
Citation: Zaman, S.K.u.; Mustafa, S.;

Abbasi, H.; Maqsood, T.; Rehman, F.;

Khan, M.A.; Ahmed, M.; Algarni,

A.D.; Elmannai, H. Cooperative

Content Caching Framework Using

Cuckoo Search Optimization in

Vehicular Edge Networks. Appl. Sci.

2023, 13, 780. https://doi.org/

10.3390/app13020780

Academic Editor: Juan-Carlos Cano

Received: 11 November 2022

Revised: 6 December 2022

Accepted: 8 December 2022

Published: 5 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Cooperative Content Caching Framework Using Cuckoo Search
Optimization in Vehicular Edge Networks
Sardar Khaliq uz Zaman 1,* , Saad Mustafa 1 , Hajira Abbasi 1, Tahir Maqsood 2 , Faisal Rehman 1 ,
Muhammad Amir Khan 1,* , Mushtaq Ahmed 3, Abeer D. Algarni 4 and Hela Elmannai 4

1 Department of Computer Science, COMSATS University Islamabad, Abbottabad Campus,
Abbottabad 22060, Pakistan

2 Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
3 Software Engineering Department, Faculty of Science and Technology, ILMA University,

Karachi 75190, Pakistan
4 Department of Information Technology, College of Computer and Information Sciences,

Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
* Correspondence: skhaleeq@cuiatd.edu.pk (S.K.u.Z.); amirkhan@cuiatd.edu.pk (M.A.K.)

Abstract: Vehicular edge networks (VENs) connect vehicles to share data and infotainment content
collaboratively to improve network performance. Due to technological advancements, data growth is
accelerating, making it difficult to always connect mobile devices and locations. For vehicle-to-vehicle
(V2V) communication, vehicles are equipped with onboard units (OBU) and roadside units (RSU).
Through back-haul, all user-uploaded data is cached in the cloud server’s main database. Caching
stores and delivers database data on demand. Pre-caching the data on the upcoming predicted server,
closest to the user, before receiving the request will improve the system’s performance. OBUs, RSUs,
and base stations (BS) cache data in VENs to fulfill user requests rapidly. Pre-caching reduces data
retrieval costs and times. Due to storage and computing expenses, complete data cannot be stored on
a single device for vehicle caching. We reduce content delivery delays by using the cuckoo search
optimization algorithm with cooperative content caching. Cooperation among end users in terms of
data sharing with neighbors will positively affect delivery delays. The proposed model considers
cooperative content caching based on popularity and accurate vehicle position prediction using
K-means clustering. Performance is measured by caching cost, delivery cost, response time, and
cache hit ratio. Regarding parameters, the new algorithm outperforms the alternative.

Keywords: content caching; content popularity; vehicular edge network; cuckoo search optimization

1. Introduction

Due to the rapid development of network technologies, wireless devices have been
widely adopted over the past few decades, and people mostly rely on them. The devices
are very large in numbers and need to be connected for reliable communication, especially
in peer-to-peer (P2P) applications, where nodes are sharing the data instead of centralized
servers [1]. The vehicular network provides vehicle-to-vehicle communications, but it
isn’t easy to fully satisfy the users in distributed and highly dynamic networks without
accurately predicting requested data and nodes [1,2]. VEN uses dedicated short-range com-
munications to ensure reliable data delivery in minimum time spam, and data are shared
using Wi-Fi or cellular networks. Vehicular communication is performed by installing
on-board units (OBUs) on vehicles [3]. The whole network architecture is based on the
number of layers. The top layer is the cloud network (CN), connected to MECs through
back-haul links that are further connected to RSUs. Roadside units are deployed near
roads based on particular vehicular regions and managed by base stations [3], as shown in
Figure 1.

Appl. Sci. 2023, 13, 780. https://doi.org/10.3390/app13020780 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13020780
https://doi.org/10.3390/app13020780
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0261-6541
https://orcid.org/0000-0002-1443-7890
https://orcid.org/0000-0003-0439-5700
https://orcid.org/0000-0002-6804-3467
https://orcid.org/0000-0003-3669-2080
https://orcid.org/0000-0003-2571-1848
https://doi.org/10.3390/app13020780
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13020780?type=check_update&version=3

Appl. Sci. 2023, 13, 780 2 of 24

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 25

on the number of layers. The top layer is the cloud network (CN), connected to MECs
through back-haul links that are further connected to RSUs. Roadside units are deployed
near roads based on particular vehicular regions and managed by base stations [3], as
shown in Figure 1.

Figure 1. Vehicular edge network architecture.

As the vehicle passes through many RSUs in high mobility, complete content cannot
be accessed from a single caching node [1]. Due to the highly dynamic vehicular network,
caching the complete contents at a single RSU is problematic, as the time between RSU
and the end node is tens of seconds [4]. Hence content placement and delivery are two
separate issues in a short time. Users only demand more secure and efficient data access
without being interested in content delivery location [5]. The vehicle fetches data from
RSUs and shares the traffic information (traffic safety and management) with the other
vehicles. If the content is not cached at RSU, it is fetched from the base station (BS), thus
increasing the fetching cost and delay. Due to limited storage capacity, computational re-
sources, and high mobility, pre-caching is required. Caching increases content availability
and reduces the request response time; however, caching has numerous challenges that
affect the network performance such as network topology, caching placement, delivery
on time, and optimal route [6].

In [7], cost-optimal cooperative caching is proposed, considering the finite archive
capacity and bandwidth, to achieve content popularity with freshness. The proposed
scheme in [7] optimizes content placement and delivery with the cooperation of BS, RSU,
and smart vehicles. Double time scale Markov optimization is used, as content updating
time is much faster than the vehicle’s movement. Data are updated before placement in
the content delivery process by vehicle scheduling (routing table management) and allo-
cating bandwidth on different time scales. Vehicles that recently entered in coverage area
will remain for a long time in the zone; therefore, it is more reliable to store and share
more data in Adhoc mode.

Figure 1. Vehicular edge network architecture.

As the vehicle passes through many RSUs in high mobility, complete content cannot
be accessed from a single caching node [1]. Due to the highly dynamic vehicular network,
caching the complete contents at a single RSU is problematic, as the time between RSU and
the end node is tens of seconds [4]. Hence content placement and delivery are two separate
issues in a short time. Users only demand more secure and efficient data access without
being interested in content delivery location [5]. The vehicle fetches data from RSUs and
shares the traffic information (traffic safety and management) with the other vehicles. If the
content is not cached at RSU, it is fetched from the base station (BS), thus increasing the
fetching cost and delay. Due to limited storage capacity, computational resources, and high
mobility, pre-caching is required. Caching increases content availability and reduces the
request response time; however, caching has numerous challenges that affect the network
performance such as network topology, caching placement, delivery on time, and optimal
route [6].

In [7], cost-optimal cooperative caching is proposed, considering the finite archive
capacity and bandwidth, to achieve content popularity with freshness. The proposed
scheme in [7] optimizes content placement and delivery with the cooperation of BS, RSU,
and smart vehicles. Double time scale Markov optimization is used, as content updating
time is much faster than the vehicle’s movement. Data are updated before placement in the
content delivery process by vehicle scheduling (routing table management) and allocating
bandwidth on different time scales. Vehicles that recently entered in coverage area will
remain for a long time in the zone; therefore, it is more reliable to store and share more data
in Adhoc mode.

A tradeoff occurs in response time and content freshness in high-mobility networks.
To address this problem, the content can be cached at RSU and then updated periodically,
considering the optimal parameters [8]. Although to ensure the delivery of fresh con-
tent, resources are consumed. In [9], the authors optimized the throughput and energy

Appl. Sci. 2023, 13, 780 3 of 24

consumption by caching the content in vehicular environments using cellular networks.
The data is cached on distributed vehicles that serve as task schedulers for user requests
to minimize the response time. However, the given scheme lacks cooperation regarding
data sharing among vehicles and servers, which affects the content freshness. Study [10]
considers the cache deployment problem in long-term evolution vehicle-to-infrastructure
(LTE-V2I) networks with highly dynamic VENs that jointly optimize the cache size with
maximum average download percentage, considering the following parameters: vehicle
speed, arrival rate, and content popularity. The proposed scheme uses a joint cost optimal
algorithm to optimize the cost in terms of time. The Poisson process is used for vehicular
mobility prediction and Zipf popularity distribution for content caching. It reduces the
response time with data availability.

VENs enable vehicle-to-vehicle (V2V) and vehicles-to-infrastructure (V2I) communica-
tion. Data are cooperatively cached at RSUs and base stations and fetched from the cloud
so vehicles can access the data from the nearest station [11]. The vehicular node comprises
an on-board unit (OBU), and RSUs provide access to a wide range of coverage areas [12].
Both have limited storage capacity, but RSU’s storage capacity is comparatively greater
than OBU’s. The RSU fetches the predicted content from the upper layers and then delivers
it to the connected vehicles on demand, as shown in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 25

A tradeoff occurs in response time and content freshness in high-mobility networks.
To address this problem, the content can be cached at RSU and then updated periodically,
considering the optimal parameters [8]. Although to ensure the delivery of fresh content,
resources are consumed. In [9], the authors optimized the throughput and energy con-
sumption by caching the content in vehicular environments using cellular networks. The
data is cached on distributed vehicles that serve as task schedulers for user requests to
minimize the response time. However, the given scheme lacks cooperation regarding data
sharing among vehicles and servers, which affects the content freshness. Study [10] con-
siders the cache deployment problem in long-term evolution vehicle-to-infrastructure
(LTE-V2I) networks with highly dynamic VENs that jointly optimize the cache size with
maximum average download percentage, considering the following parameters: vehicle
speed, arrival rate, and content popularity. The proposed scheme uses a joint cost optimal
algorithm to optimize the cost in terms of time. The Poisson process is used for vehicular
mobility prediction and Zipf popularity distribution for content caching. It reduces the
response time with data availability.

VENs enable vehicle-to-vehicle (V2V) and vehicles-to-infrastructure (V2I) communi-
cation. Data are cooperatively cached at RSUs and base stations and fetched from the
cloud so vehicles can access the data from the nearest station [11]. The vehicular node
comprises an on-board unit (OBU), and RSUs provide access to a wide range of coverage
areas [12]. Both have limited storage capacity, but RSU’s storage capacity is comparatively
greater than OBU’s. The RSU fetches the predicted content from the upper layers and then
delivers it to the connected vehicles on demand, as shown in Figure 2.

Figure 2. Content caching in VENs.

Problems in VENs are limited storage resources and rapid network topology change
[13]. Pre-caching reduces the latency and increases the cache hit ratio; therefore, less band-
width is required to access the data. Mostly content is cached on the bases of zones, fresh-
ness, and popularity. Response time increases to ensure content freshness, although some
applications are not delay tolerant. Meanwhile, content popularity compromises fresh-
ness. Given work shows, that tradeoff occurs in freshness and popularity. An appropriate
caching and optimization strategy can escalate the content availability to ensure the cache
hit ratio and response time while considering the tradeoff factors. Moreover, to find an
optimal solution to pre-cache the requested data on limited storage devices, so that data
could be delivered on time to maximize the cache hit ratio. The major contributions of the
paper are given as,
• We propose a cooperative content caching method for the VEN environment. The

proposed system increases the cache hit ratio and resource utilization while reducing
the network delay.

• We use the K-means clustering for multi-tier caching servers (base stations and road-
side units) to cache the single content at multiple servers cooperatively.

Figure 2. Content caching in VENs.

Problems in VENs are limited storage resources and rapid network topology change [13].
Pre-caching reduces the latency and increases the cache hit ratio; therefore, less bandwidth
is required to access the data. Mostly content is cached on the bases of zones, freshness,
and popularity. Response time increases to ensure content freshness, although some
applications are not delay tolerant. Meanwhile, content popularity compromises freshness.
Given work shows, that tradeoff occurs in freshness and popularity. An appropriate caching
and optimization strategy can escalate the content availability to ensure the cache hit ratio
and response time while considering the tradeoff factors. Moreover, to find an optimal
solution to pre-cache the requested data on limited storage devices, so that data could be
delivered on time to maximize the cache hit ratio. The major contributions of the paper are
given as,

• We propose a cooperative content caching method for the VEN environment. The
proposed system increases the cache hit ratio and resource utilization while reducing
the network delay.

• We use the K-means clustering for multi-tier caching servers (base stations and road-
side units) to cache the single content at multiple servers cooperatively.

• We develop communication models for vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I), content caching and delivery models that are further used by cuckoo
search algorithm (CSA) to determine vehicle location and optimize content delivery.

• We conduct extensive experiments exploiting the geo-life trajectory data to predict the
requesting node’s position and MovieLens dataset for user contents.

Appl. Sci. 2023, 13, 780 4 of 24

• The experimental results reveal that the proposed framework outperforms the traditional
ant colony optimization (ACO) in cooperative and non-cooperative caching scenarios.

The rest of the paper is organized as follows. Section 2 discusses the motivation behind
the presented research with a gap analysis. Section 3 details the literature review. The
problem statement is formulated in Section 4. In Section 5, different system models are
discussed. Section 6 describes the proposed framework and techniques involved in it. The
performance evaluation is described in Section 7. Section 8 concludes the paper, and finally,
some limitations of the existing works compared with the proposed one, and some future
research directions are discussed.

2. Motivation and Gap Analysis

This research aims to propose an efficient and cooperative optimization technique for
V2V and V2I communication in VENs. In existing work, several meta-heuristics-based
(nature-inspired) optimization techniques have been used to find the optimal path to store
the data in the nearest station in the vehicular network, such as genetic algorithm (GA),
simulated annealing (SA), particle swarm optimization (PSO), and ant colony optimization
(ACO). GA is an evolutionary algorithm based on selecting a parent’s chromosomes for
reproduction. Crossover and mutation are carried out to obtain offspring or new solutions.
It cannot process in the case of a single chromosome; it starts from many points, having
a higher fitness value. GA cannot search from a particular area, so it takes much time to
explore the whole search space [14]. The time complexity of GA is O (n3/2 log n) when
a gene has the same length. In PSO, the swarm of n particles flies over a search space,
and during iteration, each particle updates its current position according to its past and
neighbor’s experience. If one particle flies in the wrong direction, it can mislead the whole
swarm; moreover, it cannot work in the problem of scattering. PSO has random walks and
is not suitable for continuous problems.

The expected runtime of PSO is Ω (n/log n) and O (n log n), which is between the lower
and upper bound. Its average case of asymptotic notation is Θ (n log n). In ACO, the initial
parameter for ants is randomly assigned, and then the path length is calculated to find
the optimal solution by updating the pheromone. Improper selection of initial value may
lead to local optima [15]. The time complexity of ACO is O (n*(n − 1)*m* T/2). As Big-O
represents the worst-case scenario; so, it takes maximum time to process the large-scale
problems and easily falls into the second-best solution, and many ants cause congestion.

In contrast, cuckoo search (CS) solves continuous problems. Cuckoo species inspire it,
laying their eggs in the nest of other species, which increases their survival and productiv-
ity [16]. There is a 10% probability that the host bird discovers an egg and reproduces stably.
Moreover, CS has great robustness in terms of convergence, assigning initial parameters
and dependencies on other swarms [17]. Therefore, we use CS in our research to develop an
optimized algorithm that finds the best path to pre-cache the requested content, minimize
the response time and cache cost, and enhance the cache hit ratio.

3. Related Work

In this section, we provide a comprehensive literature review on caching concepts that
highlight the part of content popularity, challenges, and cache requirements for VEN, a brief
assessment of the optimal pathfinding, using meta-heuristic optimization techniques and
pre-caching using cooperative content caching technique. Proposed solutions of different
researchers have also been explained and briefly analyzed. The schemes discussed in
the literature review are pre-caching content based on popularity and route optimization
techniques.

Pre-caching improves performance and reduces response time for delay-sensitive
applications in vehicular networks. The problem is how to make pre-caching more effective.
In [17], the authors consider a large-scale infrastructure to improve the edge system capacity.
Vehicular caching solves the given problem efficiently by caching mobile data on distributed
vehicles to improve the system throughput and energy consumption. In [18], the proposed

Appl. Sci. 2023, 13, 780 5 of 24

scheme preaches the contents based on road topology and zone information. Pre caching
zone selection (PCZS) algorithm is proposed using pre-caching node selection (PCNS)
under the NS-3 platform to achieve service reliability with improved hit ratio, average
delay, and mobility prediction. The algorithm finds the vehicle’s motion and sojourn time
(time to live in a zone) based on past data so that more data can be cached on a vehicle
having a long sojourn time. This way, caching vehicles that stay in a zone for a long time
can serve more neighboring vehicles within a minimum period.

RSU-based edge caching scheme is proposed in [19] using cross entropy content
placement algorithm to minimize the load of the back-haul network. Only popular data
is cached in RSU using Zipf distribution. If the requested content is unavailable, then the
current RSU fetches the content from neighboring RSUs. Hence data are cached at RSUs
cooperatively in case of non-availability of requested data; it is retrieved from the linking
base station. Poisson distribution is used to predict the arrival of vehicles in the coverage
area of RSUs. The coverage area of RSU is further divided into several zones, considering
the vehicle’s velocity and traffic density. Different transmission rates are allocated to these
zones. A zone at the RSU’s coverage area’s entrance caches more data. The proposed
scheme reduces the Latency while improving the cache utilization; as a result, it gives
higher throughput.

In [20], a cooperative peer-to-peer (P2P) caching scheme is proposed to share the
information among vehicles rather than fetching it again and again from RSU to reduce
the response time. Markov chain is used to model the randomly changing behavior of
vehicular networks with three states [21]. Probability is calculated to replace the existing
data with newly arrived data based on the time consumed in the waiting state and the
frequency of accessing data in a given time. The result outperforms in terms of congestion,
delay, and hit ratio; however, it has a lack of server (V2I) cooperation that affects the content
freshness and scalability.

In [22], cloud-based VANET architecture data are cached at numerous layers, named
vehicular cloud (VC), local internet cloud (LIC), and then at RSUs cooperatively, to improve
the service response time [23]. Caching placement is done by convex optimization prob-
lem and simulated annealing (SA), to achieve the caching gain with average low latency.
In highway scenarios, vehicles move in identical directions; therefore, a platoon-based
mobility model is used. If the requested content is cached in advance by any vehicular
cloud member, then it will be satisfied by V2V communication, otherwise fetching will be
conducted in V2I communication. Finally, the request is satisfied via a remote server. To
maximize the caching gain, all VC members collaboratively decide about caching. SA is a
trajectory-based search algorithm starting with an initial guess and final solution at a high
temperature then gradually cools down the system. It accepts the solution if it is better,
otherwise, it relies on the probability that causes weak exploitation. SA often converges
very slowly, and often finds global optimal solutions at the expense of a large number of
function evaluations.

The study [24] focuses on the distribution of multimedia and large-size files in high-
mobility VANETs, by caching the updated contents at RSUs. Three algorithms are used
to retrieve the files at RSUs: (1) optimal one: reduces downloading time by exhaustive
searching but computational complexity will increase; (2) sub-optimal: allocates the most
requesting files (using Zipf’s distribution) by doing substitution frequently; (3) greedy algo-
rithm: fully occupies the RSUs using current best caching after clearing it. The complexity
of these algorithms is calculated with the number of RSUs, storage capacity of an RSU, and
vehicle speed. Requesting vehicle’s entrance time is calculated first, and then the large file
is divided into small parts. Then, distributed in RSUs cooperatively; that are deployed in
the same sequence. In this way, the average download time of the vehicle for large files
will reduce until and unless the vehicle remains in the same direction. The result shows
that the average delay reduces by 70% as compared to no caching in RSU.

As compared to other networks, available resources in VENs are limited. Therefore,
proper utilization of these resources is compulsory; that can be done by clustering of nodes.

Appl. Sci. 2023, 13, 780 6 of 24

Study [25] uses the nature of whales for cluster optimization. The given study outperforms
grey wolf optimization (GWO) and ant lion optimization (ALO) in the number of cluster
heads, transmission range and size of search space, and number of nodes [26].

Cooperative multi-tier edge caching is proposed, in which location-based and popular
contents are fetched cooperatively from servers in [12]. Large files are scrambled first using
fountain code and then cached at RSU/BS, based on optimal location and data segments.
Cached contents are analyzed by the downloading rate and the time a vehicle takes to
complete the coverage area of a server. The knapsack problem is formulated for content
placement and the ant colony optimization algorithm (ACO) is used for optimality. These
components lead to the shortest path with a rapid solution and distributed computation
to avoid premature convergence. More ants give the best optimal solution in case of
local search. It finds the optimal route, but the shortest path causes increased congestion.
Moreover, it is not suitable for large search spaces.

According to the study [15], a vehicle fetches the contents from RSU or BS at a time,
similarly, the information-centric network (ICN) relies on the host-centric model, which
reduces congestion and improves delivery regarding data storage. Moreover, ICN has a
simple configuration with data-level security. Proactive caching with mobility prediction
(PCMP) is proposed using ICN, based on named data network (NDN) architecture to
download the content. At first, it calculates the number of chunks to download and cache
the data at the next predicted RSU. Long short-time memory (LSTM) is used to predict the
next RSU in any nearest direction. In the LSTM model, Euclidean distance is calculated
for more accurate prediction in the current and next RSU. RSU selects the next hop and
sends the pre-requested chunks to it. The study outer performs in delay, hop selection, and
cache utilization, but focuses only on RSU’s prediction and caching, while there is a lack of
V2V caching.

In [27], the optimized link state routing (OLSR) protocol is used to moderate the
performance of VANET. A routing table is maintained for all routes. The harmony search
(HS) algorithm is used to configure the parameters of OLSR by coupling two stages: roulette
wheel selection and tournament selection. It sends a hello message among all nodes; after
receiving a hello message, each node creates its network topology independently and runs
the Dijkstra algorithm to select the shortest route towards the destination. OLSR tags every
message with a sequence number to differentiate the fresh and previous information. It
is an efficient method to deliver the data through an optimal path, but blind flooding can
cause operation costs.

In [28], safety-based applications broadcast a basic safety message (BSM), which con-
tains information about vehicles such as location and speed, to detect and avoid collisions.
To improve privacy at the application layer, genetic algorithm (GA) and public key infras-
tructure (PKI) are used. GA helps to find the best neighbor which actually has cached the
requested data. For the privacy of requesting nodes, PKI is used, to hide the hardware and
software information of the device from third parties. Ns-3 simulator is used for server
and vehicular applications. GA needs limited parameter setting and initializes itself from
possible solutions instead of a single solution. The main drawbacks of GA are the lack
of fast convergence towards the optimal solution and the long processing time required
for optimality.

Study [14] focuses on enhancing the bandwidth efficiency of I2V communication
considering software-define vehicular networks (SDVN). Where, RSUs are connected with
the controller, to take the scheduling decisions based on received requests from vehicles.
RSUs and vehicles function as a data node, connected via a backbone network with SDN
controllers. When a vehicle enters a particular coverage area, it sends location, velocity, and
direction information with requested and cached data information to the corresponding
RSU through beacon messages. The information is collected by the controller of the
corresponding RSU through a wired connection. Then, the decision is made and notified
to RSU by the controller. If two vehicles have the same cached data packets, i.e., P1
and P2, then XOR operation (P = P1 XOR P2) will be performed to decode the packet.

Appl. Sci. 2023, 13, 780 7 of 24

In conventional approaches, two time slots are required to broadcast the two packets
separately, but with the help of coding, it is completed in a single time slot to enhance
the efficiency of broadcast bandwidth. Binary particle swarm optimization-based coding
scheduling (BPSO-CS) algorithm is used, in which the particle determines a set of packets
for RSU to serve the vehicles to minimize the broadcast time. The fitness function is used
to evaluate the particles and then updating is done to speed up the searching convergence.
SUMO is used for simulation to trace the vehicles according to the Manhattan mobility
model. The drawback of PSO is it does not create new birds from parents such as GA, as
the particle moves towards the destination using the current best position/velocity, and
the slow convergence time is another drawback of PSO.

Edge caching reduces the latency and balances the network load [29]. The problem
in caching is which file, at what time, and at which node should be cached. Caching
based on popularity is not enough to satisfy users in high mobility, although an accurate
path/route prediction also helps to solve this problem. In [30], a new caching strategy is
proposed based on the GA, to optimize the best and shortest path and the Markov model,
to accurately predict the next route on the basis of past/ historical data. User clustering is
done by the same behavior that helps to adjust the upcoming cell. Pre-caching the popular
content may not be effective in case of dramatically different content requests; moreover,
search is limited to the global best. In the case of a main road or single path, route accuracy
will be high.

In study [31], a comparison of simulated annealing (SA), ACO, and GA is performed
based on the traveling salesman problem. Performance is evaluated in terms of the shortest
distance and execution time. The result shows that SA has the shortest execution time
(<1 s) and performs average in the shortest distance, while ACO performs better for the
shortest distance, but it takes a long execution time. Furthermore, GA is fast and easy
in terms of computational resources but there is no optimal solution in both the shortest
path and time. However, ACO is greedier and gives better results with large problem
sizes with more ants. Algorithms such as GA and PSO are population based and have
more challenging objective problems that may have noisy function evaluations and many
global optima. The number of candidate solutions causes robustness to the find the local
optima. While cross-entropy and simulated annealing use random numbers for objective
functions, and a lot of sampling is required, they are able to handle the problems with local
optima [32]. As mentioned in the related work, several optimization techniques have been
used in VEN such as GA, PSO, ACO, SA, and cross entropy-based caching. Study [16]
shows the comparison of optimization algorithms, in which cuckoo search performs better
than GA, PSO, ACO, and SA in terms of global and local search. A better algorithm uses
less computation and less iteration. Cuckoo search (CS) is more efficient than GA and SA
in random walk and similarity between eggs can produce a better new solution in terms of
good mixing ability. The way that an algorithm converges is critically important impacting
the speed, hence the minimum computational cost (in terms of time) is needed to find an
optimal solution.

For intelligent transportation systems, the internet of things (IoTs) is widely used in
VANETs; the number of sensors is deployed in vehicles [33]. For effective information
routing, finding the shortest path is very challenging. This paper uses a discrete cuckoo
search based on Levy flight and random walk against GA to find the optimal path in
minimum time spam [34]. The inverse mutation operator is used for exploitation in CS
to find the optimal path. If a vehicle wants to pass a message but there is already traffic
congestion in the case of a road accident and traffic jam, then a message cannot be broadcast.
Thus, a loop-free (single route) is required to deliver a message in high mobility; CS based
on levy flight with a random walk can find the path, by flooding the welcome message. But
a random walk is not suitable for the continuous optimization problem.

Study [35] focused on the discrete cuckoo search algorithm (DCSO) using MPI and
Beowulf cluster to improve the quality of the traveling salesman problem for small datasets.
Code runs sequentially ‘n’ times, while parallel in ‘n’ nodes. MPI and Beowulf cluster

Appl. Sci. 2023, 13, 780 8 of 24

are created to achieve parallelism. The results show that sequential programming may be
faster for small datasets, but for large datasets, it takes more time. As time complexity of CS
is much better than other nature-inspired meta-heuristic algorithms in terms of assigning
initial parameters, system dependencies, and storage. We will use a novel cuckoo search
algorithm based on Gaussian distribution instead of levy flight; because the random steps
that are taken from levy distribution are large. A large step has infinite variance and mean.
Gaussian distribution takes smaller steps without missing the optimal path; moreover, it
has a high convergence rate [36].

In [37], the authors proposed that CS WKCA (weighted K-medoids clustering algo-
rithm) with clustering provides routing information in vehicular networks to reduce road
accidents and develop an intelligent transportation system. The cluster head will change
periodically due to mobility; moreover, the nodes that are not in the neighbor are called
worst nodes. Therefore, the border node is replaced with a robust one for safety measure-
ment. While in our proposed scheme, clustering information is handled by RSUs in the
form of a routing table. There is no need to change the cluster head repeatedly. The given
work provides user safety in mobility but does not predict the caching node to provide the
data to the expected upcoming user.

In [38], the authors determine the optimal path with the lowest routing cost using a
hybrid whale dragonfly optimization approach with rider-integrated cuckoo search (RI-CS)
to find the best route with minimal routing cost. The study shows the denial-of-service
attack and allocates bandwidth to the devices in VANET, by evaluating the targeted energy
consumption. It searches for the device with low or dropped bandwidth and then provides
the required bandwidth by measuring the distance. But pre-caching and clustering are not
used for end-node cooperation to minimize the delay ratio and to gain more throughputs.

The authors in [39] proposed a giraffe-kicking optimization algorithm (GKO). It uses
hybrid C-means to find the redundant sensor nodes to avoid energy consumption and
to improve packet delivery consumption. As C-means is an iterative clustering to avoid
dissimilarities among the data points. Table 1 summarizes the significant related works.

Table 1. Comparison of the related work.

References Year Technique Problem Considered Parameters Limitations

[18] 2020 PCZS, PCNS with
N-S3 simulator

Pre-caching for none delay
tolerate applications in

vehicular networks

Dynamic adaptability,
reduce response time

and increase cache
hit ratio

Accurate location
prediction

[19] 2018 Cross entropy with
Poisson distribution

Caching selective data at
RSUs because of large
content size and short

storage capacity in fully
distributed networks

Improved performance
in delay, cache hit ratio

and overhead

[22] 2017 SA
Improved caching

placement policy to
maximise caching gain

Minimise latency and
improve user’s quality

of experience

Cost, find only global
best solution

[24] 2018 Optimal1,
Zipf distribution

Delivering multimedia
files within limited

storage capacity

Pre-caching files to
reduce download time,

efficient delivery

Storage capacity,
high mobility

[25] 2021 Whale optimisation Based on the clustering to
find the optimal path

Cluster head manage the
cluster for

better performance

Time,
distributed nature

[12] 2020 ACO and knapsack
Fetching location based

and popular contents from
multiple caching servers.

Delay, service cost, finds
local best solution

Coverage,
reliability, robustness

Appl. Sci. 2023, 13, 780 9 of 24

Table 1. Cont.

References Year Technique Problem Considered Parameters Limitations

[15] 2018 LSTM with
Euclidean distance

To improve content
delivery in host
centric network

Accurate prediction of
next caching server to

utilise cache,
reduce delay

High mobility,
scalability, V2X

[27] 2021 Harmony search
routing protocol

To find the shortest route
using OLSR Blind flooding

[28] 2020 PSO Enhancing BW efficiency
in I2V communication

Minimises
broadcast time

Convergence time
is slow

[14] 2019 GA with Morkov
chain

Cache popular content
with accurate path

prediction on the basis of
past data or history

Reduces latency and
data traffic load

[16],
[32]

2015,
2020,

Comparison of
nature-inspired

algorithms and CS

Comparison between
metaheuristic

optimisation algorithms in
terms of TSP

Initial parameter,
dependency, memory
and time complexity

CS performs better but
recognition of egg by

host bird can
cause problem.

[34],
[35] 2019

Comparison of
meta-heuristic

algorithm
Minimum path Delay, hit ratio CS performs better

[37] 2022 Optimized routing
with CS-WKCA

K-medoids clustering to
find dissimilarities Avoid road accident

K-medoids is more
complicated and
unable to recover

from database

[38] 2022 Whale dragonfly
with RI-CS

Rider-integrated CS is
used to find best rout with

minimal cost

Provide bandwidth to
dropped BW devices,

evaluate
energy consumption

No clustering
therefore lack of

cooperation among
end users

[39] 2022
Giraffe-kicking
optimization in

VANETs

Hybrid C-means
iterative clustering

Avoid energy
consumptions

No pre-caching to
reduce delivery delay

The above-mentioned related work shows that CS outer performs optimal route find-
ing and popularity prediction on the basis of user preferences to pre-cache the data, which
is a more suitable option to entertain the user conveniently. It will also improve the cache
hit ratio while caching more files nearest to the user in high mobility. Complexity analysis
of the state-of-the-art and baseline techniques is shown in Table 2 and the abbreviations
used in the study are defined in Table 3.

Table 2. Complexities comparison of significant algorithms.

Algorithm Parameters Complexity Justification

GA Population size,
mutation, crossover

O (n* m* c)
O (n3/2 log n)

All three operations will conducted
multiple times, which increases

its complexity

PSO

Number of particles (N),
acceleration co-efficient, inertia

weight, neighboring range,
number of iterations,

random values

Ω (n/log n) and O (n log n)
that is Θ (n log n)

Between lower and upper bound

Stability problem restricts the success rate,
secondly need memory to update velocity

If N increases, complexity increases

ACO
Number of ants, evaporation

rate, alpha and beta
(control parameters)

Average case: O (n)
Worst case: O (m*n)

n→ number of ants
If n increases complexity will also increase

Appl. Sci. 2023, 13, 780 10 of 24

Table 2. Cont.

Algorithm Parameters Complexity Justification

CS

Population (n), egg-matching
probability, number of iterations

(Rmax), step size/Dimension
size (D)

Best case: O (1)
O (n. D. Rmax)

N = 1 always same due to 1 cuckoo,
Dimension range (0,1), if number of

iteration increases it will not significantly
affect the complexity

1 < log n< n < n Log n< nˆ2 < nˆ3< 2ˆX< nˆX→ Run time from better to worse

Table 3. Abbreviations and their definitions.

S. No Abbreviation Full Form

1. RSUs Road site units

2. MBS Mobile base station

3. PCZS Pre-caching zone selection

4. PCNS Pre-caching node selection

5. P2P Peer to peer

6. V2I Vehicle to infrastructure

7. OBUs On-board units

8. VEN Vehicular edge network

9. VANET Vehicular ad-hoc network

10. MECs Mobile edge computing devices

11. SDVN Software Define Vehicular Network

12. PKI Public key infrastructure

13. OLSR Optimized link state routing

14. ICN Information centric network

15. PCMP Proactive caching with mobility prediction

16. V2V Vehicle to vehicle

17. ACO Ant colony optimization

18. PSO Particle swarm optimization

19. GA Genetic algorithm

20. SA Simulated annealing

21. CS Cuckoo search

22. LTE-V2I Long-term evolution vehicle to infrastructure

23. BS Base station

4. Problem Statement

Existing works focus on cooperative content caching and nature-inspired optimization
techniques with the dependent nature of the algorithm, which can cause failure in the
case of path loss and continuous problems. Related work shows that COOP caching with
clustering and CS finds both local and global optimum solutions. CS also performs better
in terms of time complexity. By using proposed optimization algorithms and cooperative
content caching techniques on cross-tier caching servers using popular content, the network
performance is improved in terms of cache hit ratio, network delay, and resource utilization.

5. System Model

We consider a multi-tier VEN, including vehicles (end-user), RSUs, and MBS. MBS and
Backhaul links are connected to the cloud server and database. In VEN, end-users/vehicles

Appl. Sci. 2023, 13, 780 11 of 24

transmit their data to the connected RSU. RSU covers the circular region of a minimum
of 100 m near the roads to facilitate the users in high mobility. The area of RSU is not
overlapped; the vehicle that is not in range of RSU will be directly connected to MBS.

We used cooperative edge caching with K-means for multi-tier caching servers (MBS
and RSUs) to cache the single content at multiple servers cooperatively. If the requested
content is available in these servers, then it can be fetched by the vehicle through the
coverage area. Content delivery from a remote server will increase both delay and cost.
First, we focus on the coverage area of MBS, where the number of RSUs is deployed. We
consider the number of RSU as D = {D1, D2, D3 DN} coverage areas of RSU and
MBS as DB and DR, set of vehicles is V = {V1, V2, V3 VN}. RSU, MBS, and vehicles
are equipped with caching capacities, such as SMBS, SRSU, and SV. MBS acts as a network
management controller, collecting data from edge servers and vehicles and making caching
decisions. After that, MBS will share the copy of cached data to the connected RSUs to
minimize the service delay and cost in terms of bandwidth (BW) utilization. Edge servers
share their working state with the controller server, determining whether the server is
overloaded or underloaded before transferring the workload. This external layer resource
management process can be accomplished by managing the flow of data in access control
sources while operation on VMs of edge servers remains undisturbed [40].

5.1. Vehicle to Base Station (V2B) Communication Model

If we assume that MBS serves the vehicle, then the transmission rate RB.i(t) is calculated
with the help of Equation (1).

RB, i (t) = Bi (t) · log2 (1 + (PT · L(Di(x))/σ2)) (1)

where Bi (t) denotes the bandwidth of the vehicle at time t, PT expresses the transmission
capacity of the base station (BS), L shows the average height of the antenna in meters, and
Di(x) denotes the distance between the vehicle and MBS in kilometers.

5.2. Vehicle to Road Side Unit (V2R) Communication Model

Vehicle to RSU communication; coverage area is divided into zones k = 7, range of
each zone is d1, d2, d3 . . . dk, transmission rate at each zone is denoted as Rk and equally
allocated to each vehicle. The bit rate of node at time t from RSU to V is expressed in
Equation (2).

RR,i(t) = Rk/Nk (t) (2)

where Nk (t) shows the number of vehicles in kth zone at time t. The amount of data pro-
vided by RSU as a download service to all corresponding nodes is expressed in Equation (3).

TR = ∑7
k=1 Nk·

dk
E[v]
· Rk

Nk
(3)

There is a control buffer in RSU with the size of TR that stores all the data requested
by the node and deletes the data when the buffer overflows.

5.3. Content Caching

Data are cached on MBS, RSUs, and vehicles, as caching capacity of the vehicle is
limited, and most recently fetched data are cached in it. While RSU and MBS servers
have more caching and computation capability, both can serve a number of users at a
time. These vehicular edge computing servers (MBS, RSU) download all the data from the
cloud server and database back-haul link. Popular data are cached in BS, while location-
based data are cached in RSU, and vehicle caches recently used data. After predicting,
popularity data are downloaded one time on BS and all RSUs cooperatively receive copies
of downloaded content from BS. There is no need to download the content again by all
RSUs; end-users/vehicles will fetch that content from their controlling server. All the

Appl. Sci. 2023, 13, 780 12 of 24

vehicles within 100 m are controlled by a single RSU; however, 1 MBS can serve a number
of RSUs at a time server.

5.4. Content Delivery Model

If the vehicle sends a content request, the corresponding controller will process it. RSU
makes the downloading decision on the basis of a request. If the content is recently cached
by a node in its coverage area, RSU will send the node’s location (longitude and latitude)
to the requesting node; then the requesting node will fetch the content from a specific
node through V2V communication. Popular files (PF) can be fetched by vehicles at any
location within the coverage area of MBS; however, location files (LF) are served by RSU.
First, RSU will check in neighboring RSUs, in case of non-availability, PF is downloaded
from MBS. After that, if there is again a request for the same content, it will be stored in
RSU’s cache and will entertain the user with minimum delay. In the case of successful V2V
communication, the probability of downloading files will be minimum (PV2V < 1 and >0),
while in V2I communication the probability will be maximum (PV2I = 1), and the probability
of V2I is calculated using Equation (4).

PV2I = 1 − Pr (Aji > Sf) (4)

where Aji represents the amount of data transmitted during V2V communication and Sf
denotes the size of the file in packets

5.5. Delay Calculation Model

In V2I communication, the transmission process determines the size and delay require-
ment of delivering file f. Nt

f denotes the number of file segments at time t. The duration
of fetched file segments is defined as Tn

f, n = 1,2,3 . . . Ntf and downloaded data volume
during the fetching time period is Sn

f, n = 1,2,3 . . . Nt
f. If data are downloaded from RSU,

then the amount of downloaded data in nth segment will be Sn
f = SR

f and the transmission
delay of each packet delivered by RSU is defined using Equation (5).

tR
f = Tn

f/SR
f (5)

Here, the number of fetched files in a limited time duration is divided by the to-
tal amount of downloaded data. The transmission delay from MBS is calculated using
Equation (6).

tB
f = L/RB

f (6)

where L is the size of delivered packets divided by the average transmission rate from
the MBS. To evaluate the delay performance, the mean delay of total downloaded packets
is calculated.

6. Cooperative Content Caching Framework

We proposed a novel framework that works in a cooperative behavior with CS to
find the optimality, under multiple tiers. Although CS is used in various research, the
uniqueness of our technique is to provide pre-caching while predicting the upcoming
server and neighboring nodes. Pre-caching, mobility prediction, and cooperative behavior
with CS to find the optimal path increases its overall performance in terms of delivery delay,
hit ratio, and caching cost. First, end-user rating data are acquired, including their interests,
such as the types of movies and content they prefer. Then, the server caches the most
popular material. Content caching helps users and reduces network traffic. Second, send
the requested content using the best route. We employ K-means for caching on cross-tier
caching servers and cuckoo search for path optimality due to its improved speed. In this
work, only popular content is cached in the MBS and surrounding RSUs based on user
preferences and popularity estimates. As a user requests content, it is already cached on
the server and provided quickly. But if a user requests content that has not been cached,
the request will be sent to a central cache such as MBS. MBS’s popularity is conveyed to

Appl. Sci. 2023, 13, 780 13 of 24

RSUs in its area. The MEC server first downloads content, then distributes cached data to
associated RSUs. We employ Geo-life Trajectory to anticipate the requesting node’s position.
User-ID, spot-ID, location name, longitude, latitude, and time are the key attributes of the
data set to determine content popularity. After calculating popularity based on user-ranked
movies, data is cooperatively pre-cached on caching servers.

6.1. Caching Techniques

We propose cooperative content caching (COOP) with K-means clustering to cache
data using the cuckoo search algorithm in VENs to determine the optimal path for content
delivery. We devised a caching approach that takes user preferences into account. User
opinion is reflected in content ratings. The top suggested movies are cached at RSUs and
MBS using COOP. When a user requests a video, the server checks its cache and delivers it
if it is there. This is a cache hit; the server boosts its popularity after delivering the content.
If the requested content isn’t in the cache, this is a cache miss. The total number of files in
RSU is calculated using Equation (7).

FR = M + ∑ n
R=1 NR (7)

Caching capacities of MBS, RSU, and vehicles are SMBS, SRSU, and SV in GBs. Caching
constraints are explained below whose purpose is to cache the files less than the total
caching capacity, i.e., SV < SRSU < SMBS.

a. Total number of files cached by RSU is ∑ F
f=1 sR

F ≤ SRSU

b. Total number of files cached by MBS is ∑ F
f=1 sB

F ≤ SMBS

c. Total number of files cached by vehicle is ∑ F
f=1 sV

F ≤ SV

Content delivery follows caching. Find the ideal path to deliver content to a node. The
existing approach employs ACO, explained later.

6.1.1. Cooperative Content Caching (COOP)

In COOP, the MBS server calculates content popularity based on user preferences,
then downloads popular data through a back-haul link and delivers PF content to RSUs
on demand. Neighboring RSUs share data instead of downloading it from a BS server or
controller. RSUs cache and serve location-based data such as GPS and weather forecasts.
Cross-tier collaboration between MBS and RSUs eliminates the need to recalculate and
download content because RSU caches it after fetching it from MBS, as demonstrated in
Figure 3. COOP prevents data duplication and saves time and money. For every file content
placement, Equation (8) is used since RSU will not download all packets of a single file due
to limited caching capacity; caching resources would be wasted because requesting nodes
are mobile.

Sf = (SB
f· SR

f) (8)

To avoid redundancy and maximize cache capacity, we use the following caching
limitations as expressed in Equations (9) and (10), respectively.

SB
f + ∑ n

R=1 sR
f ≤ S f (9)

SR
f ≤ SRSU and SB

f ≤ SMBS (10)

Content placement using COOP is formulated as shown in Equation (11), where n
denotes the number of possible placing content for file f.

TR
f (n) = SB

f (n) · SR
f (n) (11)

Appl. Sci. 2023, 13, 780 14 of 24

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 25

SBf + ∑ 𝑠 ௡ ோୀଵ Rf ≤ Sf (9)

SRf ≤ SRSU and SBf ≤ SMBS (10)

Content placement using COOP is formulated as shown in Equation (11), where n
denotes the number of possible placing content for file f.

TRf (n) = SBf (n). SRf (n) (11)

Figure 3. Cooperative content caching (COOP).

6.1.2. COOP with K-Means Clustering
We also utilize K-means to cluster the users managed by RSU. As the user sends a

request to RSU, it checks data in nearby clusters. If data are located in the first or third
cluster, RSU stops searching and sends the caching node’s information to the requesting
node, as shown in Figure 4. In this technique, the requests are fulfilled by surrounding
nodes through V2V communication, and no server is required. Algorithm 1 shows the
working of Cooperative Content Caching.

Figure 4. COOP using K-means clustering.

Figure 3. Cooperative content caching (COOP).

6.1.2. COOP with K-Means Clustering

We also utilize K-means to cluster the users managed by RSU. As the user sends a
request to RSU, it checks data in nearby clusters. If data are located in the first or third
cluster, RSU stops searching and sends the caching node’s information to the requesting
node, as shown in Figure 4. In this technique, the requests are fulfilled by surrounding
nodes through V2V communication, and no server is required. Algorithm 1 shows the
working of Cooperative Content Caching.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 25

SBf + ∑ 𝑠 ௡ ோୀଵ Rf ≤ Sf (9)

SRf ≤ SRSU and SBf ≤ SMBS (10)

Content placement using COOP is formulated as shown in Equation (11), where n
denotes the number of possible placing content for file f.

TRf (n) = SBf (n). SRf (n) (11)

Figure 3. Cooperative content caching (COOP).

6.1.2. COOP with K-Means Clustering
We also utilize K-means to cluster the users managed by RSU. As the user sends a

request to RSU, it checks data in nearby clusters. If data are located in the first or third
cluster, RSU stops searching and sends the caching node’s information to the requesting
node, as shown in Figure 4. In this technique, the requests are fulfilled by surrounding
nodes through V2V communication, and no server is required. Algorithm 1 shows the
working of Cooperative Content Caching.

Figure 4. COOP using K-means clustering.

Figure 4. COOP using K-means clustering.

First, the number of vehicles and the total number of RSUs at time t within a single
MBS are initialized. Popularity is calculated in MBS and, popular data are cached on RSUs.
Each vehicle is handled in a parallel fashion. When the vehicle sends a request to the server,
RSU searches the requested content in its clusters and the vehicle gets data directly from
that node. Otherwise, RSU searches in its local cache; after finding the content in its cache,
it is directly delivered to the node, elsewhere downloaded from MBS.

Appl. Sci. 2023, 13, 780 15 of 24

Algorithm 1: Cooperative Content Caching on MBS, RSU, and Vehicles

1. Begin
2. NV

t: set of vehicles in entering into RSU at time t
3. NRSU

n: n = {1,2,3 10} Number of RSUs within one MBS
4. For each vehicle v ε NV parallel do
5. If (Vi sends request)
6. for i = 1 to k, K= NV

f do
7. Compute Popularity (PFB, NV

f)

8. Pj,k = Pr, j. (1/ K)/∑
Fj
n=11/n calculating popularity PFB at MBS

9. Sf = (SB
f. SR

f): Content placement on RSU and MBS
10. End for
11. Analyze the request x
12. SR

f = total PfB → PF cached in RSU storage
13. for j = 1: Find j ε Ck: Ck = number of clusters
14. if (PF/ LF == NV

f): File found in cluster
15. Data passed to vehicle
16. else if (x = = SR

f)
17. Sense the file at RSU
18. Compute V2R communication
19. else if
20. Download from MBS
21. End if
22. End for

6.2. Popularity Prediction

After getting user preferences, we estimate the overall popularity of movies. Those
movies which are rated by most of the users and whose mean rating is higher are considered
the top-most popular movies. MBS predicts the popularity, downloads that content, and
delivers popular content to the corresponding RSUs. When a user’s request arrives at
the RSU, then content will be provided directly to the user without using the back-haul
bandwidth. Otherwise, the content will be fetched from the core network through the
back-haul link with extra overhead and delay.

Location-based files served by RSU are represented as, NR = LFR, and popular files
served by MBS are expressed as, M = PFB, hence the total number of files stored in RSU can
be determined by Equation (12).

FR = M + ∑ n
R=1 NR

f (12)

The popularity is calculated by two variables, Fj showing the number of files at MBS,
and Fi representing the number of files at RSU keeping the K as a constant of popularity.
Equation (13) finally expresses the content popularity.

Pj,k = Pr, j· (1/ K)/ ∑ Fj
n=1 1/n (13)

6.3. Optimisation Using Cuckoo Search

In our model, we use nature inspired optimization technique named cuckoo search
(CS), to find the shortest path with minimum time spam and cost, as shown in Figure 5.
Each cuckoo lays eggs in a number of host nests but the cuckoo will find a host bird with
high quality based on the probability. Cuckoo search with Levy flight will take a lot of
smaller steps after taking random longer steps. CS parameters are Inertia location or the
cuckoo itself, number of host nests, number of step sizes, number of eggs, and brood
parasitism. Algorithm 2 shows the working of Cuckoo search.

Appl. Sci. 2023, 13, 780 16 of 24

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 25

the RSU, then content will be provided directly to the user without using the back-haul
bandwidth. Otherwise, the content will be fetched from the core network through the
back-haul link with extra overhead and delay.

Location-based files served by RSU are represented as, NR = LFR, and popular files
served by MBS are expressed as, M = PFB, hence the total number of files stored in RSU
can be determined by Equation (12).

FR = M + ∑ ௡ ோୀଵ NRf (12)

The popularity is calculated by two variables, Fj showing the number of files at MBS,
and Fi representing the number of files at RSU keeping the K as a constant of popularity.
Equation (13) finally expresses the content popularity.

Pj,k = Pr, j. (1/ K)/∑ ி௝ ௡ୀଵ 1/n (13)

6.3. Optimisation Using Cuckoo Search
In our model, we use nature inspired optimization technique named cuckoo search

(CS), to find the shortest path with minimum time spam and cost, as shown in Figure 5.
Each cuckoo lays eggs in a number of host nests but the cuckoo will find a host bird with
high quality based on the probability. Cuckoo search with Levy flight will take a lot of
smaller steps after taking random longer steps. CS parameters are Inertia location or the
cuckoo itself, number of host nests, number of step sizes, number of eggs, and brood par-
asitism. Algorithm 2 shows the working of Cuckoo search.

Figure 5. Working of cuckoo search.

As compared to ACO, the CS has less parameters; there is no dependency to take the
next step and brood parasitism is the best parameter to find better output; moreover, it
will not stick into local optima. The objective function is shown in Equation (14), where a
new iteration is taken by cuckoo p, using current iteration xpt, Levy flight distribution
function is used to update the solution Levy (λ), while α is the step size.

f(x)  xpt+1 = xpt + α ⊕ Levy (λ) (14)

Figure 5. Working of cuckoo search.

As compared to ACO, the CS has less parameters; there is no dependency to take the
next step and brood parasitism is the best parameter to find better output; moreover, it will
not stick into local optima. The objective function is shown in Equation (14), where a new
iteration is taken by cuckoo p, using current iteration xp

t, Levy flight distribution function
is used to update the solution Levy (λ), while α is the step size.

f (x)→ xp
t+1 = xp

t + α ⊕ Levy (λ) (14)

Algorithm 2: Content Caching Using Cuckoo Search

Require: Initial route population for vehicle V: VP, Best route VR*, Reliability of best route V*

1. Begin
2. Compute. λ, α,
3. For k = 1 to NP do
4. Compute: u, v and step of levy flight as Levy(λ) = (u/v − λ)
5. Compute D: distance between current route Vk and best route V*
6. Compute: step size h = D. α. Levy (λ)
7. Apply inverse mutation operator finv to find new route
8. Vk = finv (Vk, h, Q1, Q2)
9. Compute reliability of new route
10. RP ← {RP, Rk}: reliability score of new route
11. VP ← {VP, Vk}: store new reliable route
12. If Rk > R* then
13. Update R* with new one Rk

14. Update Vk and V*

15. End if
16. End for
17. Return best route and reliability score

Appl. Sci. 2023, 13, 780 17 of 24

6.4. Content Caching with Clustering

First, MBS and RSUs will cache popular information together. When a user requests
content, it is already cached on the server and provided quickly. If a user requests content
that has not been cached on the server, the request will be sent to the central cache. Another
component of our research is to create clusters based on user requests; when a car sends a
request, RSU searches the cluster for the data and provides it instantly. Clustering saves
time because the entire coverage area is not explored.

7. Performance Evaluation and Results

We simulated the vehicular edge environment consisting of the edge servers (RSU and
MBS) and several users located within the coverage area of the RSUs. We use 3 MBS and 10
RSUs in each MBS and exploit the K-Means clustering technique for user grouping. When
a vehicle sends requests to the RSU, it searches that content in those clusters near users.
The coverage area of RSU is 100 m, and MBS is 1000 m. If RSU finds the content, it sends
that node’s location to the requesting node. By clustering, there is no need to search out
all users in the coverage area. The dataset used in our experiment is MovieLens, collected
from the MovieLens website [41]. We have only considered those movies that have more
than 10 user rates. To decide which are most popular, we set two parameters: first, the high
rating given by users to different movies and second, how many users rate a movie. At
the end, those movies that most users rate get high preference as compared to those which
are rated by only a few users. In order to simulate the users’ content request process, we
consider the movie ratings given by a user as the request for that movie just as assumed
in [42]. We compared the proposed technique (CS) with the state-of-the-art scheme (ACO)
to assess the performance based on cache hit ratio, delay, delivery cost, and caching cost.
Table 4 details the simulation settings and implementation parameters.

Table 4. Simulation settings and modeling parameters.

S. No Parameters Value

1. Caching buffer 100–700 MB
2. Network size 40, 60, 80, 100, 120
3. No. of contents 1000
4. Content size 10 MB
5. Vehicle speed 25–75 km/h
6. Length of cluster (L) 50 m, 35 m, 20 m
7. Number of iterations 50
8. Rate of model learning 0.002
9. Validations failures 8
10. Hidden layers 5
11. Number of polling layers 3
12. Training data size 897,560
13. Testing data size 102,440 (11%)
14. Time taken to train the model 617 min
15. Testing time 0.043 ms
16 Exponential decay (λ) 0.05
17. No of users 50–500
18. RSU transmission range 100 m

7.1. Non-Cooperative Content Caching (Non-COOP)

In non-cooperative caching, MBS and RSUs make their caching decisions indepen-
dently. If they want to cache the popular content, then popularity will be calculated on
each caching server. There is no cooperation to calculate and download the popular content
cooperatively, which leads to computational cost and time consumption; moreover, data
duplication will also occur on the same tier.

Appl. Sci. 2023, 13, 780 18 of 24

7.1.1. Reactive Caching Model

In the reactive caching technique, when a vehicle sends a request to RSU, it fetches the
content from BS or the back-haul server. There is no predicted pre-cached data; RSU will
download the data as requests are received [29].

7.1.2. Pro-Active Content Caching Model

Although in proactive caching there is no cooperation between neighboring RSUs and
BSs, data are pre-cached on RSU. So, pre-caching is performed here. It takes the same time
to download the content from the back-haul link as reactive caching takes. But the delay in
delivering the content to the vehicle will be short as compared to reactive caching; due to
its pre-caching capability [29].

7.1.3. Cooperative Content Caching (COOP) + K-Means

According to this strategy, we have chosen the list of popular predicted contents and
cached them at MBS, then PF content is delivered to the RSUs on demand. Neighboring
RSUs share the data cooperatively before requesting to the MBS server. After fetching the
data from RSU the vehicle stores the data in its cache for a limited time. At first, when the
user sends a request to the RSU, RSU searches the requested data in its clusters and sends
the information of caching device to the requesting node; in this way, the devices can get
that data from their neighbors with minimum delay.

7.2. Cache Hit Ratio, Caching Cost, Delivery Cost and Delay with Different Cache Sizes

Figure 6 shows that by increasing cache size, the availability of different types of
content will increase. In case of content availability, more users can get access to the local
cache so the hit ratio will also improve. In the case of maximum cache size COOP (CS),
the hit ratio is almost 27% better than COOP (ACO) and around about 43% better than
proactive caching. As there is no cooperation in RSUs and in reactive caching, it goes in
the same fashion and does not increase, because it will download the content from the
upper layer server each time. In our proposed model, the server searches the content in its
clusters first and there is no need to search the whole data set, as data are cooperatively
cached in the server so the hit ratio will be better.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 25

Figure 6. Cache hit ratio with different cache sizes.

Figure 7 shows that data are required according to the caching capacity, if there is
more capacity it will store more data. Caching capacity is bought in BW. There is almost
a 10% difference in the result when the caching capacity is higher and in the case of mini-
mum cache size, it is 7% in the COOP (ACO) comparison graph. In COOP (ACO) and
NON-COOP (proactive), there is a little bit of difference because it also pre-caches the
content but there is a lack of clustering. In reactive caching, there is a very small amount
of cache to store and process the data; in case of increasing cache size, we have to buy the
cache.

Figure 7. Caching cost with different cache sizes.

Figure 8 shows that increasing cache sizes data delivery costs will be minimized be-
cause requested data will be pre-cached in the server and not need to fetch content from
the upper layer. When the cache size is 150 (GB), the caching cost in COOP (ACO) is 28%,
while in COOP (CS) it is 25%. In proactive, when the cache size is less than the delivery,
the cost is almost 25% less, but it fluctuates after some time, in case of not finding the
content in its local cache. While in the reactive cache, it always downloads content from
the back-haul server. Hence, the delivery cost will increase more.

0
10
20
30
40
50
60
70
80
90

100

20 30 40 50 60 70 80 100 150

Ca
ch

e
Hi

t R
at

io
 (%

)

Cache Size(GB)

COOP (CS)

COOP(ACO)

NON-COOP(Proactive)

NON-COOP(Reactive)

0

500

1000

1500

2000

2500

3000

20 30 40 50 60 70 80 100

Ca
ch

in
g

Co
st

(R
s)

Cache Size(GB)

COOP(CS)
COOP(ACO)
NON-COOP(Proactive)
NON-COOP(Reactive)

Figure 6. Cache hit ratio with different cache sizes.

Figure 7 shows that data are required according to the caching capacity, if there is more
capacity it will store more data. Caching capacity is bought in BW. There is almost a 10%
difference in the result when the caching capacity is higher and in the case of minimum
cache size, it is 7% in the COOP (ACO) comparison graph. In COOP (ACO) and NON-
COOP (proactive), there is a little bit of difference because it also pre-caches the content but
there is a lack of clustering. In reactive caching, there is a very small amount of cache to
store and process the data; in case of increasing cache size, we have to buy the cache.

Appl. Sci. 2023, 13, 780 19 of 24

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 25

Figure 6. Cache hit ratio with different cache sizes.

Figure 7 shows that data are required according to the caching capacity, if there is
more capacity it will store more data. Caching capacity is bought in BW. There is almost
a 10% difference in the result when the caching capacity is higher and in the case of mini-
mum cache size, it is 7% in the COOP (ACO) comparison graph. In COOP (ACO) and
NON-COOP (proactive), there is a little bit of difference because it also pre-caches the
content but there is a lack of clustering. In reactive caching, there is a very small amount
of cache to store and process the data; in case of increasing cache size, we have to buy the
cache.

Figure 7. Caching cost with different cache sizes.

Figure 8 shows that increasing cache sizes data delivery costs will be minimized be-
cause requested data will be pre-cached in the server and not need to fetch content from
the upper layer. When the cache size is 150 (GB), the caching cost in COOP (ACO) is 28%,
while in COOP (CS) it is 25%. In proactive, when the cache size is less than the delivery,
the cost is almost 25% less, but it fluctuates after some time, in case of not finding the
content in its local cache. While in the reactive cache, it always downloads content from
the back-haul server. Hence, the delivery cost will increase more.

0
10
20
30
40
50
60
70
80
90

100

20 30 40 50 60 70 80 100 150

Ca
ch

e
Hi

t R
at

io
 (%

)

Cache Size(GB)

COOP (CS)

COOP(ACO)

NON-COOP(Proactive)

NON-COOP(Reactive)

0

500

1000

1500

2000

2500

3000

20 30 40 50 60 70 80 100

Ca
ch

in
g

Co
st

(R
s)

Cache Size(GB)

COOP(CS)
COOP(ACO)
NON-COOP(Proactive)
NON-COOP(Reactive)

Figure 7. Caching cost with different cache sizes.

Figure 8 shows that increasing cache sizes data delivery costs will be minimized
because requested data will be pre-cached in the server and not need to fetch content from
the upper layer. When the cache size is 150 (GB), the caching cost in COOP (ACO) is 28%,
while in COOP (CS) it is 25%. In proactive, when the cache size is less than the delivery, the
cost is almost 25% less, but it fluctuates after some time, in case of not finding the content in
its local cache. While in the reactive cache, it always downloads content from the back-haul
server. Hence, the delivery cost will increase more.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 25

Figure 8. Delivery cost with different cache sizes.

Figure 9 shows that by increasing cache sizes more files will be stored in a cache, so
a greater number of users can access the data from the nearest servers then the cache hit
ratio will definitely increase. The results show that there is a 1% difference in delay when
the cache size is 20 (GB). While increasing cache size delay is almost 10% less in our pro-
posed technique. In reactive caching, the delay is 20% more than our proposed technique,
as there is no cache and cooperation. The reason is that in COOP (CS) due to clustering
and optimal route finding, there will be a minimum delay to send and receive requests.

Figure 9. Delay with different cache sizes.

7.3. Delay and Caching Cost While Increasing Number of Files
The given results show that caching more files on the server increases the availability

of data on demand. There will be a minimum delay because files will already be cached
on corresponding servers and there is no need to download files from the back-haul
server.

As the number of files increases, the availability of content will be high so the hit ratio
will also increase. Figure 10 shows that in reactive caching when the number of files will
increase, the hit ratio will not be good due to non-caching devices, and each time data is
downloaded from the back-haul server and remains the same in indifferent cases. In pro-
active caching, the hit ratio is 45% with an increasing number of files, while COOP (ACO)
performs much better due to its cooperative nature. However, in COOP (CS), the hit ratio
is almost 90% due to joint cooperation among RSU and BS, clustering, and CS optimiza-
tion algorithm.

0
200
400
600
800

1000
1200
1400
1600
1800

20 30 40 50 60 70 80 100

De
liv

er
y

Co
st

 (R
s)

Cache Size (GB)

COOP(CS)

COOP (ACO)

NON-COOP(Proactive)

NON-COOP(Reactive)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

20 30 40 50 60 70 80 100 150

De
la

y
(m

s)

Cache Size (GB)

COOP (ACO)

COOP (CS)

NON-COOP (Proactive)

NON-COOP (Reactive)

Figure 8. Delivery cost with different cache sizes.

Figure 9 shows that by increasing cache sizes more files will be stored in a cache, so a
greater number of users can access the data from the nearest servers then the cache hit ratio
will definitely increase. The results show that there is a 1% difference in delay when the
cache size is 20 (GB). While increasing cache size delay is almost 10% less in our proposed
technique. In reactive caching, the delay is 20% more than our proposed technique, as there
is no cache and cooperation. The reason is that in COOP (CS) due to clustering and optimal
route finding, there will be a minimum delay to send and receive requests.

7.3. Delay and Caching Cost While Increasing Number of Files

The given results show that caching more files on the server increases the availability
of data on demand. There will be a minimum delay because files will already be cached on
corresponding servers and there is no need to download files from the back-haul server.

As the number of files increases, the availability of content will be high so the hit ratio
will also increase. Figure 10 shows that in reactive caching when the number of files will
increase, the hit ratio will not be good due to non-caching devices, and each time data
is downloaded from the back-haul server and remains the same in indifferent cases. In
proactive caching, the hit ratio is 45% with an increasing number of files, while COOP

Appl. Sci. 2023, 13, 780 20 of 24

(ACO) performs much better due to its cooperative nature. However, in COOP (CS), the
hit ratio is almost 90% due to joint cooperation among RSU and BS, clustering, and CS
optimization algorithm.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 25

Figure 8. Delivery cost with different cache sizes.

Figure 9 shows that by increasing cache sizes more files will be stored in a cache, so
a greater number of users can access the data from the nearest servers then the cache hit
ratio will definitely increase. The results show that there is a 1% difference in delay when
the cache size is 20 (GB). While increasing cache size delay is almost 10% less in our pro-
posed technique. In reactive caching, the delay is 20% more than our proposed technique,
as there is no cache and cooperation. The reason is that in COOP (CS) due to clustering
and optimal route finding, there will be a minimum delay to send and receive requests.

Figure 9. Delay with different cache sizes.

7.3. Delay and Caching Cost While Increasing Number of Files
The given results show that caching more files on the server increases the availability

of data on demand. There will be a minimum delay because files will already be cached
on corresponding servers and there is no need to download files from the back-haul
server.

As the number of files increases, the availability of content will be high so the hit ratio
will also increase. Figure 10 shows that in reactive caching when the number of files will
increase, the hit ratio will not be good due to non-caching devices, and each time data is
downloaded from the back-haul server and remains the same in indifferent cases. In pro-
active caching, the hit ratio is 45% with an increasing number of files, while COOP (ACO)
performs much better due to its cooperative nature. However, in COOP (CS), the hit ratio
is almost 90% due to joint cooperation among RSU and BS, clustering, and CS optimiza-
tion algorithm.

0
200
400
600
800

1000
1200
1400
1600
1800

20 30 40 50 60 70 80 100

De
liv

er
y

Co
st

 (R
s)

Cache Size (GB)

COOP(CS)

COOP (ACO)

NON-COOP(Proactive)

NON-COOP(Reactive)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

20 30 40 50 60 70 80 100 150

De
la

y
(m

s)

Cache Size (GB)

COOP (ACO)

COOP (CS)

NON-COOP (Proactive)

NON-COOP (Reactive)

Figure 9. Delay with different cache sizes.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 25

Figure 10. Cache hit ratio with increasing number of files.

If more files are available in the local cache, the time to deliver that content is less.
Figure 11 shows if there are 20 files in the cache then the delay will be 10% more as com-
pared to COOP (CS). Similarly, when there are 300 files then the delay of COOP (ACO)
will be 20% more than COOP (CS). In proactive caching, the delay is double due to its
non-cooperative nature. It fluctuates more in case of non-availability of content, it will
fetch from the back-haul server. While reactive cannot store more files due to the unavail-
ability of the cache.

Figure 11. Delay with increasing number of files.

Figure 12 shows that by increasing the number of files in the cache, caching cost will
also consume in terms of the price of BW consumption. In COOP (CS), data are collabora-
tively shared among servers, so there is no need to download files again. As a result, the
cost will be minimized. When there are only 20 files, the caching cost is almost the same
at 12%, but when there are 300 files, the cost of COOP (ACO) is 87%, while the cost of
COOP (CS) is 75%, the same as proactive caching, which is 12% costly than our proposed
technique. Data are stored in clusters that are more organized and easier to maintain.

Figure 12. Caching cost with increasing number of files.

0

20

40

60

80

100

20 50 100 200 300 350

Ca
ch

e
Hi

t R
at

io
 (%

)

Number of files

COOP(CS)
COOP (ACO)
NON-COOP(Proactive
NON-COOP (Reactive)

0

200

400

600

800

1000

20 50 100 200 300

De
la

y
(m

s)

Number of files

COOP(CS)

COOP(ACO)

NON-COOP(Proactive)

0

500

1000

1500

2000

2500

3000

3500

4000

20 50 100 200 300

Ca
ch

in
g

Co
st

 (P
ric

e)

Number of files

COOP

NON-COOP

NON-COOP(Proactive)

Figure 10. Cache hit ratio with increasing number of files.

If more files are available in the local cache, the time to deliver that content is less.
Figure 11 shows if there are 20 files in the cache then the delay will be 10% more as
compared to COOP (CS). Similarly, when there are 300 files then the delay of COOP (ACO)
will be 20% more than COOP (CS). In proactive caching, the delay is double due to its
non-cooperative nature. It fluctuates more in case of non-availability of content, it will fetch
from the back-haul server. While reactive cannot store more files due to the unavailability
of the cache.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 25

Figure 10. Cache hit ratio with increasing number of files.

If more files are available in the local cache, the time to deliver that content is less.
Figure 11 shows if there are 20 files in the cache then the delay will be 10% more as com-
pared to COOP (CS). Similarly, when there are 300 files then the delay of COOP (ACO)
will be 20% more than COOP (CS). In proactive caching, the delay is double due to its
non-cooperative nature. It fluctuates more in case of non-availability of content, it will
fetch from the back-haul server. While reactive cannot store more files due to the unavail-
ability of the cache.

Figure 11. Delay with increasing number of files.

Figure 12 shows that by increasing the number of files in the cache, caching cost will
also consume in terms of the price of BW consumption. In COOP (CS), data are collabora-
tively shared among servers, so there is no need to download files again. As a result, the
cost will be minimized. When there are only 20 files, the caching cost is almost the same
at 12%, but when there are 300 files, the cost of COOP (ACO) is 87%, while the cost of
COOP (CS) is 75%, the same as proactive caching, which is 12% costly than our proposed
technique. Data are stored in clusters that are more organized and easier to maintain.

Figure 12. Caching cost with increasing number of files.

0

20

40

60

80

100

20 50 100 200 300 350

Ca
ch

e
Hi

t R
at

io
 (%

)

Number of files

COOP(CS)
COOP (ACO)
NON-COOP(Proactive
NON-COOP (Reactive)

0

200

400

600

800

1000

20 50 100 200 300

De
la

y
(m

s)

Number of files

COOP(CS)

COOP(ACO)

NON-COOP(Proactive)

0

500

1000

1500

2000

2500

3000

3500

4000

20 50 100 200 300

Ca
ch

in
g

Co
st

 (P
ric

e)

Number of files

COOP

NON-COOP

NON-COOP(Proactive)

Figure 11. Delay with increasing number of files.

Figure 12 shows that by increasing the number of files in the cache, caching cost
will also consume in terms of the price of BW consumption. In COOP (CS), data are

Appl. Sci. 2023, 13, 780 21 of 24

collaboratively shared among servers, so there is no need to download files again. As a
result, the cost will be minimized. When there are only 20 files, the caching cost is almost
the same at 12%, but when there are 300 files, the cost of COOP (ACO) is 87%, while the cost
of COOP (CS) is 75%, the same as proactive caching, which is 12% costly than our proposed
technique. Data are stored in clusters that are more organized and easier to maintain.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 25

Figure 10. Cache hit ratio with increasing number of files.

If more files are available in the local cache, the time to deliver that content is less.
Figure 11 shows if there are 20 files in the cache then the delay will be 10% more as com-
pared to COOP (CS). Similarly, when there are 300 files then the delay of COOP (ACO)
will be 20% more than COOP (CS). In proactive caching, the delay is double due to its
non-cooperative nature. It fluctuates more in case of non-availability of content, it will
fetch from the back-haul server. While reactive cannot store more files due to the unavail-
ability of the cache.

Figure 11. Delay with increasing number of files.

Figure 12 shows that by increasing the number of files in the cache, caching cost will
also consume in terms of the price of BW consumption. In COOP (CS), data are collabora-
tively shared among servers, so there is no need to download files again. As a result, the
cost will be minimized. When there are only 20 files, the caching cost is almost the same
at 12%, but when there are 300 files, the cost of COOP (ACO) is 87%, while the cost of
COOP (CS) is 75%, the same as proactive caching, which is 12% costly than our proposed
technique. Data are stored in clusters that are more organized and easier to maintain.

Figure 12. Caching cost with increasing number of files.

0

20

40

60

80

100

20 50 100 200 300 350

Ca
ch

e
Hi

t R
at

io
 (%

)

Number of files

COOP(CS)
COOP (ACO)
NON-COOP(Proactive
NON-COOP (Reactive)

0

200

400

600

800

1000

20 50 100 200 300

De
la

y
(m

s)

Number of files

COOP(CS)

COOP(ACO)

NON-COOP(Proactive)

0

500

1000

1500

2000

2500

3000

3500

4000

20 50 100 200 300

Ca
ch

in
g

Co
st

 (P
ric

e)

Number of files

COOP

NON-COOP

NON-COOP(Proactive)

Figure 12. Caching cost with increasing number of files.

7.4. Comparison of Number of Users with Delay

In Figure 13, caching with the cuckoo search algorithm and ant colony is compared in
terms of increasing the number of users with delay in finding the optimal path to reach the
requesting node, where required content is cached.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 25

7.4. Comparison of Number of Users with Delay
In Figure 13, caching with the cuckoo search algorithm and ant colony is compared

in terms of increasing the number of users with delay in finding the optimal path to reach
the requesting node, where required content is cached.

Figure 13. Delay with the increasing number of users.

The results reveal that COOP (CS) performs better than COOP (ACO). Because the
convergence time of CS is more than ACO, CS takes random steps and each step is inde-
pendently chosen, while ACO takes continuous and small steps, and each new step de-
pends on the previous steps. Due to dependencies and continuous search of ACO, it takes
more time to find the optimal path, so it causes an increase in delay. Cooperatively caching
the popular content will also reduce the caching and delivering cost; moreover, searching
data from clusters also reduces the response time while increasing the hit ratio. Overall,
the proposed technique outperforms in terms of delay, hit ratio, caching, and delivery
cost.

8. Conclusions
In this study, we explored content caching in vehicular edge networks to improve

performance through cache utilization, increase the cache hit ratio, and reduce response
time. This study indicates that caching can minimize network traffic and enhance user
productivity. It has been observed that pre-caching content depending on its popularity,
increases the cache-hit ratio. The approach caches data based on the content’s popularity
as determined by user choices and the cooperative content caching technique. RSU
anticipates the popularity of data and distributes this information with neighboring RSUs
to prevent data duplication on servers nearby. RSU also encounters the node’s mobility
by using the Morkov model to predict it based on previous observations, distance, and
time. Thus, when a user requests data not present in its local cache, it is retrieved from
neighboring servers instead of downloaded over the back-haul link. In addition, the user’s
longitude and latitude have changed due to mobility. Therefore, RSU delivers the content
to the user’s true location after discovering it. We then use a meta-heuristic optimization
technique to discover the fastest path to the desired material. After analyzing several
optimization algorithms inspired by nature, it was concluded that CS is superior at
discovering the optimal path. COOP (CS) can substantially improve cache performance,
cache hit ratio, and response time. The simulated trials are conducted with actual
Movielens data, and the experimental results reveal that COOP outperforms the cache hit
ratio and response time in vehicle edge networks.

0

200

400

600

800

1000

1200

50 100 150 200 250 300

De
la

y(
m

s)

Number of Users

COOP(CS)

COOP(ACO)

NON-COOP(Proactive)

NON-COOP(Reactive)

Figure 13. Delay with the increasing number of users.

The results reveal that COOP (CS) performs better than COOP (ACO). Because the
convergence time of CS is more than ACO, CS takes random steps and each step is indepen-
dently chosen, while ACO takes continuous and small steps, and each new step depends
on the previous steps. Due to dependencies and continuous search of ACO, it takes more
time to find the optimal path, so it causes an increase in delay. Cooperatively caching the
popular content will also reduce the caching and delivering cost; moreover, searching data
from clusters also reduces the response time while increasing the hit ratio. Overall, the
proposed technique outperforms in terms of delay, hit ratio, caching, and delivery cost.

8. Conclusions

In this study, we explored content caching in vehicular edge networks to improve
performance through cache utilization, increase the cache hit ratio, and reduce response
time. This study indicates that caching can minimize network traffic and enhance user
productivity. It has been observed that pre-caching content depending on its popularity,

Appl. Sci. 2023, 13, 780 22 of 24

increases the cache-hit ratio. The approach caches data based on the content’s popularity as
determined by user choices and the cooperative content caching technique. RSU anticipates
the popularity of data and distributes this information with neighboring RSUs to prevent
data duplication on servers nearby. RSU also encounters the node’s mobility by using
the Morkov model to predict it based on previous observations, distance, and time. Thus,
when a user requests data not present in its local cache, it is retrieved from neighboring
servers instead of downloaded over the back-haul link. In addition, the user’s longitude
and latitude have changed due to mobility. Therefore, RSU delivers the content to the user’s
true location after discovering it. We then use a meta-heuristic optimization technique
to discover the fastest path to the desired material. After analyzing several optimization
algorithms inspired by nature, it was concluded that CS is superior at discovering the
optimal path. COOP (CS) can substantially improve cache performance, cache hit ratio,
and response time. The simulated trials are conducted with actual Movielens data, and the
experimental results reveal that COOP outperforms the cache hit ratio and response time
in vehicle edge networks.

9. Limitations and Future Research Direction

The present technique considers the content’s popularity, which boosts the cache hit
ratio, but the response time is still somewhat slow. There is a lack of collaboration between
caching servers before data caching. For future work, we should emphasize different types
of dynamic optimization problems with randomly changed global optima and caching
different types of content simultaneously with textual data. In addition, popular content is
pre-cached in this study and sent to mobile consumers using optimal routing. If the content
is unpopular, it is retrieved from the back-haul server, which increases the response time
and service costs. Our future emphasis will be placed on caching various types of content.
Those contents include movies and videos. We also intend to exploit the neural networks-
based recommendation technique to predict popular content for caching purposes and
compare it with our results. In addition, recurrent neural networks can also be utilized to
enhance the accuracy of user location prediction.

Author Contributions: Conceptualization, S.K.u.Z., S.M. and H.A.; methodology, T.M., A.D.A. and
H.E.; software, S.K.u.Z. and M.A.; validation, F.R., H.A., T.M. and M.A.K.; formal analysis, S.K.u.Z.,
M.A. and F.R; investigation, S.K.u.Z.; resources, H.E. and A.D.A.; data curation, M.A.K. and S.M.;
writing—original draft preparation, S.K.u.Z., H.A. and M.A.; writing—review and editing, S.K.u.Z.,
H.A. and M.A.K.; visualization, S.M. and F.R. supervision, S.K.u.Z. and T.M.; project administration,
S.K.u.Z., H.E., A.D.A. and M.A.K.; funding acquisition, A.D.A. and H.E. All authors have read and
agreed to the published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2023R51), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data were used to support this study. We have conducted simula-
tions to evaluate the performance of the proposed protocol. However, any query about the research
conducted in this paper is highly appreciated and can be asked from the author (Muhammad Amir
Khan) upon request.

Acknowledgments: The authors appreciate the support from Princess Nourah bint Abdulrahman
University Researchers Supporting Project number (PNURSP2023R51), Princess Nourah bint Abdul-
rahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare that there is no conflict of interest.

Appl. Sci. 2023, 13, 780 23 of 24

References
1. Al-Badarneh, J.; Jararweh, Y.; Al-Ayyoub, M.; Fontes, R.; Al-Smadi, M.; Rothenberg, C. Cooperative mobile edge computing

system for VANET-based software-defined content delivery. Comput. Electr. Eng. 2018, 71, 388–397. [CrossRef]
2. Hu, L.; Qian, Y.; Chen, M.; Hossain, M.S.; Muhammad, G. Proactive Cache-Based Location Privacy Preserving for Vehicle

Networks. IEEE Wirel. Commun. 2018, 25, 77–83. [CrossRef]
3. Zhao, Z.; Guardalben, L.; Karimzadeh, M.; Silva, J.; Braun, T.; Sargento, S. Mobility Prediction-Assisted Over-the-Top Edge

Prefetching for Hierarchical VANETs. IEEE J. Sel. Areas Commun. 2018, 36, 1786–1801. [CrossRef]
4. Zhang, Y.; Li, C.; Luan, T.H.; Fu, Y.; Wang, H. Prediction Based Vehicular Caching: Where and What to Cache? Mob. Netw. Appl.

2019, 25, 760–771. [CrossRef]
5. Yasir, M.; Zaman, S.K.U.; Maqsood, T.; Rehman, F.; Mustafa, S. CoPUP: Content popularity and user preferences aware content

caching framework in mobile edge computing. Clust. Comput. 2022, 1–15. [CrossRef]
6. Qazi, F.; Khalid, O.; Bin Rais, R.N.; Khan, I.A.; Khan, A.U.R. Optimal Content Caching in Content-Centric Networks. Wirel.

Commun. Mob. Comput. 2019, 2019, 6373960. [CrossRef]
7. Qiao, G.; Leng, S.; Maharjan, S.; Zhang, Y.; Ansari, N. Deep Reinforcement Learning for Cooperative Content Caching in Vehicular

Edge Computing and Networks. IEEE Internet Things J. 2019, 7, 247–257. [CrossRef]
8. Zaman, S.K.U.; Jehangiri, A.I.; Maqsood, T.; Umar, A.I.; Khan, M.A.; Jhanjhi, N.Z.; Shorfuzzaman, M.; Masud, M. COME-UP:

Computation Offloading in Mobile Edge Computing with LSTM Based User Direction Prediction. Appl. Sci. 2022, 12, 3312.
[CrossRef]

9. Zhang, Y.; Li, C.; Luan, T.H.; Fu, Y.; Zhu, L. Caching on Vehicles: A Lyapunov Based Online Algorithm. In International Conference
on Ad Hoc Networks; Springer: Berlin/Heidelberg, Germany, 2018; pp. 15–24.

10. Luo, Z.; LiWang, M.; Huang, L.; Du, X.; Guizani, M. Caching mechanism for mobile edge computing in V2I networks. Trans.
Emerg. Telecommun. Technol. 2019, 30, e3689. [CrossRef]

11. Mustafa, S.; Bilal, K.; Malik, S.U.R.; Madani, S.A. SLA-Aware Energy Efficient Resource Management for Cloud Environments.
IEEE Access 2018, 6, 15004–15020. [CrossRef]

12. Chen, J.; Wu, H.; Yang, P.; Lyu, F.; Shen, X. Cooperative Edge Caching With Location-Based and Popular Contents for Vehicular
Networks. IEEE Trans. Veh. Technol. 2020, 69, 10291–10305. [CrossRef]

13. Zaman, S.K.U.; Jehangiri, A.I.; Maqsood, T.; Haq, N.U.; Umar, A.I.; Shuja, J.; Ahmad, Z.; Ben Dhaou, I.; Alsharekh, M.F. LiMPO:
Lightweight mobility prediction and offloading framework using machine learning for mobile edge computing. Clust. Comput.
2022, 1–19. [CrossRef]

14. Xiao, K.; Liu, K.; Xu, X.; Feng, L.; Wu, Z.; Zhao, Q. Cooperative coding and caching scheduling via binary particle swarm
optimization in software-defined vehicular networks. Neural Comput. Appl. 2020, 33, 1467–1478. [CrossRef]

15. Khelifi, H.; Luo, S.; Nour, B.; Sellami, A.; Moungla, H.; Nait-Abdesselam, F. An Optimized Proactive Caching Scheme Based on
Mobility Prediction for Vehicular Networks. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM),
Abu Dhabi, United Arab Emirates, 9–13 December 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [CrossRef]

16. Yang, X.-S. Nature-Inspired Optimization Algorithms; Academic Press: Cambridge, MA, USA, 2020.
17. Wang, G. A Comparative Study of Cuckoo Algorithm and Ant Colony Algorithm in Optimal Path Problems. MATEC Web Conf.

2018, 232, 03003. [CrossRef]
18. Guo, H.; Rui, L.-L.; Gao, Z.-P. A zone-based content pre-caching strategy in vehicular edge networks. Futur. Gener. Comput. Syst.

2020, 106, 22–33. [CrossRef]
19. Su, Z.; Hui, Y.; Xu, Q.; Yang, T.; Liu, J.; Jia, Y. An Edge Caching Scheme to Distribute Content in Vehicular Networks. IEEE Trans.

Veh. Technol. 2018, 67, 5346–5356. [CrossRef]
20. Kumar, N.; Lee, J.-H. Peer-to-Peer Cooperative Caching for Data Dissemination in Urban Vehicular Communications. IEEE Syst.

J. 2013, 8, 1136–1144. [CrossRef]
21. Jehangiri, A.I.; Maqsood, T.; Ahmad, Z.; Umar, A.I.; Shuja, J.; Alanazi, E.; Alasmary, W. Mobility-aware computational offloading

in mobile edge networks: A survey. Clust. Comput. 2021, 24, 2735–2756.
22. Ma, J.; Wang, J.; Liu, G.; Fan, P. Low Latency Caching Placement Policy for Cloud-Based VANET with Both Vehicle Caches and

RSU Caches. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; IEEE: New
York, NY, USA, 2017; pp. 1–6. [CrossRef]

23. Mustafa, S.; Sattar, K.; Shuja, J.; Sarwar, S.; Maqsood, T.; Madani, S.A.; Guizani, S. SLA-Aware Best Fit Decreasing Techniques for
Workload Consolidation in Clouds. IEEE Access 2019, 7, 135256–135267. [CrossRef]

24. Ding, R.; Wang, T.; Song, L.; Han, Z.; Wu, J. Roadside-unit caching in vehicular ad hoc networks for efficient popular content
delivery. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA,
USA, 9–12 March 2015; IEEE: New York, NY, USA, 2015; pp. 1207–1212. [CrossRef]

25. Husnain, G.; Anwar, S. An intelligent cluster optimization algorithm based on Whale Optimization Algorithm for VANETs
(WOACNET). PLoS ONE 2021, 16, e0250271. [CrossRef]

26. Zaman, S.K.U.; Khan, A.U.R.; Malik, S.U.R.; Khan, A.N.; Maqsood, T.; Madani, S.A. Formal verification and performance
evaluation of task scheduling heuristics for makespan optimization and workflow distribution in large-scale computing systems.
Comput. Syst. Sci. Eng. 2017, 32, 227–241.

http://doi.org/10.1016/j.compeleceng.2018.07.021
http://doi.org/10.1109/MWC.2017.1800127
http://doi.org/10.1109/JSAC.2018.2844681
http://doi.org/10.1007/s11036-019-01300-z
http://doi.org/10.1007/s10586-022-03624-0
http://doi.org/10.1155/2019/6373960
http://doi.org/10.1109/JIOT.2019.2945640
http://doi.org/10.3390/app12073312
http://doi.org/10.1002/ett.3689
http://doi.org/10.1109/ACCESS.2018.2808320
http://doi.org/10.1109/TVT.2020.3004720
http://doi.org/10.1007/s10586-021-03518-7
http://doi.org/10.1007/s00521-020-04978-5
http://doi.org/10.1109/glocom.2018.8647898
http://doi.org/10.1051/matecconf/201823203003
http://doi.org/10.1016/j.future.2019.12.050
http://doi.org/10.1109/TVT.2018.2824345
http://doi.org/10.1109/JSYST.2013.2285611
http://doi.org/10.1109/glocomw.2017.8269203
http://doi.org/10.1109/ACCESS.2019.2941145
http://doi.org/10.1109/wcnc.2015.7127641
http://doi.org/10.1371/journal.pone.0250271

Appl. Sci. 2023, 13, 780 24 of 24

27. Muniyandi, R.C.; Hasan, M.K.; Hammoodi, M.R.; Maroosi, A. An Improved Harmony Search Algorithm for Proactive Routing
Protocol in VANET. J. Adv. Transp. 2021, 2021, 6641857. [CrossRef]

28. Glass, S.C. Improving Privacy with Intelligent Cooperative Caching in Vehicular Ad Hoc Networks. Ph.D. Thesis, Florida Atlantic
University, Boca Raton, FL, USA, 2017.

29. Zaman, S.K.U.; Maqsood, T.; Ali, M.; Bilal, K.; Madani, S.A.; Khan, A.U.R. A Load Balanced Task Scheduling Heuristic for
Large-Scale Computing Systems. Comput. Syst. Sci. Eng. 2019, 34, 79–90. [CrossRef]

30. Li, L.; Chan, C.A.; Erfani, S.; Leckie, C. Adaptive Edge Caching based on Popularity and Prediction for Mobile Networks. In
Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; IEEE:
New York, NY, USA, 2019; pp. 1–10. [CrossRef]

31. Mukhairez, H.H.; Maghari, A.Y. Performance comparison of simulated annealing, GA and ACO applied to TSP. Int. J. Intell.
Comput. Res. 2015, 6, 647–654. [CrossRef]

32. Ab Wahab, M.N.; Nefti-Meziani, S.; Atyabi, A. A Comprehensive Review of Swarm Optimization Algorithms. PLoS ONE 2015,
10, e0122827. [CrossRef] [PubMed]

33. Safi, A.; Ahmad, Z.; Jehangiri, A.I.; Latip, R.; Zaman, S.K.U.; Khan, M.A.; Ghoniem, R.M. A Fault Tolerant Surveillance System for
Fire Detection and Prevention Using LoRaWAN in Smart Buildings. Sensors 2022, 22, 8411. [CrossRef]

34. Bello-Salau, H.; Onumanyi, A.J.; Abu-Mahfouz, A.M.; Adejo, A.O.; Mu’Azu, M.B. New discrete cuckoo search optimization
algorithms for effective route discovery in IoT-based vehicular ad-hoc networks. IEEE Access 2020, 8, 145469–145488. [CrossRef]

35. Bhavana, V.; Ramesh, V.; Sivagami, M. Implementing Discrete Cuckoo Search Algorithm for TSP using MPI and Beowulf Cluster.
Int. J. Innov. Technol. Explor. Eng. 2019, 8, 554–560.

36. Zheng, H.; Zhou, Y. A novel cuckoo search optimization algorithm based on Gauss distribution. J. Comput. Inf. Syst. 2012,
8, 4193–4200.

37. Hajlaoui, R.; Alaya, B.; Mchergui, A. Optimized VANET Routing Protocol Using Cuckoo Search Algorithm. In Proceedings of the
2022 International Wireless Communications and Mobile Computing (IWCMC), Dubrovnik, Croatia, 30 May–3 June 2022; IEEE:
New York, NY, USA, 2022; pp. 824–828.

38. Marwah, G.P.K.; Jain, A.; Malik, P.K.; Singh, M.; Tanwar, S.; Safirescu, C.O.; Mihaltan, T.C.; Sharma, R.; Alkhayyat, A. An
Improved Machine Learning Model with Hybrid Technique in VANET for Robust Communication. Mathematics 2022, 10, 4030.
[CrossRef]

39. Behura, A.; Srinivas, M.; Kabat, M.R. Giraffe kicking optimization algorithm provides efficient routing mechanism in the field of
vehicular ad hoc networks. J. Ambient Intell. Humaniz. Comput. 2022, 13, 3989–4008. [CrossRef]

40. Lv, B.; Wang, Z.; Huang, T.; Chen, J.; Liu, Y. A hierarchical virtual resource management architecture for network virtualization.
In Proceedings of the 2010 6th International Conference on Wireless Communications Networking and Mobile Computing
(WiCOM), Chengdu, China, 23–25 September 2010; IEEE: New York, NY, USA, 2010; pp. 1–4.

41. Harper, F.M.; Konstan, J.A. The movielens datasets: History and context. Acm Trans. Interact. Intell. Syst. (Tiis) 2015, 5, 1–19.
[CrossRef]

42. Jiang, Y.; Ma, M.; Bennis, M.; Zheng, F.-C.; You, X. User Preference Learning-Based Edge Caching for Fog Radio Access Network.
IEEE Trans. Commun. 2018, 67, 1268–1283. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1155/2021/6641857
http://doi.org/10.32604/csse.2019.34.079
http://doi.org/10.1109/ijcnn.2019.8851794
http://doi.org/10.20533/ijicr.2042.4655.2015.0080
http://doi.org/10.1371/journal.pone.0122827
http://www.ncbi.nlm.nih.gov/pubmed/25992655
http://doi.org/10.3390/s22218411
http://doi.org/10.1109/ACCESS.2020.3014736
http://doi.org/10.3390/math10214030
http://doi.org/10.1007/s12652-021-03519-9
http://doi.org/10.1145/2827872
http://doi.org/10.1109/TCOMM.2018.2880482

	Introduction
	Motivation and Gap Analysis
	Related Work
	Problem Statement
	System Model
	Vehicle to Base Station (V2B) Communication Model
	Vehicle to Road Side Unit (V2R) Communication Model
	Content Caching
	Content Delivery Model
	Delay Calculation Model

	Cooperative Content Caching Framework
	Caching Techniques
	Cooperative Content Caching (COOP)
	COOP with K-Means Clustering

	Popularity Prediction
	Optimisation Using Cuckoo Search
	Content Caching with Clustering

	Performance Evaluation and Results
	Non-Cooperative Content Caching (Non-COOP)
	Reactive Caching Model
	Pro-Active Content Caching Model
	Cooperative Content Caching (COOP) + K-Means

	Cache Hit Ratio, Caching Cost, Delivery Cost and Delay with Different Cache Sizes
	Delay and Caching Cost While Increasing Number of Files
	Comparison of Number of Users with Delay

	Conclusions
	Limitations and Future Research Direction
	References

