In addition, concurrentSpec also
supports the continuation of execution after a step fails within a Then group. It is shown
that with the proposed Gherkin enhancement and concurrentSpec, the specification errors
found in the two motivating IoT examples can be fully mitigated. While IoT is our main
focus in this paper, as a side note, the proposed concurrency enhancement and tool support
can also be used to develop ordinary distributed systems with BDD.

The rest of this paper is organized as follows. Section 2 covers the background of BDD
and tool supports. Section 3 presents the two examples demonstrating the specification
errors that could result from using the current Gherkin language and tool support for
specifying concurrent behaviors of IoT systems. Section 4 presents the proposed concur-
rency enhancement to the Gherkin language and the supporting tool concurrentSpec. The
resolution of the problems of the motivating examples are shown through simulations in
Section 5. Section 6 discusses the consequences of the enhancement and related issues.
Finally, Section 7 summarizes the contribution of this work.

2. Background

Since BDD derives from TDD, we begin by describing TDD. TDD is a widely adopted
software development practice that advocates writing automated tests before writing
production code [7,22]. Incrementally and iteratively, a test is added that specifies and
verifies the functionality of a specific aspect of a small individual component. Then, just
enough production code is written to pass the added test as well as all tests that were
previously passing. The code is refactored for a higher quality before ending an iteration.



Appl. Sci. 2023, 13, 787 3 of 16

TDD has been applied at all levels from acceptance testing to unit testing [23,24]. TDD has
demonstrated successes among early adopters in IoT development (e.g., [4]).

As a derivative of TDD, BDD further aims to bridge the communication gap between
domain experts, business analysts, developers, and testers by using a natural language in a
simple but special format to specify software behaviors through concrete examples [6,25,26].
While different formats are available [13], this paper focuses on Gherkin [19], a popular
language where specifications are written in plain text and supported by many tools.

2.1. Syntax and Semantics of Gherkin

The class diagram in Figure 1 shows the syntactic structure of keywords of Gherkin.
At the top level is the keyword feature, which represents a unit of functionality that the
software under development will have upon completion [27], such as transferring money
between two accounts in a banking application, booking a room in a hotel application, and
so on. A feature contains a number of scenarios, where a scenario is a concrete example
that describes how the feature plays out under the specific circumstance. For example, the
behaviors of transferring money will be different, respectively, depending on the source
account having a sufficient or an insufficient balance before a transfer.

Version December 31, 2022 submitted to Appl. Sci. 3 of 17

Feature

Scenario Step

Given

When

Then

And

But

1

1..∗

1 1..∗

has a
is a

1..∗ one or more

Figure 1. The structure of Gherkin keywords in a feature

TDD has been applied at all levels from acceptance testing to unit testing [22,23]. TDD has 90

demonstrated successes among early adopters in IoT development (e.g., [4]). 91

As a derivative of TDD, BDD further aims to bridge the communication gap between 92

domain experts, business analysts, developers, and testers by using a natural language 93

in a simple but special format to specify software behaviors through concrete examples 94

[6,24,25]. While different formats are available [13], this paper focuses on Gherkin [19], a 95

popular language where specifications are written in plain text and supported by many 96

tools. 97

2.1. Syntax and semantics of Gherkin 98

The class diagram in Figure 1 shows the syntactic structure of keywords of Gherkin. 99

At the top level is the keyword feature, which represents a unit of functionality that the 100

software under development will have upon completion [26], such as transferring money 101

between two accounts in a banking application, booking a room in a hotel application, and 102

so on. A feature contains a number of scenarios, where a scenario is a concrete example 103

that describes how the feature plays out under the specific circumstance. For example, the 104

behaviors of transferring money will be different, respectively, depending on the source 105

account having a sufficient or an insufficient balance before a transfer. 106

A scenario contains several steps which are interpreted sequentially in the order of 107

appearance. A step begins with one of the keywords Given, When, or Then: 108

• A Given step gives the precondition or the initial context of the scenario; 109

• A When step gives the event or action that sets the scenario in motion; 110

• A Then step gives the post-condition reflecting the effect of the event or action. 111

If a scenario contains several successive steps all beginning with the same keyword, 112

each of the subsequent keywords can be replaced by an And or a But for better readability 113

without changing its meaning; see Figure 2 in Section 3 for an example. A feature and its 114

constituent scenarios are stored in a plain text file with the .feature extension. 115

2.2. Tool support 116

A feature is an executable specification through tool support. The execution either passes 117

or fails, and a feature is completely implemented when all of its scenarios pass without 118

failure. Through a proper BDD tool support such as Cucumber for Java, JavaScript, and 119

Ruby [27], behave for Python [28], SpecFlow for C# [29], and so on, each step found in a 120

feature file is translated into a step definition, a function or an object method in the target 121

programming language. Developers then work on the step definitions, presumably in the 122

TDD style, to complete the design and implementation of the feature. 123

Figure 1. The structure of Gherkin keywords in a feature.

A scenario contains several steps which are interpreted sequentially in the order of
appearance. A step begins with one of the keywords Given, When, or Then:

• A Given step gives the precondition or the initial context of the scenario;
• A When step gives the event or action that sets the scenario in motion;
• A Then step gives the post-condition reflecting the effect of the event or action.

If a scenario contains several successive steps all beginning with the same keyword,
each of the subsequent keywords can be replaced by an And or a But for better readability
without changing its meaning; see Section 3 for an example. A feature and its constituent
scenarios are stored in a plain text file with the .feature extension.

2.2. Tool Support

A feature is an executable specification through tool support. The execution either passes
or fails, and a feature is completely implemented when all of its scenarios pass without
failure. Through a proper BDD tool support, such as Cucumber for Java, JavaScript, and
Ruby [28], behave for Python [29], SpecFlow for C# [30], and so on, each step found in a
feature file is translated into a step definition, a function or an object method in the target
programming language. Developers then work on the step definitions, presumably in the
TDD style, to complete the design and implementation of the feature.



Appl. Sci. 2023, 13, 787 4 of 16

Despite the multitude of target programming languages supported, each of the tools
in the Gherkin family achieves executable specification in a way similar to what is de-
scribed next.

Initially, when given a feature file as its input, a BDD tool generates a function (or
an instance method) in the target language as the step definition for each different step
inside the feature file. In all the aforementioned BDD tools, the tool-generated code for
a step definition function prints a message to show that the step is not implemented yet.
Developers and testers replace the generated code with: (1) code that calls the functions and
object methods to be implemented for the feature; and (2) code that checks their correctness.

Assume that the step definition functions of a scenario are implemented. When tool is
run again with the feature file containing the scenario as input, the steps in the scenarios
are matched with its step definition functions, which are executed sequentially in the order
of appearance. All existing tools adopt the sequential interpretation.

2.3. Failing-Fast

When a step in a scenario fails in execution, the scenario fails and terminates immedi-
ately, skipping the subsequent steps. This is referred to as failing-fast [31] and is the default
behavior for all tools supporting Gherkin. The default behavior is sometimes inconvenient,
(for example, in checking multiple independent post-conditions in separate Then steps
following a When step,) and many tools now provide the option to turn off the failing-fast
feature to continue executing the remaining steps.

It is interesting to note that support for turning off failing-fast varies by tool. For
example, behave allows turning off the failing-fast feature for the whole scenario [32]. Once
the option is turned off, every step in the scenario will be executed regardless of the result
of previous steps. In comparison, although Cucumber does not support turning off the
failing-fast feature [33], an open-source extension for Cucumber-JVM [34] allows turning off
the failing-fast feature at the individual steps.

As will be shown in the two motivating examples in Section 3, the sequential inter-
pretation of the steps in a scenario makes it difficult and sometimes impossible to specify
concurrent behaviors in IoT and distributed systems. Further, in specifications that involve
both concurrent and sequential behaviors, the description of the behaviors cannot be easily
supported by simply turning off the failing-fast feature.

3. Two Motivating Examples

We present two motivating examples to argue for the need of supporting the specifica-
tion of concurrent behaviors. Further, the supporting tool must properly allow turning off
the failing-fast feature at the step level in the context of concurrency. The two examples,
scheduled sprinkling (Section 3.1) and lift safety in emergency (Section 3.2), are kept simple but
sufficient to reveal the problems the two core issues can cause.

3.1. Example: Scheduled Sprinkling

A lawn sprinkler system for home use is needed. Three sprinklers, each with a head connected
by a pipe to a common water supply, are installed. Water emits from the sprinkler heads according
to a schedule set by the owner through a controller. When it is time to sprinkle water, each sprinkler
head begins emitting water within 5 s.

A plausible specification for capturing this requirement is by the Gherkin scenario of
Figure 2. In this scenario, the three sprinklers have been set up (line 2), and the scheduled
time has been set to 4:00:00 a.m. (line 3). When the scheduled time arrives (line 4), all three
sprinklers should emit water within 5 s (lines 5, 6, and 7).



Appl. Sci. 2023, 13, 787 5 of 16Version December 31, 2022 submitted to Appl. Sci. 5 of 17

1 Scenario: scheduled sprinkling
2 Given three sprinklers A, B, and C
3 And the scheduled time has been set to 4:00:00 am
4 When the time is 4:00:00 am
5 Then sprinkler A should emit water within 5 seconds
6 And sprinkler B should emit water within 5 seconds
7 And sprinkler C should emit water within 5 seconds

Figure 2. Scheduled sprinkling

1 Scenario: emergency braking and warning over normal requests
2 Given an outstanding request for lift to visit a floor
3 When an emergency has been detected
4 Then lift is stopped at nearest floor in direction of travel
5 And emergency indicator should be turned on
6 And request should be canceled
7 Then lift doors should be open within 5 seconds
8
9 Scenario: ensuring passenger safety if the lift fails to stop

10 Given an emergency has been detected
11 But lift has not stopped properly at a floor
12 Then lift doors should remain closed

Figure 3. Lift operations: safety over serving normal requests in case of an emergency

executed, sprinkler A and sprinkler C should fail to emit water within 5 seconds (line 5 174

and line 7) whereas sprinkler B should emit water normally (line 6). 175

Under the current policy of the Gherkin language to interpret the steps sequentially 176

and the policy of the existing supporting tools and to fail fast, the failure in the Then step 177

for checking sprinkler A terminates the scenario, preventing sprinklers B and C from being 178

checked. The result is that the developers will only know that the scenario has failed due 179

to sprinkler A but would not know the status of sprinklers B and C. The developers will 180

only know that sprinkler B would act normally and sprinkler C would fail by re-running 181

the scenario after fixing the clog in sprinkler A. This is clearly inefficient. 182

It can be noted that turning off the failing-fast feature does not solve the problem either 183

so long as the steps are interpreted sequentially. After sprinkler A fails, five seconds have 184

already expired, causing the normal-functioning sprinkler B to fail. More of the anomaly 185

introduced by the sequential interpretation of steps by Gherkin and the failing-fast feature 186

of tool support will be discussed in Section 5. 187

On the other hand, the result of executing the scenario would reveal failures of 188

sprinklers A and C and success of sprinkler B if the three assertions are executed concurrently. 189

Further, the result remains so regardless of the failing-fast feature of the tool used. 190

3.2. Example: Lift safety in emergency 191

The next example is adapted from the problem descriptions in [34] and [35]: 192

A lift that guarantees safe operation is needed. Normally, the lift provides timely transport 193

service to passengers by taking requests and stopping at the requested floors. However, in the case of 194

an emergency such as a power outage, a mechanical/electrical malfunction, or an earthquake, the lift 195

must come to a full stop at the nearest floor in the direction of travel, open its doors and keep them 196

open, give safety warnings across all floors, and cancel any outstanding requests. 197

In Figure 3, two scenarios are used to specify the requirements. The first scenario 198

(lines 1-7) stipulates that when an emergency has been detected (line 3), the first Then step 199

requires for the lift to stop (line 4), give warning (line 5), and cancel outstanding requests 200

(line 6). The next Then step (line 7) requires that the doors should be open after a short 201

delay for the passengers to exit safely. 202

The first scenario specifies the “normal path” of the lift system’s response to an 203

emergency. It should be kept in mind that it is possible for any step to fail. In the example, 204

Figure 2. Scheduled sprinkling.

It should be clear from the problem statement that the three sprinklers should act
concurrently; a failure in any of the three should not prevent the other two from exhibiting
the required behavior. For instance, assume that the pipes branching off to sprinklers A
and C, respectively, are clogged, but the pipe to sprinkler B is normal. When the scenario is
executed, sprinkler A and sprinkler C should fail to emit water within 5 s (line 5 and line
7), whereas sprinkler B should emit water normally (line 6).

Under the current policy of the Gherkin language to interpret the steps sequentially
and the policy of the existing supporting tools and to fail fast, the failure in the Then step
for checking sprinkler A terminates the scenario, preventing sprinklers B and C from being
checked. The result is that the developers will only know that the scenario has failed due
to sprinkler A but would not know the status of sprinklers B and C. The developers will
only know that sprinkler B would act normally and sprinkler C would fail by re-running
the scenario after fixing the clog in sprinkler A. This is clearly inefficient.

It can be noted that turning off the failing-fast feature does not solve the problem either
so long as the steps are interpreted sequentially. After sprinkler A fails, five seconds have
already expired, causing the normal-functioning sprinkler B to fail. More of the anomaly
introduced by the sequential interpretation of steps by Gherkin and the failing-fast feature
of tool support will be discussed in Section 5.

On the other hand, the result of executing the scenario would reveal failures of
sprinklers A and C and success of sprinkler B if the three assertions are executed concurrently.
Further, the result remains so regardless of the failing-fast feature of the tool used.

3.2. Example: Lift Safety in Emergency

The next example is adapted from the problem descriptions in [35,36]:
A lift that guarantees safe operation is needed. Normally, the lift provides timely transport

service to passengers by taking requests and stopping at the requested floors. However, in the case of
an emergency, such as a power outage, a mechanical/electrical malfunction, or an earthquake, the lift
must come to a full stop at the nearest floor in the direction of travel, open its doors and keep them
open, give safety warnings across all floors, and cancel any outstanding requests.

In Figure 3, two scenarios are used to specify the requirements. The first scenario
(lines 1–7) stipulates that when an emergency has been detected (line 3), the first Then step
requires for the lift to stop (line 4), give warning (line 5), and cancel outstanding requests
(line 6). The next Then step (line 7) requires that the doors should be open after a short
delay for the passengers to exit safely.

The first scenario specifies the “normal path” of the lift system’s response to an
emergency. It should be kept in mind that it is possible for any step to fail. In the example,
the lift can fail to stop at the first Then step (line 4). Under the failing-fast policy, the warning
step (line 5), the cancellation step (line 6), and the subsequent Then step (line 7) are skipped.
Omission for the former two steps can cause confusion for passengers, but omission of the
latter step can pose great risk for passengers. If the doors fail to remain closed, a large gap
can open up between the lift and the landing sill, which could put the passengers inside
the lift in a life-threatening danger as they may attempt to get out of the lift through the
gap. The safety requirement must steer the lift and doors clear of such a situation [37].



Appl. Sci. 2023, 13, 787 6 of 16

Version December 31, 2022 submitted to Appl. Sci. 5 of 17

1 Scenario: scheduled sprinkling
2 Given three sprinklers A, B, and C
3 And the scheduled time has been set to 4:00:00 am
4 When the time is 4:00:00 am
5 Then sprinkler A should emit water within 5 seconds
6 And sprinkler B should emit water within 5 seconds
7 And sprinkler C should emit water within 5 seconds

Figure 2. Scheduled sprinkling

1 Scenario: emergency braking and warning over normal requests
2 Given an outstanding request for lift to visit a floor
3 When an emergency has been detected
4 Then lift is stopped at nearest floor in direction of travel
5 And emergency indicator should be turned on
6 And request should be canceled
7 Then lift doors should be open within 5 seconds
8
9 Scenario: ensuring passenger safety if the lift fails to stop

10 Given an emergency has been detected
11 But lift has not stopped properly at a floor
12 Then lift doors should remain closed

Figure 3. Lift operations: safety over serving normal requests in case of an emergency

executed, sprinkler A and sprinkler C should fail to emit water within 5 seconds (line 5 174

and line 7) whereas sprinkler B should emit water normally (line 6). 175

Under the current policy of the Gherkin language to interpret the steps sequentially 176

and the policy of the existing supporting tools and to fail fast, the failure in the Then step 177

for checking sprinkler A terminates the scenario, preventing sprinklers B and C from being 178

checked. The result is that the developers will only know that the scenario has failed due 179

to sprinkler A but would not know the status of sprinklers B and C. The developers will 180

only know that sprinkler B would act normally and sprinkler C would fail by re-running 181

the scenario after fixing the clog in sprinkler A. This is clearly inefficient. 182

It can be noted that turning off the failing-fast feature does not solve the problem either 183

so long as the steps are interpreted sequentially. After sprinkler A fails, five seconds have 184

already expired, causing the normal-functioning sprinkler B to fail. More of the anomaly 185

introduced by the sequential interpretation of steps by Gherkin and the failing-fast feature 186

of tool support will be discussed in Section 5. 187

On the other hand, the result of executing the scenario would reveal failures of 188

sprinklers A and C and success of sprinkler B if the three assertions are executed concurrently. 189

Further, the result remains so regardless of the failing-fast feature of the tool used. 190

3.2. Example: Lift safety in emergency 191

The next example is adapted from the problem descriptions in [34] and [35]: 192

A lift that guarantees safe operation is needed. Normally, the lift provides timely transport 193

service to passengers by taking requests and stopping at the requested floors. However, in the case of 194

an emergency such as a power outage, a mechanical/electrical malfunction, or an earthquake, the lift 195

must come to a full stop at the nearest floor in the direction of travel, open its doors and keep them 196

open, give safety warnings across all floors, and cancel any outstanding requests. 197

In Figure 3, two scenarios are used to specify the requirements. The first scenario 198

(lines 1-7) stipulates that when an emergency has been detected (line 3), the first Then step 199

requires for the lift to stop (line 4), give warning (line 5), and cancel outstanding requests 200

(line 6). The next Then step (line 7) requires that the doors should be open after a short 201

delay for the passengers to exit safely. 202

The first scenario specifies the “normal path” of the lift system’s response to an 203

emergency. It should be kept in mind that it is possible for any step to fail. In the example, 204

Figure 3. Lift operations: safety over serving normal requests in case of an emergency.

It is not possible to fix the problem by turning off the failing-fast feature of the
supporting tool used to run the scenario:

• When the feature is turned off for the whole scenario, the two And steps (lines 5–6)
and the Then step (line 7) will be executed. The execution of the two And steps are
desirable and correctly checks the warning and cancellation of outstanding requests.
Unfortunately, the checking of the lift doors of the Then step can be misleading: if it
passes, the doors are open when the lift is either in motion or does not stop aligning
with the landing, putting the passengers in danger; and if it fails, the doors are correctly
closed for passenger safety;

• When the feature can be turned off at the step level, failing-fast at the first Then step
(line 4) must be turned off to guarantee execution of the warning and cancellation
steps, but doing so could lead to the execution of checking lift doors and obtain a
misleading result when the lift has failed to stop. On the other hand, keeping the
failing-fast behavior prevents warning and cancellation steps if the first Then step fails.
Either way, potential safety checking omissions exist.

In summary, the checking of the lift doors of the Then step should take place only if
the lift has successfully stopped at the first Then step (line 4), and the checking of warning
and request cancellation should be executed only if the lift has failed to stop.

For the safety requirement to be completely specified, the second scenario (lines 9–12)
is necessary. If the lift fails to stop properly at a floor in an emergency (lines 10–11), the
lift doors must remain closed to keep the passengers safe (line 12), presumably to wait for
rescue. Note how the situation is encoded in the Given step and the But step.

Table 1 lists the combinations of the states of the lift and the lift doors. The lift may or
may not be stopped at the nearest floor, and the lift doors may be open or closed. The first
scenario in Figure 3 (line 7) checks that the doors are open in success or closed in failure
when the lift is stopped at the nearest floor. The second scenario (line 12) checks that the
doors are closed in success or open in failure when the lift is not stopped at a floor. As can
be seen in Table 1, all combinations of states of the lift and the doors are covered, and the
safety requirement is fully specified by the two scenarios of Figure 3.

Table 1. All combinations of states of the lift and the doors in checking safety.

Lift Lift Doors Covered by Which Result in Figure 3

stopped open passing at line 7

stopped closed failing at line 7

not stopped open failing at line 12

not stopped closed passing at line 12



Appl. Sci. 2023, 13, 787 7 of 16

4. Concurrency Enhancement to Gherkin and Tool Support

We now propose a semantic enhancement of Gherkin to support specification of
concurrent behaviors. In so doing, we adhere to the parsimony principle [20] to keep the
enhancement minimal by not adding new keywords (Section 4.1). We also implemented a
tool called concurrentSpec to support the enhancement and provide the step-level option
to continue executing an enhanced Gherkin specification after a step fails (Section 4.2).

4.1. The Proposed Enhancement and Examples Resolved

Figure 4 shows the proposed enhancement in a class diagram. A feature contains
one or more scenarios. A scenario is composed of one or more sequential groups that are
executed in the order of appearance. Each sequential group has exactly one lead step, which
can be a Given step, a When step, or a Then step. The lead step is followed by zero or more
concurrent steps that take place simultaneously with the lead step. A concurrent step can be
an And step or a But step. A sequential group passes if and only if all of its constituent steps pass;
it fails if any of its constituent step fails. For brevity of reference, a sequential group beginning
with a Then step is called a Then group, etc.

Version December 31, 2022 submitted to Appl. Sci. 7 of 17

Feature

Scenario

Sequential
Group

Lead
Step

Concurrent
Step

Given

When

Then

And

But

1

1..∗

1

1..∗

1

1

∗

has a
is a

1..∗ one or more
∗ zero or more

Figure 4. The proposed enhancement to Gherkin for specifying both sequential and concurrent
behaviors

4.1. The proposed enhancement and examples resolved 247

Figure 4 shows the proposed enhancement in a class diagram. A feature contains 248

one or more scenarios. A scenario is composed of one or more sequential groups that are 249

executed in the order of appearance. Each sequential group has exactly one lead step, which 250

can be a Given step, a When step, or a Then step. The lead step is followed by zero or more 251

concurrent steps that take place simultaneously with the lead step. A concurrent step can be 252

an And step or a But step. A sequential group passes if and only if all of its constituent steps pass; 253

it fails if any of its constituent step fails. For brevity of reference, a sequential group beginning 254

with a Then step is called a Then group, etc. 255

With the enhancement, the scheduled sprinkling scenario of Figure 2 can now be 256

interpreted correctly. The three steps of the Then group (lines 5-7) are executed concurrently. 257

Thus clogs in sprinkler A and sprinkler C are correctly detected with line 5 and line 7 258

failing, and sprinkler B passes the check at line 6. 259

In the lift safety scenario of Figure 3, the three steps in the Then group are executed 260

concurrently (lines 4-6). Thus, even if the lift fails to stop (line 4), the checks of warning 261

and request cancellation are still performed as required. More importantly, the check for 262

doors opening in the Then step (line 7) is performed only if the lift indeed stops (line 4). 263

Note that a failure at line 5 and line 6 causes the Then group to fail, and consequently 264

preventing the check at line 7 even if line 4 passes. A remedy to this problem calls for the 265

supporting tool to be capable of continuing execution in case either one of the concurrent 266

steps at line 5 and line 6 fails; see Section 4.2. 267

4.2. Tool support 268

The tool support of the proposed concurrency enhancement comes as an embedded 269

domain specific language (DSL) [37]. It is named concurrentSpec and is implemented in 270

Python. This subsection focuses on two features of concurrentSpec: (1) building and 271

executing the proposed sequential groups of concurrent steps and (2) continuing execution 272

after failure at the step level. 273

Figure 5 shows the specification in concurrentSpec for the scheduled sprinkling 274

scenario in Figure 2. The specification is written with code in Python rather than plain text. 275

Since the scheduled time is set after the sprinklers are installed, the step at line 3 (Figure 5) 276

replaces the And keyword (line 3 in Figure 2) with the Given keyword for the sequential 277

execution. When executed, the program creates a data structure for organizing the steps as 278

Figure 4. The proposed enhancement to Gherkin for specifying both sequential and concurrent behaviors.

With the enhancement, the scheduled sprinkling scenario of Figure 2 can now be
interpreted correctly. The three steps of the Then group (lines 5–7) are executed concurrently.
Thus, clogs in sprinkler A and sprinkler C are correctly detected with line 5 and line 7
failing, and sprinkler B passes the check at line 6.

In the lift safety scenario of Figure 3, the three steps in the Then group are executed
concurrently (lines 4–6). Thus, even if the lift fails to stop (line 4), the checks of warning
and request cancellation are still performed as required. More importantly, the check for
doors opening in the Then step (line 7) is performed only if the lift indeed stops (line 4).

Note that a failure at line 5 and line 6 causes the Then group to fail, consequently
preventing the check at line 7 even if line 4 passes. A remedy to this problem calls for the
supporting tool to be capable of continuing execution in case either one of the concurrent
steps at line 5 and line 6 fails; see Section 4.2.

4.2. Tool Support

The tool support of the proposed concurrency enhancement comes as an embedded
domain specific language (DSL) [38]. It is named concurrentSpec and is implemented in
Python. This subsection focuses on two features of concurrentSpec: (1) building and



Appl. Sci. 2023, 13, 787 8 of 16

executing the proposed sequential groups of concurrent steps and (2) continuing execution
after failure at the step level.

Figure 5 shows the specification in concurrentSpec for the scheduled sprinkling
scenario in Figure 2. The specification is written with code in Python rather than plain
text. Since the scheduled time is set after the sprinklers are installed, the step at line 3
(Figure 5) replaces the And keyword (line 3 in Figure 2) with the Given keyword for the
sequential execution. When executed, the program creates a data structure for organizing
the steps as a sequence of groups of concurrent steps. In the meantime, it generates
the skeleton code for step definitions of the scenario if they do not already exist; see
Figure 6. Note that the skeleton code is later replaced with the actual step definition code
written by developers and testers. The skeleton code for all steps simply fails by raising a
NotImplementedError exception.

Version December 31, 2022 submitted to Appl. Sci. 8 of 17

1 Scenario("scheduled sprinkling")\
2 .Given("three sprinklers A, B, and C")\
3 .Given("the scheduled time has been set to 4:00:00 am")\
4 .When("the time is 4:00:00 am")\
5 .Then("sprinkler A should emit water within 5 seconds")\
6 .And("sprinkler B should emit water within 5 seconds")\
7 .And("sprinkler C should emit water within 5 seconds")\
8 .execute ()

Figure 5. Scenario of scheduled sprinkling in concurrentSpec

1 class ScheduledSprinkling:
2 def __init__(self):
3 pass
4 def given_three_sprinklers_a_b_and_c(self):
5 raise NotImplementedError("given_three_sprinklers_a_b_and_c")
6 def given_the_scheduled_time_has_been_set_to_4_00_00_am(self):
7 raise NotImplementedError("given_timer_is_set_to_4_00_00_am")
8 def when_the_time_is_4_00_00_am(self):
9 raise NotImplementedError("when_the_time_is_4_00_00_am")

10 def then_sprinkler_a_should_emit_water_within_5_seconds(self):
11 raise NotImplementedError("

then_sprinkler_a_should_emit_water_within_5_seconds")
12 def then_sprinkler_b_should_emit_water_within_5_seconds(self):
13 raise NotImplementedError("

then_sprinkler_b_should_emit_water_within_5_seconds")
14 def then_sprinkler_c_should_emit_water_within_5_seconds(self):
15 raise NotImplementedError("

then_sprinkler_c_should_emit_water_within_5_seconds")

Figure 6. Default step definition of the scheduled sprinkling scenario generated in
scheduled_sprinkling.py

a sequence of groups of concurrent steps. In the meantime, it generates the skeleton code 279

for step definitions of the scenario if they do not already exist; see Figure 6. Note that the 280

skeleton code is later replaced with the actual step definition code written by developers 281

and testers. The skeleton code for all steps simply fails by raising a NotImplementedError 282

exception. 283

4.2.1. Executing a scenario 284

Figure 7 presents the interactions taking place after calling the execute method in a 285

sequence diagram. Beginning with the call to the execute method of the scenario object ( 1 286

in Figure 7), the scenario object creates an instance of ScheduledSprinkling of Figure 6 287

( 2 ). Next, the sequential groups in the data structure are executed in turn by calling the 288

run_all_steps method ( 3 ). Within a sequential group, each step object occupies a thread 289

( 4 - 6 ) and executes concurrently ( 7 ). A thread calls the corresponding step definition 290

function of the ScheduledSprinkling instance ( 8 - 10 ). Any error raised is caught by 291

the sequential group ( 11 ). The execution of a sequential group ends when all steps in a 292

sequential group finish execution ( 12 ). If any error is returned from the sequential group, 293

the scenario raises RuntimeError which contains the information of all captured errors and 294

terminates the execution ( 13 ); otherwise, it will return success ( 14 ). 295

To support the passing/failing semantics of a Then group, an assertion failure thrown 296

by a step in the group is caught and stored by concurrentSpec. At the conclusion of 297

executing the group, a RuntimeError exception is raised to show information of all failing 298

concurrent steps. Figure 8 shows the screen dump of executing the scenario in Figure 5 299

with both sprinklers A and C clogged. 300

Figure 5. Scenario of scheduled sprinkling in concurrentSpec.

Version December 31, 2022 submitted to Appl. Sci. 8 of 17

1 Scenario("scheduled sprinkling")\
2 .Given("three sprinklers A, B, and C")\
3 .Given("the scheduled time has been set to 4:00:00 am")\
4 .When("the time is 4:00:00 am")\
5 .Then("sprinkler A should emit water within 5 seconds")\
6 .And("sprinkler B should emit water within 5 seconds")\
7 .And("sprinkler C should emit water within 5 seconds")\
8 .execute ()

Figure 5. Scenario of scheduled sprinkling in concurrentSpec

1 class ScheduledSprinkling:
2 def __init__(self):
3 pass
4 def given_three_sprinklers_a_b_and_c(self):
5 raise NotImplementedError("given_three_sprinklers_a_b_and_c")
6 def given_the_scheduled_time_has_been_set_to_4_00_00_am(self):
7 raise NotImplementedError("given_timer_is_set_to_4_00_00_am")
8 def when_the_time_is_4_00_00_am(self):
9 raise NotImplementedError("when_the_time_is_4_00_00_am")

10 def then_sprinkler_a_should_emit_water_within_5_seconds(self):
11 raise NotImplementedError("

then_sprinkler_a_should_emit_water_within_5_seconds")
12 def then_sprinkler_b_should_emit_water_within_5_seconds(self):
13 raise NotImplementedError("

then_sprinkler_b_should_emit_water_within_5_seconds")
14 def then_sprinkler_c_should_emit_water_within_5_seconds(self):
15 raise NotImplementedError("

then_sprinkler_c_should_emit_water_within_5_seconds")

Figure 6. Default step definition of the scheduled sprinkling scenario generated in
scheduled_sprinkling.py

a sequence of groups of concurrent steps. In the meantime, it generates the skeleton code 279

for step definitions of the scenario if they do not already exist; see Figure 6. Note that the 280

skeleton code is later replaced with the actual step definition code written by developers 281

and testers. The skeleton code for all steps simply fails by raising a NotImplementedError 282

exception. 283

4.2.1. Executing a scenario 284

Figure 7 presents the interactions taking place after calling the execute method in a 285

sequence diagram. Beginning with the call to the execute method of the scenario object ( 1 286

in Figure 7), the scenario object creates an instance of ScheduledSprinkling of Figure 6 287

( 2 ). Next, the sequential groups in the data structure are executed in turn by calling the 288

run_all_steps method ( 3 ). Within a sequential group, each step object occupies a thread 289

( 4 - 6 ) and executes concurrently ( 7 ). A thread calls the corresponding step definition 290

function of the ScheduledSprinkling instance ( 8 - 10 ). Any error raised is caught by 291

the sequential group ( 11 ). The execution of a sequential group ends when all steps in a 292

sequential group finish execution ( 12 ). If any error is returned from the sequential group, 293

the scenario raises RuntimeError which contains the information of all captured errors and 294

terminates the execution ( 13 ); otherwise, it will return success ( 14 ). 295

To support the passing/failing semantics of a Then group, an assertion failure thrown 296

by a step in the group is caught and stored by concurrentSpec. At the conclusion of 297

executing the group, a RuntimeError exception is raised to show information of all failing 298

concurrent steps. Figure 8 shows the screen dump of executing the scenario in Figure 5 299

with both sprinklers A and C clogged. 300

Figure 6. Default step definition of the scheduled sprinkling scenario generated in
scheduled_sprinkling.py.

4.2.1. Executing a Scenario

Figure 7 presents the interactions taking place after calling the execute method in a
sequence diagram. Beginning with the call to the execute method of the scenario object
( 1 in Figure 7), the scenario object creates an instance of ScheduledSprinkling of Figure 6
( 2 ). Next, the sequential groups in the data structure are executed in turn by calling the
run_all_steps method ( 3 ). Within a sequential group, each step object occupies a thread
( 4 – 6 ) and executes concurrently ( 7 ). A thread calls the corresponding step definition
function of the ScheduledSprinkling instance ( 8 – 10 ). Any error raised is caught by
the sequential group ( 11 ). The execution of a sequential group ends when all steps in a
sequential group finish execution ( 12 ). If any error is returned from the sequential group,
the scenario raises RuntimeError which contains the information of all captured errors and
terminates the execution ( 13 ); otherwise, it will return success ( 14 ).



Appl. Sci. 2023, 13, 787 9 of 16

Figure 7. Sequence diagram of calling the execute method of the scheduled sprinkling scenario in
concurrentSpec.

To support the passing/failing semantics of a Then group, an assertion failure thrown
by a step in the group is caught and stored by concurrentSpec. At the conclusion of
executing the group, a RuntimeError exception is raised to show information of all failing
concurrent steps. Figure 8 shows the screen dump of executing the scenario in Figure 5
with both sprinklers A and C clogged.

E
===================================================================
ERROR: test_scheduled_sprinkling (__main__.TestScheduledSprinkling)
-------------------------------------------------------------------
Traceback (most recent call last):

...
RuntimeError: Error(s) in the group:

AssertionError from step: sprinkler A should emit water ...,
error message: sprinkler A timeout

AssertionError from step: sprinkler C should emit water ...,
error message: sprinkler C timeout

-------------------------------------------------------------------
Ran 1 test in 5.063s

FAILED (errors=1)

Figure 8. Screen dump of the scheduled sprinkling scenario with both sprinklers A and C clogged.



Appl. Sci. 2023, 13, 787 10 of 16

4.2.2. Continuing Execution after a Step Fails

As pointed out in the lift example in Section 4.1, in addition to the proposed con-
currency enhancement to Gherkin, a full resolution needs the supporting tool to turn off
the failing-fast, which means to continue executing the remaining steps after the warning
step or the cancellation step fails. Since continuation after failure is a feature that receives
much debate [39], in adding this feature to concurrentSpec, we have decided to restrict its
applicable scope to steps in a Then group. Beyond keeping concurrentSpec simple to use,
the rationale is as follows. In the case of the Given group, the precondition is established
and possibly checked with an assertion. If the assertion fails, the precondition is not met,
and it is pointless to continue execution since any further result is untrustworthy [11]. In
the case of the When group, an event/action either takes place or not atomically, and an
assertion is not needed. In both cases, it is best to retain the failing-fast policy to stop
execution and report the errors immediately.

The continuation feature takes the form of an additional keyword argument to a step,
continue_after_failure, which defaults to false and stops the execution upon an assertion
failure. When set to true, execution continues even when the step fails. Since we restrict
the use of this keyword argument to the steps in a Then group, setting continue_after_failure
= true in a step inside a Then group simply means “when considering continuation for
the Then group, ignore whether this step passes or fails”. Figure 9 shows the correct
specification by setting the keyword argument continue_after_failure = true for the two And
steps (lines 5–6 in Figure 3). Thus, even if either one or both of them fail, the checking
of doors opening at line 7 is executed when the lift stops successfully at line 4. On the
other hand, when line 4 fails, since continue_after_failure = false by default, line 7 will not be
checked, and any misleading result is avoided. Thus, Figure 9 fully resolves safety checking
for the lift in the case of an emergency.

Version December 31, 2022 submitted to Appl. Sci. 10 of 17

1 Scenario("emergency braking and warning over normal requests")\
2 .Given("an outstanding request for lift to visit a floor")\
3 .When("an emergency has been detected")\
4 .Then("lift is stopped at nearest floor in direction of travel")\
5 .And("emergency indicator should be turned on",

continue_after_failure=True)\
6 .And("request should be canceled", continue_after_failure=True)\
7 .Then("lift doors should be open within 5 seconds")\
8 .execute ()

Figure 9. Scenario of emergency braking and warning over normal requests in concurrentSpec

4.2.2. Continuing execution after a step fails 301

As pointed out in the lift example in Section 4.1, in addition to the proposed con- 302

currency enhancement to Gherkin, a full resolution needs the supporting tool to turn off 303

the failing-fast, which means to continue executing the remaining steps after the warning 304

step or the cancellation step fails. Since continuation after failure is a feature that receives 305

much debate2, in adding this feature to concurrentSpec, we have decided to restrict its 306

applicable scope to steps in a Then group. Beyond keeping concurrentSpec simple to use, 307

the rationale is as follows. In the case of the Given group, the precondition is established 308

and possibly checked with an assertion. If the assertion fails, the precondition is not met 309

and it is pointless to continue execution since any further result is untrustworthy [11]. In 310

the case of the When group, an event/action either takes place or not atomically and an 311

assertion is not needed. In both cases, it is best to retain the failing-fast policy to stop 312

execution and report the errors immediately. 313

The continuation feature takes the form of an additional keyword argument to a step, 314

continue_after_failure, which defaults to false and stops the execution upon an assertion 315

failure. When set to true, execution continues even when the step fails. Since we restrict 316

the use of this keyword argument to the steps in a Then group, setting continue_after_failure 317

= true in a step inside a Then group simply means “when considering continuation for 318

the Then group, ignore whether this step passes or fails”. Figure 9 shows the correct 319

specification by setting the keyword argument continue_after_failure = true for the two And 320

steps (lines 5-6 in Figure 3). Thus, even if either one or both of them fail, the checking 321

of doors opening at line 7 is executed when the lift stops successfully at line 4. On the 322

other hand, when line 4 fails, since continue_after_failure = false by default, line 7 will not be 323

checked and any misleading result is avoided. Thus, Figure 9 fully resolves safety checking 324

for the lift in the case of an emergency. 325

5. Simulation results 326

Through simulation, this section shows that both the concurrency enhancement of 327

Gherkin and a tool support with the feature to continue execution after failure at the step 328

level are necessary to enable correct specification and execution of concurrent behaviors in 329

IoT systems. For comparison purpose, the simulations are also conducted with behave that 330

does not support concurrency and with limited support for continuation after failure. 331

5.1. Scheduled sprinkling 332

The simulations of scheduled sprinkling of Figure 2 demonstrate the necessity to have 333

concurrency support. Since a sprinkler head is supposed to emit water within 5 seconds 334

after the scheduled time arrives, a delay of time in sprinkler is used to simulate clogging: 335

no clogging if the delay is well below 5 seconds and clogging otherwise. Recall that all the 336

three sprinklers are supposed to act independently and simultaneously. Thus, our objective 337

is to observe if clogging in any sprinkler incorrectly affects the checking of the behaviors of 338

the remaining normal sprinklers. 339

2 See the discussion in GitHub: https://github.com/cucumber/common/issues/79

Figure 9. Scenario of emergency braking and warning over normal requests in concurrentSpec.

5. Simulation Results

Through simulation, this section shows that both the concurrency enhancement of
Gherkin and a tool support with the feature to continue execution after failure at the step
level are necessary to enable correct specification and execution of concurrent behaviors in
IoT systems. For comparison purposes, the simulations are also conducted with behave
that does not support concurrency and with limited support for continuation after failure.

5.1. Scheduled Sprinkling

The simulations of scheduled sprinkling of Figure 2 demonstrate the necessity to have
concurrency support. Since a sprinkler head is supposed to emit water within 5 s after
the scheduled time arrives, a delay of time in the sprinkler is used to simulate clogging:
no clogging if the delay is well below 5 s and clogging otherwise. Recall that all three
sprinklers are supposed to act independently and simultaneously. Thus, our objective is to
observe if clogging in any sprinkler incorrectly affects the checking of the behaviors of the
remaining normal sprinklers.

The results are shown in Tables 2 and 3 with behave and concurrentSpec, respectively.
Both tables are divided into four main columns. The first column shows the simulation
number. The second column shows the time delays set for sprinklers A, B, and C, respec-
tively. The third column presents the result by the three-tuple (Rp, R f , Rs), where Rp, R f ,



Appl. Sci. 2023, 13, 787 11 of 16

and Rs is the number of times the assertion passes, fails, or is skipped, respectively. The
last column indicates whether the result is correct (marked by “3”) or incorrect (marked
by “7”).

Table 2. Simulation results of executing the scheduled sprinkling specification in Figure 2 with behave,
where Rp, R f , and Rs is the number of times the assertion passes, fails, or is skipped, respectively. Each
simulation is repeated 100 times.

Simulation
Delay (Seconds) (Rp, R f , Rs) with behave

Result Correct?
A B C A B C

1 0.2 0.5 0.3 (100, 0, 0) (100, 0, 0) (100, 0, 0) 3

2 5.05 0.5 0.3 (0, 100, 0) (0, 0, 100) (0, 0, 100) 7

3 4.99 0.5 0.3 (10, 90, 0) (9, 1, 90) (8, 1, 91) 7

Table 3. Simulation results of executing the scheduled sprinkling specification in Figure 2 with
concurrentSpec, where Rp, R f , and Rs is the number of times the assertion passes, fails, or is skipped,
respectively. Each simulation is repeated 100 times.

Simulation
Delay (Seconds) (Rp, R f , Rs) with concurrentSpec

Result Correct?
A B C A B C

1 0.2 0.5 0.3 (100, 0, 0) (100, 0, 0) (100, 0, 0) 3

2 5.05 0.5 0.3 (0, 100, 0) (100, 0, 0) (100, 0, 0) 3

3 4.99 0.5 0.3 (50, 50, 0) (100, 0, 0) (100, 0, 0) 3

In each table, three sets of simulations are conducted, each of which is repeated
100 times. Simulation 1 shows the results for the normal case using delays that are well
under 5 s for all three sprinklers. Simulation 2 simulates clogging of sprinkler A by setting
its delay to 5.05 s, while the remaining sprinklers are normal. Simulation 3 simulates the
edge case of near-clogging of sprinkler A by setting its delay to 4.99 s, which is just under
but very close to 5 s; the remaining sprinklers are normal.

Table 2 shows the simulation results for behave. In Simulation 1, all three sprinklers
emit water within 5 s without failing, and none gets skipped. All have the correct outcome
of (Rp, R f , Rs) = (100, 0, 0). In Simulation 2, the outcome for sprinkler A is correct at
(0, 100, 0) as it fails in all 100 repetitions. However, the outcomes for the independent
sprinklers B and C at (0, 0, 100) show that they are incorrectly skipped. In Simulation 3,
sprinkler A exhibits intermittent behavior by passing 10 times while failing 90 times. The
checks for sprinklers B and C are mostly skipped incorrectly due to the time used up by
sprinkler A; when they are executed, they also incorrectly exhibit intermittent behaviors.

Table 3 shows the simulation results for concurrentSpec by executing the specification
of Figure 5. The outcome of (100, 0, 0) is also correct in all three sprinklers in Simulation 1.
In Simulation 2, all three sprinklers give the correct result. Specifically, since the checks
for all sprinklers are executed concurrently, clogging of sprinkler A has no effect on the
remaining sprinklers. In Simulation 3, sprinkler A is intermittent with the outcome of
(50, 50, 0), but the remaining normal sprinklers both check out correctly by passing. (The
better numbers in passing and failing in the outcome for sprinkler A are purely due to the
implementation of concurrentSpec. The result can still only be interpreted as intermittent
and is no better than that with behave.)

5.2. Lift Safety over Service in Emergency

Simulations for the lift safety example demonstrate that concurrency enhancement
alone is not enough; the supporting tool must also provide the feature to continue executing
the specification after a failure at the step level.

The simulations are limited to the first lift scenario in Figure 3. We assume that the
Given step (line 2) and the When step (line 3) are executed successfully. Thus, the Then step



Appl. Sci. 2023, 13, 787 12 of 16

(line 4) is always correctly executed. The objective is to observe whether the two And steps
(lines 5–6) and the last Then step (line 7) are incorrectly executed or skipped.

Results of the three sets of simulations are shown in Table 4, Table 5, and Table 6,
respectively. In each table, the four columns under the title Execution Result show the states
for the steps at lines 4, 5, 6, and 7, respectively, as being executed (passing or failing) or
skipped, respectively. The last column indicates whether the steps are executed/skipped
correctly (marked by “3”) or incorrectly (marked by “7”). The correct behaviors are
summarized below:

1. Checking of lift doors opening should be executed (line 7) only when the lift stops at
the nearest floor (line 4);

2. Checking of lift doors opening should be skipped (line 7) if the lift fails to stop at a
floor (line 4);

3. Regardless of the lift stopping or not (line 4), checking of warning (line 5) and checking
of request canceling (line 6) are always executed.

Table 4 shows the simulation results in behave without turning off the failing-fast
option. Due to sequential execution and failing-fast, the result is correct only when the lift
behaves normally (Simulation 1). (There could be a short delay in warning and cancellation
due to the gap in time between emergency occurrence and lift stopping. We assume
the delay is short enough to be ignored.) If the warning step or the cancellation step
fails, the check for the lift doors opening are incorrectly skipped due to the failing-fast
feature (Simulations 2 and 3). Moreover, when the lift fails to stop at a floor, the checks for
warning and cancellation are incorrectly skipped although the check for lift doors opening
is correctly skipped (Simulation 4).

Table 4. Simulation results of executing the lift safety specification in Figure 3: behave with failing-fast.

Simulation
Execution Result

Result Correct?Lift Is Stopped
(Line 4)

Emergency Indicator Is on
(Line 5)

Request Is Canceled
(Line 6)

Lift Doors Are Open
(Line 7)

1 executed-passing executed-passing executed-passing executed 3

2 executed-passing executed-passing executed-failing skipped 7

3 executed-passing executed-failing skipped skipped 7

4 executed-failing skipped skipped skipped 7

Table 5 shows the simulation results in behave with the failing-fast option turned
off. Since the option is applied at the scenario level (Section 2.2), all steps are executed
regardless of the previous steps failing. When the lift stops at the nearest floor, the check for
lift doors opening is still correctly executed even if the check for warning or the check for
cancellation fails (Simulations 1–4). However, if the lift fails to stop at a floor, the check for
lift doors opening is incorrectly executed, generating a misleading result (Simulations 5–8).

Table 6 shows the simulation results obtained by executing the specification of Figure 9
with concurrentSpec with keyword argument continue_after_failure = true for the warning
step (line 5) and the cancellation step (line 6). If the lift stops at the nearest floor, the
check for lift doors opening is correctly executed due to the keyword argument setting
to continue after failure (Simulations 1–4). If the lift fails to stop, the check for lift doors
opening is correctly skipped (Simulations 5–8) since the Then group fails and does not
continue execution as a whole. Note that with the concurrency enhancement, the checks
for warning and cancellation are executed simultaneously with the check for lift stopping.
Thus, all checks are correctly made.



Appl. Sci. 2023, 13, 787 13 of 16

Table 5. Simulation results of executing the lift safety specification in Figure 3: behave without
failing-fast.

Simulation
Execution Result

Result Correct?Lift Is Stopped
(Line 4)

Emergency Indicator Is on
(Line 5)

Request Is Canceled
(Line 6)

Lift Doors Are Open
(Line 7)

1 executed-passing executed-passing executed-passing executed 3

2 executed-passing executed-passing executed-failing executed 3

3 executed-passing executed-failing executed-passing executed 3

4 executed-passing executed-failing executed-failing executed 3

5 executed-failing executed-passing executed-passing executed 7

6 executed-failing executed-passing executed-failing executed 7

7 executed-failing executed-failing executed-passing executed 7

8 executed-failing executed-failing executed-failing executed 7

Table 6. Simulation results of executing the lift safety specification in Figure 9: concurrentSpec with
the failing-fast option turned off at the right places.

Simulation
Execution Result

Result Correct?Lift Is Stopped
(Line 4)

Emergency Indicator Is on
(Line 5)

Request Is Canceled
(Line 6)

Lift Doors Are Open
(Line 7)

1 executed-passing executed-passing executed-passing executed 3

2 executed-passing executed-passing executed-failing executed 3

3 executed-passing executed-failing executed-passing executed 3

4 executed-passing executed-failing executed-failing executed 3

5 executed-failing executed-passing executed-passing skipped 3

6 executed-failing executed-passing executed-failing skipped 3

7 executed-failing executed-failing executed-passing skipped 3

8 executed-failing executed-failing executed-failing skipped 3

6. Consequences and Related Issues

The proposed concurrency enhancement of Gherkin and the tool concurrentSpec
successfully resolve the specification errors in the two motivating examples. As with any
solution, some consequences and related issues are incurred and merit further discussion.

6.1. Compatibility in Style

In the proposed enhancement, the keywords And and But are reserved for use as
concurrent steps inside a sequential group that begins with keyword Given, When, or Then.
Thus, when using concurrentSpec, it is necessary to represent two sequential steps as
Then-Then rather than Then-And or Then-But, which can seem somewhat awkward. On
the other hand, scenarios specifiable with the original Gherkin are specifiable with the
proposed enhancement if all And’s and But’s are replaced by the closest Given, When, or
Then keyword that appears before them. This is clearly a trade-off: at the sacrifice of a little
awkwardness in writing style, the capability to specify concurrent behaviors is gained.

6.2. Collocating Specification and Continuation after Failure Settings

The proposed tool concurrentSpec is an embedded DSL. This has mixed conse-
quences as we explain below using the lift safety specification as an example. On the
negative side, the specification is embedded inside a Python program (Figure 9), which
is less concise and lucid when compared with the specification written in a feature file
(Figure 3). On the positive side, it is now feasible to collocate the behavior specification of a
step with its continuation after failure setting. This ensures that the complete specification



Appl. Sci. 2023, 13, 787 14 of 16

is considered by the whole team when they read the specification written in the embedded
DSL together. In contrast, with a tool such as behave, the behavior specification is written
in a feature file while the continuation after failure setting is written as program code in a
separate file. It is easy for the whole team to just concentrate on the feature file and leave
settings of continuation after failure in the code to developers.

6.3. Implementation Level Concurrency

Let it be said out front that concurrency is completely feasible with a tool such as behave if
one is willing to blur the specification and leave concurrency up to implementation; this is shown
in Figure 10, a rewrite of the specification of scheduled sprinkling in Figure 2. Note, in
particular, how all the concurrent steps are lumped into one step; see line 5 in Figure 10.

Version December 31, 2022 submitted to Appl. Sci. 15 of 17

1 Scenario: scheduled sprinkling
2 Given three sprinklers A, B, and C
3 And the scheduled time has been set to 4:00:00 am
4 When the time is 4:00:00 am
5 Then sprinklers A, B, and C should emit water within 5 seconds

Figure 10. Scheduled sprinkling with behave: lumping three concurrent behaviors into one step

1 @then(u’sprinklers A, B, and C should emit water within 5 seconds ’)
2 def step_impl(context):
3 thread_a = Thread(target=check_sprinkler_a_is_emitting_water ,

args=[ context ])
4 thread_b = Thread(target=check_sprinkler_b_is_emitting_water ,

args=[ context ])
5 thread_c = Thread(target=check_sprinkler_c_is_emitting_water ,

args=[ context ])
6 # run threads and wait for threads to finish

Figure 11. Scheduled sprinkling with behave: implementing concurrency in a step definition

one of the sprinklers had failed but not which one had failed. This hampers the task 445

of diagnosis; 446

• The level of abstraction is lowered from the specification level to the step definition 447

at the implementation level. Specifically, unless the domain expert or analyst is 448

comfortable working with code (and Thread in particular), he or she will have to 449

depend on the developer or tester to translate the step at line 5 of Figure 10. In 450

other words, the domain expert or analyst is deprived of his or her place to specify 451

concurrent behaviors. Such delegated translation is exactly what BDD tries to eliminate 452

as it creates gaps in communication [38]; 453

• If the step fails, it is not directly possible for behave to report the error due to the use 454

of Thread. 455

7. Conclusion 456

Behavior-driven development (BDD) has brought the benefits of ubiquitous language, 457

executable specification, and living documentation to mainstream software development. 458

In order to bring these benefits to the development of the inherently concurrent Internet of 459

Things (IoT) systems, it is necessary to have good support in the specification and execution 460

of concurrent behaviors in IoT systems. Our contribution in this paper is to demonstrate 461

that the current BDD specification language Gherkin and its associated tools are inadequate 462

to the specification and execution of concurrent behaviors and proposed an enhancement 463

to Gherkin and developed a supporting tool accordingly. 464

The enhancement to the Gherkin language introduces sequential groups of concurrent 465

steps. Each group is led off with a step that begins with keyword Given, When, or Then. 466

Groups are interpreted sequentially in the order they appear in a specification. Inside each 467

group, the steps beginning with keyword And or But are interpreted as steps concurrent 468

with the leading step. The enhancement only changes interpretation of the existing Gherkin 469

keywords but does not introduce new keywords. Moreover, existing sequential Gherkin 470

specification can be easily ported to use the enhancement by simply changing the keywords 471

And and But in the steps to the closest keyword Given, When, or Then before them. We 472

developed a tool called concurrentSpec in Python for correctly interpreting and executing 473

the specification of concurrent behaviors written in the Gherkin enhancement. In addition, 474

concurrentSpec also supports the continuation of execution after a step fails within a 475

Then group. As demonstrated in the simulation results, the two motivating examples of 476

concurrent behaviors were correctly resolved with the proposed Gherkin enhancement and 477

concurrentSpec. 478

Figure 10. Scheduled sprinkling with behave: lumping three concurrent behaviors into one step.

Figure 11 shows the step definition function of the Then step initially generated with
behave and later fixed by the developer. In the function, a Thread is used to run the
assertion concurrently, one instance for each sprinkler.

However, the step definition of Figure 11 has the following limitations:

• Lumping the concurrent steps of the Then group of Figure 2 into one step hides the
specific point of failure: when the step fails, it would only be possible to know that
one of the sprinklers had failed but not which one had failed. This hampers the task
of diagnosis;

• The level of abstraction is lowered from the specification level to the step definition
at the implementation level. Specifically, unless the domain expert or analyst is com-
fortable working with code (and Thread in particular), he or she will have to depend
on the developer or tester to translate the step at line 5 of Figure 10. In other words,
the domain expert or analyst is deprived of his or her place to specify concurrent
behaviors. Such delegated translation is exactly what BDD tries to eliminate as it
creates gaps in communication [40];

• If the step fails, it is not directly possible for behave to report the error due to the use
of Thread.

Version December 31, 2022 submitted to Appl. Sci. 15 of 17

1 Scenario: scheduled sprinkling
2 Given three sprinklers A, B, and C
3 And the scheduled time has been set to 4:00:00 am
4 When the time is 4:00:00 am
5 Then sprinklers A, B, and C should emit water within 5 seconds

Figure 10. Scheduled sprinkling with behave: lumping three concurrent behaviors into one step

1 @then(u’sprinklers A, B, and C should emit water within 5 seconds ’)
2 def step_impl(context):
3 thread_a = Thread(target=check_sprinkler_a_is_emitting_water ,

args=[ context ])
4 thread_b = Thread(target=check_sprinkler_b_is_emitting_water ,

args=[ context ])
5 thread_c = Thread(target=check_sprinkler_c_is_emitting_water ,

args=[ context ])
6 # run threads and wait for threads to finish

Figure 11. Scheduled sprinkling with behave: implementing concurrency in a step definition

one of the sprinklers had failed but not which one had failed. This hampers the task 445

of diagnosis; 446

• The level of abstraction is lowered from the specification level to the step definition 447

at the implementation level. Specifically, unless the domain expert or analyst is 448

comfortable working with code (and Thread in particular), he or she will have to 449

depend on the developer or tester to translate the step at line 5 of Figure 10. In 450

other words, the domain expert or analyst is deprived of his or her place to specify 451

concurrent behaviors. Such delegated translation is exactly what BDD tries to eliminate 452

as it creates gaps in communication [38]; 453

• If the step fails, it is not directly possible for behave to report the error due to the use 454

of Thread. 455

7. Conclusion 456

Behavior-driven development (BDD) has brought the benefits of ubiquitous language, 457

executable specification, and living documentation to mainstream software development. 458

In order to bring these benefits to the development of the inherently concurrent Internet of 459

Things (IoT) systems, it is necessary to have good support in the specification and execution 460

of concurrent behaviors in IoT systems. Our contribution in this paper is to demonstrate 461

that the current BDD specification language Gherkin and its associated tools are inadequate 462

to the specification and execution of concurrent behaviors and proposed an enhancement 463

to Gherkin and developed a supporting tool accordingly. 464

The enhancement to the Gherkin language introduces sequential groups of concurrent 465

steps. Each group is led off with a step that begins with keyword Given, When, or Then. 466

Groups are interpreted sequentially in the order they appear in a specification. Inside each 467

group, the steps beginning with keyword And or But are interpreted as steps concurrent 468

with the leading step. The enhancement only changes interpretation of the existing Gherkin 469

keywords but does not introduce new keywords. Moreover, existing sequential Gherkin 470

specification can be easily ported to use the enhancement by simply changing the keywords 471

And and But in the steps to the closest keyword Given, When, or Then before them. We 472

developed a tool called concurrentSpec in Python for correctly interpreting and executing 473

the specification of concurrent behaviors written in the Gherkin enhancement. In addition, 474

concurrentSpec also supports the continuation of execution after a step fails within a 475

Then group. As demonstrated in the simulation results, the two motivating examples of 476

concurrent behaviors were correctly resolved with the proposed Gherkin enhancement and 477

concurrentSpec. 478

Figure 11. Scheduled sprinkling with behave: implementing concurrency in a step definition.

7. Conclusions

Behavior-driven development (BDD) has brought the benefits of ubiquitous language,
executable specification, and living documentation to mainstream software development.
In order to bring these benefits to the development of the inherently concurrent Internet of
Things (IoT) systems, it is necessary to have good support in the specification and execution
of concurrent behaviors in IoT systems. Our contribution in this paper is to demonstrate
that the current BDD specification language Gherkin and its associated tools are inadequate
to the specification and execution of concurrent behaviors and proposed an enhancement
to Gherkin and developed a supporting tool accordingly.



Appl. Sci. 2023, 13, 787 15 of 16

The enhancement to the Gherkin language introduces sequential groups of concurrent
steps. Each group is led off with a step that begins with keyword Given, When, or Then.
Groups are interpreted sequentially in the order they appear in a specification. Inside each
group, the steps beginning with keyword And or But are interpreted as steps concurrent
with the leading step. The enhancement only changes interpretation of the existing Gherkin
keywords but does not introduce new keywords. Moreover, existing sequential Gherkin
specification can be easily ported to use the enhancement by simply changing the keywords
And and But in the steps to the closest keyword Given, When, or Then before them. We
developed a tool called concurrentSpec in Python for correctly interpreting and executing
the specification of concurrent behaviors written in the Gherkin enhancement. In addition,
concurrentSpec also supports the continuation of execution after a step fails within a
Then group. As demonstrated in the simulation results, the two motivating examples of
concurrent behaviors were correctly resolved with the proposed Gherkin enhancement and
concurrentSpec.

In our future work, we plan to explore the use of sequential groups of concurrent steps
in the context of Given and When keywords by studying more IoT application scenarios
from real world IoT systems or research literature. Under the parsimony principle, we
will also explore new keywords, such as Or for even more expressiveness in specification.
Lastly, we will add features to concurrentSpec such as feature organization, integration
with user stories, and reporting.

Author Contributions: Conceptualization, B.-Y.W., Y.-C.Y. and Y.C.C.; software, B.-Y.W., Y.-C.Y. and
Y.C.C.; writing—original draft preparation, B.-Y.W., Y.-C.Y. and Y.C.C.; writing—review and editing,
B.-Y.W., Y.-C.Y. and Y.C.C.; supervision, Y.C.C.; funding acquisition, Y.C.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is supported by National Science and Technology Council, Taiwan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jacobson, I.; Spence, I.; Ng, P.W. Is there a single method for the internet of things? Commun. ACM 2017, 60, 46–53. [CrossRef]
2. Merzouk, S.; Cherkaoui, A.; Marzak, A.; Nawal, S. IoT methodologies: Comparative study. Procedia Comput. Sci. 2020,

175, 585–590. [CrossRef]
3. Kaisti, M.; Rantala, V.; Mujunen, T.; Hyrynsalmi, S.; Könnölä, K.; Mäkilä, T.; Lehtonen, T. Agile methods for embedded systems

development-a literature review and a mapping study. EURASIP J. Embed. Syst. 2013, 2013, 15. [CrossRef]
4. Berg, V.; Birkeland, J.; Nguyen-Duc, A.; Pappas, I.O.; Jaccheri, L. Achieving agility and quality in product development-an

empirical study of hardware startups. J. Syst. Softw. 2020, 167, 110599. [CrossRef]
5. Nguyen-Duc, A.; Khalid, K.; Shahid Bajwa, S.; Lønnestad, T. Minimum viable products for internet of things applications:

common pitfalls and practices. Future Internet 2019, 11, 50. [CrossRef]
6. North, D. Introducing BDD. Available online: https://dannorth.net/introducing-bdd/ (accessed on 27 February 2022).
7. Beck, K. Test-Driven Development: By Example; Addison-Wesley Professional: Boston, MA, USA, 2003.
8. Pascal, A. State of Behavior Driven Development 2018—The Results! Available online: https://cucumber.io/blog/bdd/state-of-

behavior-driven-development-2018-the-resu/ (accessed on 9 December 2022).
9. Adzic, G. Specification by Example: How Successful Teams Deliver the Right Software; Simon and Schuster: New York, NY, USA, 2011.
10. Smart, J. BDD in Action: Behavior-Driven Development for the Whole Software Lifecycle; Manning: Greenwich, CT, USA, 2014.
11. Lawrence, R.; Rayner, P. Behavior-Driven Development with Cucumber: Better Collaboration for Better Software; Addison-Wesley

Professional: Hoboken, NJ, USA, 2019.
12. Nicieja, K. Writing Great Specifications: Using Specification by Example and Gherkin; Simon and Schuster: New York, NY, USA, 2017.
13. The Ultimate Guide to BDD Test Automation Frameworks. Available online: https://cucumber.io/blog/bdd/the-ultimate-

guide-to-bdd-test-automation-framewor/ (accessed on 15 December 2022).

http://doi.org/10.1145/3106637
http://dx.doi.org/10.1016/j.procs.2020.07.084
http://dx.doi.org/10.1186/1687-3963-2013-15
http://dx.doi.org/10.1016/j.jss.2020.110599
http://dx.doi.org/10.3390/fi11020050
https://dannorth.net/introducing-bdd/
https://cucumber.io/blog/bdd/state-of-behavior-driven-development-2018-the-resu/
https://cucumber.io/blog/bdd/state-of-behavior-driven-development-2018-the-resu/
https://cucumber.io/blog/bdd/the-ultimate-guide-to-bdd-test-automation-framewor/
https://cucumber.io/blog/bdd/the-ultimate-guide-to-bdd-test-automation-framewor/


Appl. Sci. 2023, 13, 787 16 of 16

14. Nezhad, A.S.; Lukkien, J.J.; Mak, R.H. Behavior-Driven Development for Real-Time Embedded Systems. In Proceedings of the
2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 4–7 September
2018; Volume 1, pp. 59–66. [CrossRef]

15. Wiecher, C.; Japs, S.; Kaiser, L.; Greenyer, J.; Dumitrescu, R.; Wolff, C. Scenarios in the loop: integrated requirements analysis
and automotive system validation. In MODELS ’20, Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, Virtual Event, 16–23 October 2020; Association for Computing Machinery:
New York, NY, USA, 2020; pp. 1–10. [CrossRef]

16. Wiecher, C.; Fischbadh, J.; Greenyer, J.; Vogelsang, A.; Wolff, C.; Dumitrescu, R. Integrated and Iterative Requirements Analysis
and Test Specification: A Case Study at Kostal. In Proceedings of the 2021 ACM/IEEE 24th International Conference on Model
Driven Engineering Languages and Systems (MODELS), Fukuoka, Japan, 10–15 October 2021; pp. 112–122. [CrossRef]

17. Zaeske, W.; Durak, U.; Torens, C. Behavior Driven Development for Airborne Software Engineering. In Proceedings of the AIAA
Scitech 2021 Forum, Virtual Event, 11–15 January 2021; 19–21 January 2021; p. 1917. [CrossRef]

18. Yen, Y.C.; Wang, B.Y.; Zhong, X.Z.; Chiang, W.Y.; Hsieh, C.Y.; Cheng, Y.C. Applying Problem Frames in Behavior-Driven
Development for Smart Cone System. In Proceedings of the 2021 28th Asia-Pacific Software Engineering Conference (APSEC),
Taipei, Taiwan, 6–9 December 2021; pp. 566–567. [CrossRef]

19. Gherkin Reference. Available online: https://cucumber.io/docs/gherkin/reference/ (accessed on 27 February 2022).
20. Bentley, J.L. Little languages. Commun. ACM 1986, 29, 711–721. [CrossRef]
21. concurrentSpec. Available online: https://github.com/benny870704/concurrentSpec (accessed on 4 January 2023).
22. Janzen, D.; Saiedian, H. Test-driven development concepts, taxonomy, and future direction. Computer 2005, 38, 43–50. [CrossRef]
23. Turhan, B.; Layman, L.; Diep, M.; Erdogmus, H.; Shull, F. How effective is test-driven development. In Making Software: What

Really Works, and Why We Believe It; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2010; pp. 207–217.
24. Moe, M.M. Comparative Study of Test-Driven Development TDD, Behavior-Driven Development BDD and Acceptance Test–

Driven Development ATDD. Int. J. Trend Sci. Res. Dev. 2019, 3, 231–234. [CrossRef]
25. Behaviour-Driven Development. Available online: https://cucumber.io/docs/bdd/ (accessed on 23 September 2022).
26. Bellware, S. Behavior-Driven Development. Available online: https://www.codemag.com/article/0805061 (accessed on 25

September 2022).
27. Apel, S.; Kästner, C. An overview of feature-oriented software development. J. Object Technol. 2009, 8, 49–84. [CrossRef]
28. Cucumber. Available online: https://cucumber.io/docs/guides/overview/ (accessed on 7 September 2022).
29. Behave. Available online: https://behave.readthedocs.io/en/stable/index.html (accessed on 12 March 2022).
30. SpecFlow. Available online: https://specflow.org/ (accessed on 7 September 2022).
31. Shore, J. Fail Fast [Software Debugging]. IEEE Softw. 2004, 21, 21–25. [CrossRef]
32. Behave-Option: Continue after Failed Step in a Scenario. Available online: https://python-behave.readthedocs.io/en/latest/

new_and_noteworthy_v1.2.6.html#option-continue-after-failed-step-in-a-scenario (accessed on 30 October 2022).
33. Cucumber—How Can I Make Cucumber Run the Skipped Steps after a Failed Step. Available online: https://cucumber.io/

docs/community/faq/?lang=java#how-can-i-make-cucumber-run-the-skipped-steps-after-a-failed-step (accessed on 7 Novem-
ber 2022).

34. Cucumber-JVM Fork to Continue Next Steps for Some Exceptions + Run Scenarios in Parallel. Available online: https:
//github.com/slaout/cucumber-jvm (accessed on 2 November 2022).

35. Jackson, M. Software Requirements & Specifications: A Lexicon of Practice, Principles and Prejudices; ACM Press/Addison-Wesley
Publishing Co.: Reading, MA, USA, 1995; pp. 126–127. 169.

36. Jackson, M. Problem Frames: Analysing and Structuring Software Development Problems; Addison-Wesley: Reading, MA, USA, 2001;
pp. 28–29. 319–320.

37. Shrestha, A. Safety Considerations for the Design of Modern Elevator Systems. Undergraduate Honors Thesis, University of
Mississippi, University, MS, USA, 2019.

38. Mernik, M.; Heering, J.; Sloane, A.M. When and how to develop domain-specific languages. ACM Comput. Surv. (CSUR) 2005,
37, 316–344. [CrossRef]

39. Being Able to Continue Next Steps on @Then Failures. Available online: https://github.com/cucumber/common/issues/79
(accessed on 4 January 2023).

40. Adzic, G. Bridging the Communication Gap: Specification by Example and Agile Acceptance Testing; Neuri Limited: London, UK, 2009.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ETFA.2018.8502653
http://dx.doi.org/10.1145/3417990.3421264
http://dx.doi.org/10.1109/MODELS50736.2021.00020
http://dx.doi.org/10.2514/6.2021-1917
http://dx.doi.org/10.1109/APSEC53868.2021.00070
https://cucumber.io/docs/gherkin/reference/
http://dx.doi.org/10.1145/6424.315691
https://github.com/benny870704/concurrentSpec
http://dx.doi.org/10.1109/MC.2005.314
http://dx.doi.org/10.31142/ijtsrd23698
https://cucumber.io/docs/bdd/
https://www.codemag.com/article/0805061
http://dx.doi.org/10.5381/jot.2009.8.5.c5
https://cucumber.io/docs/guides/overview/
https://behave.readthedocs.io/en/stable/index.html
https://specflow.org/
http://dx.doi.org/10.1109/MS.2004.1331296
https://python-behave.readthedocs.io/en/latest/new_and_noteworthy_v1.2.6.html#option-continue-after-failed-step-in-a-scenario
https://python-behave.readthedocs.io/en/latest/new_and_noteworthy_v1.2.6.html#option-continue-after-failed-step-in-a-scenario
https://cucumber.io/docs/community/faq/?lang=java#how-can-i-make-cucumber-run-the-skipped-steps-after-a-failed-step
https://cucumber.io/docs/community/faq/?lang=java#how-can-i-make-cucumber-run-the-skipped-steps-after-a-failed-step
https://github.com/slaout/cucumber-jvm
https://github.com/slaout/cucumber-jvm
http://dx.doi.org/10.1145/1118890.1118892
https://github.com/cucumber/common/issues/79

	Introduction
	Background
	Syntax and Semantics of Gherkin
	Tool Support
	Failing-Fast

	Two Motivating Examples
	Example: Scheduled Sprinkling
	Example: Lift Safety in Emergency

	Concurrency Enhancement to Gherkin and Tool Support
	The Proposed Enhancement and Examples Resolved
	Tool Support
	Executing a Scenario
	Continuing Execution after a Step Fails


	Simulation Results
	Scheduled Sprinkling
	Lift Safety over Service in Emergency

	Consequences and Related Issues
	Compatibility in Style
	Collocating Specification and Continuation after Failure Settings
	Implementation Level Concurrency

	Conclusions
	References

