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Abstract: Face recognition (FR) has matured with deep learning, but due to the COVID-19 epidemic,
people need to wear masks outside to reduce the risk of infection, making FR a challenge. This study
uses the FaceNet approach combined with transfer learning using three different sizes of validated
CNN architectures: InceptionResNetV2, InceptionV3, and MobileNetV2. With the addition of the
cosine annealing (CA) mechanism, the optimizer can automatically adjust the learning rate (LR)
during the model training process to improve the efficiency of the model in finding the best solution
in the global domain. The mask face recognition (MFR) method is accomplished without increasing
the computational complexity using existing methods. Experimentally, the three models of different
sizes using the CA mechanism have a better performance than the fixed LR, step and exponential
methods. The accuracy of the three models of different sizes using the CA mechanism can reach a
practical level at about 93%.

Keywords: mask face recognition (MFR); face recognition (FR); deep learning; artificial intelligence
(AI); convolutional neural network (CNN); FaceNet; cosine annealing

1. Introduction

To prevent the spread of the virus effectively, the World Health Organization (WHO)
recommends that people wear masks and maintain social distance when going out since
COVID-19 began to ravage the world in 2020. However, wearing a mask will cover most
of the face. This increases the security risks in places that originally required people to
reveal their full face (such as banks, shops, etc.). The face information that can be used for
face recognition includes eyes, nose, mouth, and profile, etc. This technology has matured
thanks to deep learning. However, the effect of wearing a mask means less of the face can
be identified, making the existing face recognition system another challenge. According
to a 2020 National Institute of Standards and Technology (NIST) [1] test of numerous face
recognition algorithms, wearing a mask can reduce the performance of an otherwise stable
face recognition system because less information about the face can be recognized. For
example, leading biometric research institutes such as NEC [2] and Thales [3] were also
forced to re-examine and adjust their algorithms to improve the accuracy of face recognition
systems wearing masks after the COVID-19 pandemic. This highlights the shortcomings of
the current mask face recognition (MFR) algorithm.

After the outbreak of COVID-19, many related retrospective studies of MFR by Ahmad
Alzu’bi et al. [4] until 2021 show that MFR has become a hot field. Hongxia Deng et al. [5]
proposed a MFR algorithm based on a large margin cosine loss called MFCosface. The
sample features are mapped into a feature space, allowing a larger distance between classes.
An Att-inception module that combines the Inception-Resnet module and the convolu-
tional block attention module is added to enhance the feature weights of unobscured
regions. Chenyu Li et al. [6], inspired by amodal perception [7], used a module composed
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of two different neural networks for MFR. The first module is de-occlusion using GAN for
face restoration. The second module is distillation, which uses a pre-trained face recog-
nition model for transfer learning to learn face features from the pre-trained model. The
two modules are combined for MFR. Lingxue Song et al. [8] proposed a mask learning
strategy to find and discard damaged (obscured) features for Face Recognition. Firstly,
they use Pairwise Differential Siamese Network (PDSN) to train the difference between
masked and unmasked face features and build a mask dictionary. The correspondence
between the masked face area and the corrupted feature elements in each item of the dictio-
nary is called the Feature Discarding Mask (FDM). The corrupted features are removed
for face recognition by combining the relevant dictionary to generate the FDM and the
original feature calculation. Fadi Boutros et al. [9] proposed a face recognition model called
Embedding Unmasking Model (EUM) based on the convolutional neural network (CNN)
model and a novel Self-restrained Triplet Loss to evaluate the results of recognition by
EUM. Walid Hariri [10] combined deep learning with traditional image processing to solve
the MFR. First, the features of the unobscured areas of the eyes and forehead were obtained
using a trained CNN model, and then a bag-of-features paradigm was used in the last layer
of the network to quantify the features for classification. HUA-QUAN Chen et al. [11] first
obtained the unmasked eyes and forehead areas in the face image and used ESRGAN [12]
to perform an image super-resolution. Next, the steps are divided into two parts based on
the neural network. One is to use the YCbCr color space in the image for the frequency
domain broadening followed by Fast Independent Component Analysis feature reduction
to obtain the features. The second is to use image RGB and enhance MBConvBlock in
EfficientNet [13], to obtain the spatial fine-grained feature using the semantic grouping
layer and group bilinear layer. Finally, the two features are combined and connected to
the multi-layer perceptron (MLP) output. Shiming Ge et al. [14] proposed a model called
LLE-CNN for masked face detection. The model is divided into three parts. The first
part combines two pre-trained models for the high-dimensional feature description of
the masked face in the image. The second part uses the locally linear embedding (LLE)
algorithm to perform a similarity transformation with the synthesized normal face, in order
to repair the obscured or damaged areas of the face. The third part is the validation mod-
ule, which improves the face area of the retouched candidates and performs classification
and regression validation. Maxim Markitantov et al. [15] proposed a multimodal corpus
called Biometric Russian Audio-Visual Extended MASKS (BRAVE-MASKS). It is used to
analyze the facial features and voice of the face of the person wearing the mask. Weitao
Wan et al. [16] proposed a CNN model called MaskNet that automatically assigns higher
weights to unmasked face features. Occluded parts are given lower weights, and this is vali-
dated against a dataset of real-life faces and a synthetic occlusion face. Haibo Qiu et al. [17]
proposed a deep learning model called Face Recognition with Occlusion Masks (FROM)
that uses a large number of occluded face images to learn the features of the occluded area
and dynamically clean these features. Govind Jeevan et al. [18] used a multitude of existing
face recognition models for MFR and performed analytical tests. It is proposed that the
model performance can be improved by adding a masked face image during the training
process, and that the parameters of face recognition are different from those of mask face
recognition and need to be reset.

The above research on MFR is full of novel algorithms incorporating deep learning,
and all of them have good performance. However, as the study [19,20] reminds us, the
computational cost of deep learning is extremely high, and high economic and environmen-
tal costs are required to reduce the error rate. From the research of Mario Lucic et al. [21],
it is concluded that the factors that affect the performance the most are hyperparameters
and random restarts weight, and the network architecture does not have much influence.
Therefore, if the random restarts weight and hyperparameters are set properly, different
models of the architecture yield a similar performance. To summarize the above, in order
to simplify the complex computation, this study uses the CNN framework validated by the
imagenet [22] competition and FaceNet [23] as the training method to complete the MFR.
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The reason for using FaceNet is that its main network architecture is not fixed, and can be
combined with transfer learning to use different CNN architectures, which is more flexible.
The FaceNet training method mainly uses the triplet loss function to allow the network
weights to be converged and not to retrain the model in the future if new samples are added
for classification. The most important concept of transfer learning is to apply a problem
solvable model to different but related problem domains [24], which also saves training
time and solves the problem of random restarts weighting. As for the hyperparameter
adjustment, this study tries to start from the learning rate (LR) which is not easy to adjust.
The neural network model selects different optimizers for gradient descent during the
learning procedure, intending to find the best solution in the global domain. Choosing
the right optimizer allows the model to converge and find the best weights easily, and
whichever optimizer is chosen requires LR to allow the model to update the parameter
weights. In general, LR is a fixed value, but the disadvantage is that if it is set too large,
the model does not converge easily. If the setting is too small, the model will converge too
slowly. Improperly set values tend to make the model find only the local optimal solution,
rather than the ideal global optimal solution. In this study, we will use the cosine annealing
(CA) mechanism proposed by Ilya Loshchilov et al. [25] that can dynamically adjust the
LR of the optimizer. The concept is derived from the simulated annealing (SA) algorithm,
an optimization algorithm invented by Kirkpatrick et al. [26], which is derived from the
annealing process of metal processing and is often applied in the software domain to find
the best approximate solution within a certain time and space range. The CA mechanism
has also made achievements in other fields. For example, Pingchuan Ma et al. [27] and
Denis Ivanko et al. [28] have applied it to the study of lip reading. Therefore, this study
uses FaceNet as the training method, combined with transfer learning using three differ-
ent sizes of validated CNN architectures: InceptionResNetV2 [29], InceptionV3 [30], and
MobileNetV2 [31]. With the addition of CA dynamic adjustment of the LR mechanism for
MFR, it is expected that a generalized MFR method can be found without increasing the
computational complexity using the existing method.

2. Dataset

The dataset on mask faces. MaskedFace-Net was proposed by Adnane Cabani et al. [32]
The images in the dataset were created by Flickr-Faces-HQ (FFHQ) [33] as a composite of
faces wearing masks, and faces not wearing masks properly. Gibran Benitez-Garcia et al. [34]
proposed the TFM dataset. The dataset collection showed the masked faces in the wild
wearing a variety of masks and at different angles. Other masked face in the wild datasets
include the MAsked FAces dataset (MAFA) proposed by Shiming Ge et al. [14] and the
Real-World Masked Face Dataset (RMFD) proposed by Zhongyuan Wang et al. [35]. How-
ever, the above study was mainly used to detect whether people were wearing masks or
wearing them correctly. The quality of each dataset varies and requires a lot of time for
data cleaning. This study focuses on MFR, so the above dataset was not selected. This
study uses VGGFace2_HQ_CROP [36], which is a Dataset modified from VGGFace2 [37].
VGGFace2 is a large collection of 3.31 million images, divided into 9131 subjects, each
representing a different face. The average pixel size of each image in the VGGFace2
dataset is 137× 180 pixel [38]. Since the size and quality of each image in the VGGFace2
dataset varies, some scholars have high-quality the VGGFace2 dataset and named it VG-
GFace2_HQ [39]. In VGGFace2_HQ, each image is face alignment, and the size is stan-
dardized to 512 × 512. VGGFace2_HQ_CROP is the VGGFace2_HQ face retrieval version.
There are three main reasons for using VGGFace2_HQ_CROP dataset: 1. the number of
images is large enough, 2. the image quality is stable, and 3. the images have already
completed face acquisition, so there is no need to perform related operations during the
experiment. Table 1 shows the relevant data for the three datasets. Although the total
number and subjects of VGGFace2_HQ_CROP images were significantly reduced, they
were still sufficient to allow this study to proceed.
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Table 1. VGGFace2 Dataset corresponding table.

Datasets Subjects Numbers Image Size

VGGFace2 9131 3.311 M 137 × 180 (average)
VGGFace2_HQ 8631 1.160 M 512 × 512

VGGFace2_HQ_CROP 4605 0.624 M 160 × 160

Figure 1 is an example of the corresponding image of the dataset. Figure 1a is the orig-
inal VGGFace2 image, Figure 1b is VGGFace2_HQ, and Figure 1c is VGGFace2_HQ_CROP.
Both VGGFace2_HQ and VGGFace2_HQ_CROP have already performed pre-processing
such as face alignment and cropping on the original VGGFace2 to make the image quality
of the whole dataset more stable.
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Figure 1. Example of dataset correspondence. (a) VGGFace2 [37]; (b) VGGFace_2_HQ [39]; (c)
VGGFace2_HQ_CROP [36].

In this study, the top 600 classifications from VGGFace2_HQ_CROP were selected.
One subject represented one person, 500 subjects were the training set, and 100 subjects
were the test set. MaskTheFace [40] was used to synthesize all the images of 600 different
subjects of masks and was named VGGFace2_HQ_CROP_MASK_600 (MASK600), and the
final data obtained is shown in Table 2. In Table 2, the Train set is 500 subjects, and the
Test set is 100 subjects, totaling 600 subjects. The number of images is the total number of
original and synthetic images. Take the Train set as an example. The number of original
images is 46,758, and each original image corresponds to one synthetic image, so the total
number of images is 93,516.

Table 2. MASK600 Information.

Sets Subjects Numbers

Train set 500 93,516
Test set 100 19,056

Figure 2 is an example of MASK600 correspondence image, Figure 2a above is the
original image, and Figure 2b below is the synthesized image.
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with [40]).

3. Research Methods

This study combines CNN architecture, FaceNet, and CA as research methods. It is
expected to find a generalized MFR method. The research methods are explained below.

3.1. CNN Architecture

FaceNet does not bind the CNN architecture, so this study will use the neural net-
work architecture with good results in the imagenet [22] competition to experiment. Three
different model architectures were used for training and testing: InceptionResNetV2 [29],
InceptionV3 [30], and MobileNetV2 [31]. Table 3 shows the size of the model and the
number of parameter weights after training in this study (calculated using keras in Tensor-
Flow2). These three models can represent three different sizes of models: large, medium,
and small, and are used to see how this issue performs for models of different sizes. All
three are well-known models. In the statistics of Google Scholar, InceptionResNetV2 paper
has 12,698 citations [41], InceptionV3 paper has 23,879 citations [42], and MobileNetV2
paper has 13,034 citations [43], and are still increasing. These three models are recognized
by many studies, so we choose them for our study. Since this study only uses the model
directly, the model architecture is not modified except for the final output layer. We do not
repeat the model details here, but refer to the original paper for more information on the
three models [29–31].

Table 3. CNN model information after training.

Models Parameters Sizes

InceptionResNetV2 56,106,336 214.0 MB
InceptionV3 24,162,208 92.5 MB

MobileNetV2 6,354,112 24.4 MB

3.2. FaceNet

FaceNet is a neural network-based face recognition training method proposed by the
Google team in 2015 (the architecture is shown in Figure 3). The output of traditional neural
network models can be divided into two main types: regression values and classification
results. FaceNet defines the output layer as a layer of N dimensions (commonly 128 dimen-
sions) of regression numerical vector output. The training method is shown in Figure 3,
where the sample A is computed by the CNN model to obtain a set of N-dimensional vector
values of XA

i . The vectors XA′
i and XB

i are the N-dimensional vector values of the samples
A′ and B. where A and A′ are different face images of the same person, and B is the face
image of another person. These vectors are exported and calculated by a loss function
called Triplet Loss.
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The principle of Triplet Loss is shown in Figure 4. In Figure 4, Anchor (Figure 3 sample A)
is the basic sample, Positive is the positive sample which is similar to Anchor
(Figure 3 sample A′), and Negative is the negative sample which is different from An-
chor (Figure 3 sample B). The Triplet Loss calculation allows Anchor’s distance to be as
close as possible to Positive and as distant as possible to Negative, in order to learn the
best result and find the best vector value in N dimensions. Equation (1) is the calculation
of Triplet Loss. XA

i is the basic sample, XA′
i is the positive sample which is similar to the

basic sample, and XB
i is the negative sample which is different from Anchor.

∣∣∣∣, ∣∣|22 means
that the vector will be normalized by L2 after the calculation. α is a margin that is enforced
between positive and negative pairs, and according to the original paper, α is set to 0.2 [23].

L =
N

∑
i

max([||XA
i − XA′

i ||22−||XA
i − XB

i ||22 + α], 0) (1)
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3.3. Cosine Annealing

The LR of the optimizer plays an important role in the model training process. If the
setting is too large, the model will not converge easily. If the value is set too small, the
model will converge too slowly. Therefore, this study applied the CA mechanism proposed
by Ilya Loshchilov et al. [25] that can dynamically adjust the LR, as shown in Equation (2).

ηt = ηmin +
1
2
(ηmax − ηmin)

(
1 + cos

(
t
T

π

))
(2)

where ηt represents the LR value of the t-th epoch, ηmax and ηmin are the set interval range
values of LR, ηmax refers to the maximum value and ηmin is the minimum value. T is to set
the total number of epochs to be executed. Figure 5 is an example where ηmax is assumed to
be 1 × 10−4 and ηmin is 1 × 10−6, and the LR converges from a maximum value of 1 × 10−4

to a minimum value of 1 × 10−6 during the training process of 100 epochs. According to
this mechanism, LR automatically adjusts from large to small with the number of training
of the model. The model needs to have a larger LR during initial training to speed up the
gradient descent process of the optimizer to find the best solution in the global domain. As
the number of model training increases and the LR decreases, the scope of the optimizer
gradient descent search for the global best solution becomes smaller, so that the optimizer
is less likely to miss the global best solution in the model, and the model is more likely
to converge.
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4. Experiment Results

The experimental environment of this study is Nvidia 2080Ti with Ubuntu 18.04 and
Tensorflow 2.3.4 using the FaceNet training method combined with the CA mechanism.
The performance evaluation criteria, training, and testing are explained in detail below.

4.1. Performance Evaluation Criteria

In this study, Accuracy and F1-Score were used as the performance criteria of the
model during the experiment. Accuracy is shown in Equation (3), and F1-Score is shown in
Equation (4).

Accuracy =
TP + TN

TP + FN + TN + FP
(3)

F1− Score =
2× precision× recall

precision + recall
(4)

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

TP is the result of the correct classification of the positive sample, and FN is the result
of incorrect classification of the positive sample. TN is the correct result after negative
sample comparison, and the last FP is the incorrect result after negative sample compari-
son. Accuracy is suitable when the positive and negative samples are relatively average.
However, if the positive and negative samples are not balanced, F1-Score is a more suitable
benchmark for performance evaluation than Accuracy. In the F1-Score equation, the precision
represents the predicted performance of the positive sample. The recall is the number of
correct predictions out of the total number of samples with true results. Therefore, the
F1-Score is a composite rating of precision and recall.

4.2. Training

Figure 6 shows the training flow of this study, combining FaceNet and CA training
models. First, all the training samples in the MASK600 train set (including the original
image and the synthetic image) are randomly disordered, and each image is horizontally
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flipped and input into the CNN model together with the original image for training. The
last layer obtains 128-dimensional vector values for L2 normalization and calculates Triplet
Loss. Then, the CA mechanism is used to dynamically adjust the LR of the optimizer to
update the model parameter weights and complete the training of the MFR model.
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To verify the effect of dynamically adjusting the LR of the optimizer using the CA
mechanism, the experimental was trained using a fixed LR value, step, exponential and
the CA mechanism. Table 4 shows the hyperparameters of the training. There are two
groups of CAs, CA1 for 1 × 10−3~1 × 10−5 and CA2 for 1 × 10−4~1 × 10−6. The reason
for choosing these two groups is that we set the Max Learning Rate of CA1 to 1 × 10−3

as suggested in the paper by Diederik P. Kingma et al. [44]. The Max Learning Rate of
CA2 is then set to 1 × 10−4, using 0.1 as a unit of magnitude. When selecting the Min
Learning Rate, in order to allow the number range between the two groups to cross, the
Min Learning Rate of CA1 is set to 1 × 10−5, and the Min Learning Rate of CA2 is set to
1 × 10−6. Step and exponential are also divided into 1 × 10−3 and 1 × 10−4 for the
Initial LR, following the CA approach. The Decay Rate of step is set to 0.8, and every
5-epoch decay 1 time so the Epoch Decay is set to 5. The k value of exponential is the
decline smoothing degree and is set to 0.05. The four magnitudes of the CA method,
FLR1 = 1 × 10−3, FLR2 = 1 × 10−4, FLR3 = 1 × 10−5 and FLR4 = 1 × 10−6, were tested in a
training with fixed LR values. In addition, to make the model learn better, the initialization
weights of the training are all initialized using the pre-trained weights of the imagenet,
instead of random initialization of the weights.
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Table 4. Hyperparameters for model training.

Hyperparameters
Fixed Learning Rate Step Exponential Cosine Annealing

FLR1 FLR2 FLR3 FLR4 ST1 ST2 EXP1 EXP2 CA1 CA2

Image Size 160 × 160 × 3
Initial weights imagenet

Epochs 100
Batch Size 192
Optimizer Adam
Decay Rate 0.8

Epoch Decay 5
k 0.05

Fixed Learning Rate 1 × 10−3 1 × 10−4 1 × 10−5 1 × 10−6

Initial Learning Rate 1 × 10−3 1 × 10−4 1 × 10−3 1 × 10−4

Max Learning Rate 1 × 10−3 1 × 10−4

Min Learning Rate 1 × 10−5 1 × 10−6

Figure 7 shows the comparison of the four types of convergence. The initial LR is
1× 10−4 as an example. During the 100 training epochs, it can be seen that the decreasing
process of LR value of CA mechanism is more stable. The LR convergence process is also
more stable with the step’s Decay Rate set to 0.8, Epoch Decay set to 5 and exponential’s
k value set to 0.05. The LR annealing rates of both methods are not too fast or too slow, and
the final LR values are similar to the LR values of the CA mechanism.
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Figures 8–10 represent the variation of Loss values during the training of Inception-
ResNetV2, InceptionV3, and MobileNetV2 models.
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Among the three models, the best loss values were obtained using CA2 range LR
values from 1 × 10−4 to 1 × 10−6. Step and exponential are the next best in terms of ST2
and EXP2. The third is a fixed LR value of FLR2 = 1 × 10−4. The worst case is the fixed LR
value of FLR4 = 1 × 10−6. Therefore, we conclude that using the CA mechanism in training
is better than step, exponential and fixed LR. CA1, ST1 and EXP1 are not as effective as
CA2, ST2 and EXP2. This proves that the convergence from 1 × 10−3 is too slow, and even
if we use annealing to allow LR to converge automatically, we need to find an optimal
boundary value. The best result was obtained by using 1 × 10−4 in all four methods. In the
following test, four sets of hyperparameters with CA2 range of 1 × 10−4~1 × 10−6, ST2
and EXP2 with Initial LR of 1 × 10−4 and fixed LR of FLR2 = 1 × 10−4 were used.

In the comparison procedure, the Euclidean distance of 128-dimensional vector values
between two images is used as a criterion to determine whether they are the same face,
and a threshold(th) is used to define in advance as a benchmark to determine whether
they are the same face. In the face recognition method of Dlib [45], the same face is
identified when the Euclidean distance is less than equal to th = 0.6, and greater than
th = 0.6 is not [46]. However, this study is an MFR, which is different from the general face
recognition, so we need to find a suitable th value again. This study refers to the practice
of [47]. The appropriate way to find th is to use the model after training, with four sets
of parameters: FLR2, CA2, ST2 and EXP2. The 500 subjects in the MASK600 training set
are sequentially divided into 50 groups, with one group for every 10 subjects. 10 images
from each subject were randomly selected and compared with the group of image subjects
for 128-dimensional Euclidean distance comparison. Therefore, there are 10 subjects and
100 randomly selected images (including synthetic images and original images) in each
group. After 50 groups of calculations, the average was taken. The comparison th values
ranged from 0.3 to 0.9 (interval 0.01). Since each subject is randomly selected, the search
procedure for each model is performed five times and the final total average is calculated.
In addition, due to the unbalanced sample size, the negative samples will be more than
the positive samples in a single comparison. Therefore, Accuracy cannot be used as a basis
for finding th. Here, the average F1-Score of each model group is used as the evaluation
criterion instead.

For more rigorous experiments, each model is trained twice. Figure 11 shows the
average F1-Score and Accuracy of each model after the first training. It can be observed that
due to the imbalance of the positive and negative samples, there is no significant difference
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in Accuracy for each model. The F1-Score differs significantly, so the best F1-Score is used
as the basis for finding the appropriate th value. Table 5 shows the best F1-Score of each
model after the first training is the corresponding th value. The th values for each model
are different, and in most cases the th values are between 0.5 and 0.7.

Table 5. Best average F1-Score and Threshold for the first training model.

Models F1-Score Threshold

InceptionResNetV2+CA2 91.866% ± 0.303 0.60
InceptionResNetV2+FLR2 85.264% ± 0.359 0.57
InceptionResNetV2+ST2 90.191% ± 0.283 0.65

InceptionResNetV2+EXP2 89.417% ± 0.130 0.64
InceptionV3+CA2 89.349% ± 0.196 0.55
InceptionV3+FLR2 81.388% ± 0.371 0.48
InceptionV3+ST2 87.457% ± 0.152 0.58

InceptionV3+EXP2 86.565% ± 0.113 0.57
MobileNetV2+CA2 86.492% ± 0.239 0.66
MobileNetV2+FLR2 78.422% ± 0.394 0.57
MobileNetV2+ST2 83.270% ± 0.328 0.71

MobileNetV2+EXP2 82.058% ± 0.232 0.72

Figure 12 shows the average F1-Score and Accuracy trend of each model after the
second training. Table 6. shows the best average F1-Score and its corresponding th value
for each model after the second training. It can be observed that the changes are similar to
the situation in the first training of the value. Most of the th values are the same or only
differ by 0.01. The larger differences were 0.03, 0.02 and 0.05 for InceptionResNetV2+EXP2,
InceptionV3+EXP2 and MobileNetV2+FLR2, respectively. Subsequent model testing ex-
periments will be conducted using the most suitable th value found for each model after
two training experiments.

Table 6. Best average F1-Score and Threshold for the second training model.

Models F1-Score Threshold

InceptionResNetV2+CA2 91.374% ± 0.260 0.6
InceptionResNetV2+FLR2 85.658% ± 0.232 0.56
InceptionResNetV2+ST2 90.537% ± 0.146 0.65

InceptionResNetV2+EXP2 89.817% ± 0.211 0.67
InceptionV3+CA2 88.971% ± 0.288 0.54
InceptionV3+FLR2 82.320% ± 0.406 0.49
InceptionV3+ST2 88.183% ± 0.130 0.58

InceptionV3+EXP2 86.445% ± 0.399 0.59
MobileNetV2+CA2 86.258% ± 0.241 0.65
MobileNetV2+FLR2 79.502% ± 0.555 0.62
MobileNetV2+ST2 83.307% ± 0.364 0.72

MobileNetV2+EXP2 81.997% ± 0.279 0.72
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NetV2+EXP2; (e) InceptionV3+CA2; (f) InceptionV3+FLR2; (g) InceptionV3+ST2; (h) Incep-
tionV3+ST2; (i) MobileNetV2+CA2; (j) MobileNetV2+FLR2; (k) MobileNetV2+ST2; (l) Mo-
bileNetV2+EXP2. 
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Figure 11. The average Accuracy and F1-Score of the first training model. (a) InceptionResNetV2+CA2;
(b) InceptionResNetV2+FLR2; (c) InceptionResNetV2+ST2; (d) InceptionResNetV2+EXP2;
(e) InceptionV3+CA2; (f) InceptionV3+FLR2; (g) InceptionV3+ST2; (h) InceptionV3+ST2;
(i) MobileNetV2+CA2; (j) MobileNetV2+FLR2; (k) MobileNetV2+ST2; (l) MobileNetV2+EXP2.
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Figure 12. The average Accuracy and F1-Score of the second training model. (a) InceptionResNetV2+CA2;
(b) InceptionResNetV2+FLR2; (c) InceptionResNetV2+ST2; (d) InceptionResNetV2+EXP2;
(e) InceptionV3+CA2; (f) InceptionV3+FLR2; (g) InceptionV3+ST2; (h) InceptionV3+ST2;
(i) MobileNetV2+CA2; (j) MobileNetV2+FLR2; (k) MobileNetV2+ST2; (l) MobileNetV2+EXP2.

4.3. Testing

The models are evaluated using the most appropriate th value found for each model
during the training procedure, and Accuracy is used as the performance criterion. The test
procedure is to divide the 100 subjects from the MASK600 test set into 10 groups, and each
10 subjects are divided into 1 group. Ten images were selected at random for each subject.
Therefore, a total of 100 randomly selected images (including synthetic images and original
images) from 10 subjects were compared in 128-dimensions by Euclidean distance compari-
son. The 10 groups of Accuracy calculations were averaged after completion. Since each
subject was randomly selected, the final average Accuracy was calculated for each model
after 5 times of testing. Tables 7 and 8. show the average Accuracy of each model after the
two tests. We can see that the Accuracy between the same model and parameters is similar
after two tests. From Table 7, it can be observed that the best Accuracy of the models of dif-
ferent sizes are using CA2, 93.586% ± 0.101 for InceptionResNetV2+CA2, 93.025% ± 0.189
for MobileNetV2+CA2 and InceptionV3+CA2. 92.930% ± 0.084. In Table 8, the best Accu-
racy of the models of different sizes is also using the CA2 approach, 93.596% ± 0.088 for
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InceptionResNetV2+CA2, 93.165% ± 0.197 for MobileNetV2+CA2 and 93.037% ± 0.073
for InceptionV3+CA2 respectively. Therefore, we concluded that the overall effect of using
the LR value of CA2 in the range of 1 × 10−4~1 × 10−6 in the appropriate th value is more
significant than that of using the fixed LR value, step and exponential methods.

Table 7. The average Accuracy of each model after the first test.

Models Threshold Accuracy

InceptionResNetV2+CA2 0.6 93.586% ± 0.101
InceptionResNetV2+FLR2 0.57 92.709% ± 0.166
InceptionResNetV2+ST2 0.65 93.453% ± 0.173

InceptionResNetV2+EXP2 0.64 93.240% ± 0.204
InceptionV3+CA2 0.55 92.930% ± 0.084
InceptionV3+FLR2 0.48 91.552% ± 0.117
InceptionV3+ST2 0.58 92.348% ± 0.046

InceptionV3+EXP2 0.57 92.829% ± 0.179
MobileNetV2+CA2 0.66 93.025% ± 0.189
MobileNetV2+FLR2 0.57 91.603% ± 0.129
MobileNetV2+ST2 0.71 92.491% ± 0.084

MobileNetV2+EXP2 0.72 92.437% ± 0.064

Table 8. The average Accuracy of each model after the second test.

Models Threshold Accuracy

InceptionResNetV2+CA2 0.6 93.596% ± 0.088
InceptionResNetV2+FLR2 0.56 93.015% ± 0.268
InceptionResNetV2+ST2 0.65 93.376% ± 0.115

InceptionResNetV2+EXP2 0.67 93.469% ± 0.149
InceptionV3+CA2 0.54 93.037% ± 0.073
InceptionV3+FLR2 0.49 92.104% ± 0.106
InceptionV3+ST2 0.58 92.407% ± 0.206

InceptionV3+EXP2 0.59 92.379% ± 0.162
MobileNetV2+CA2 0.65 93.165% ± 0.197
MobileNetV2+FLR2 0.62 92.113% ± 0.201
MobileNetV2+ST2 0.72 92.147% ± 0.077

MobileNetV2+EXP2 0.72 92.525% ± 0.155

5. Discussion

From the experiments, even if the CA mechanism is used to allow the model to
dynamically adjust the optimizer’s LR, it needs to be within a suitable range. For example,
in this study, CA2 in the range 1 × 10−4~1 × 10−6 is more suitable than CA1 in the range
1 × 10−3~1 × 10−5. The performance of the models trained with CA mechanism is also
better than those trained with fixed LR, step and exponential. The Accuracy obtained from
the CA mechanism is also more stable than other methods when tested. In addition, the
optimal th value found by using the CA mechanism in the two training models is also
more stable. The process of finding the best th revealed that the most suitable th values for
different models are different values. It means that the use of th should not be limited to a
fixed value, and the appropriate th value should be used depending on the situation. The
next goal is to consider and find how to extend the current method to improve the overall
score and obtain a more practical and generalized MFR model.

6. Conclusions

In this study, we used the FaceNet training method with CA to dynamically adjust the
optimizer’s LR for better convergence of the model. In the experiments of three different
sizes of CNN models, large, medium, and small, it was found that using CA2, a set of
LR hyperparameters between 1 × 10−4 and 1 × 10−6, gave better results than using fixed
LR, step and exponential. in all models. In the test experiment, the accuracy of the CA2
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method for three different sizes of models, large, medium, and small, was around 93%,
which is a practical level. In particular, the small MobileNetV2 model with fewer parameter
weights than InceptionResNetV2 and InceptionV3 yield Accuracy that is only slightly
behind InceptionResNetV2 and better than InceptionV3. It is proved that if a suitable
hyperparameter value (in this paper, LR) can be found, the models can all have a similar
performance. The ability to accomplish the same task with a low-complexity model reduces
economic and environmental costs.
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