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Abstract: Current computer vision research uses huge datasets with millions of images to pre-train
vision models. This results in escalation of time and capital, ethical issues, moral issues, privacy issues,
copyright issues, fairness issues, and others. To address these issues, several alternative learning
schemes have been developed. One such scheme is formula-based supervised learning (FDSL). It
is a form of supervised learning, which involves the use of mathematically generated images for
the pre-training of deep models. Promising results have been obtained for computer-vision-related
applications. In this comprehensive survey paper, a gentle introduction to FDSL is presented. The
supporting theory, databases, experimentation and ensuing results are discussed. The research
outcomes, issues and scope are also discussed. Finally, some of the most promising future directions
for FDSL research are discussed. As FDSL is an important learning technique, this survey represents
a useful resource for interested researchers working on solving various problem in computer vision
and related areas of application.

Keywords: formula-driven supervised learning; fractals; deep learning; visual transformers; ViTs;
CNNs; object recognition; computer vision

1. Introduction

Deep learning is a powerful approach for performing different types of computer
vision tasks [1], such as object recognition [2–5], image segmentation [6–9], visual caption-
ing [10], etc. Deep learning also enables other tasks, such as natural language processing
(NLP) [11]. Deep networks pre-trained on large image datasets, e.g., ImageNet [12] have
been used after fine-tuning for two important reasons [13]: First, the features learned by
deep networks from large datasets help deep networks to generalize more effectively and
rapidly; Second, pre-trained deep networks are successful at avoiding over-fitting during
fine-tuning for smaller downstream tasks.

It is well known that the performance of deep networks depends on their architecture
as well as their training [14–17]. A multitude of successful deep networks have been devel-
oped with a large number of parameters. To train these parameters, a very large number of
training images are required; hence, the need for large-scale image datasets. Popular deep
networks include AlexNet [18], VGG [19], GoogLeNet [20], ResNet [21], and DenseNet [22].
Popular large-scale image datasets include ImageNet [12] and OpenImage [23]. Deep
networks have achieved state-of-the-art performance for many computer-vision applica-
tions [2,6,10,24–28].
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In spite of their success, the training of deep networks has become expensive and
time-consuming. This is due to the laborious collection and manual annotation of the high
volume of data required with large-scale datasets. For example, ImageNet [12], which is a
popular dataset, has about 1.3 M annotated images with 1 K classes. In ImageNet, every
image has been manually annotated and the annotation process is, therefore, substantial.
In addition to this, collecting and annotating video data is more expensive still due to
its temporal aspect. For example, the Kinetics video dataset [29] includes 500 K human
action videos with 600 classes. Every video in the dataset is around 10 seconds long.
Several Turkish Amazon workers were involved in the collection and annotation of this
large-scale dataset.

Bearing the above issues in mind, it is necessary to avoid lengthy and expensive
manual annotation. To this end, different learning schemes have been proposed for training
deep networks. These schemes include semi-supervised learning (SSL) [30–39], weakly su-
pervised learning (WSL) [40–44], unsupervised learning (USL) [45–57], and self-supervised
learning [58–76]. The advantage of these schemes is that they can be used to train deep
networks without the use of labeled data; hence, the expensive manual annotation pro-
cess can be avoided. This can save time as well as expense. A promising supervised
learning scheme, which involves use of synthetic images with auto-generated labels, is
formula-driven supervised learning (FDSL) [77]. This learning scheme automates the
dataset creation process and has produced promising results when used for pre-training.
FDSL represents a viable alternative to other learning schemes which offer training using
unlabeled data. FDSL has the potential to alter the way in which large-data models are
trained, i.e., without manual collection or manual annotation. This potentially critical
development, opening a new area of research, motivated us to conduct a literature survey
on FDSL. It is hoped that, through such surveys, improved strategies for addressing the
critical issues associated with the training of large-data models will emerge and become
widely applied.

The main contributions of the paper can be summarized as follows:

• A detailed review of recent supervised learning schemes with respect to formula-
driven supervised learning is presented.

• Extensive manual data collection and annotation methods for training large-data
models based on FDSL are discussed using synthetic datasets.

• The state-of-the-art, the advantages and disadvantages, and the limitations and future
potential of the techniques are considered.

The remainder of the paper is structured as follows: In Section 2, we discuss different
deep-learning schemes. This is followed by Section 3, wherein, we discuss formula-driven
supervised learning. Section 4 considers issues associated with FDSL and its future poten-
tial. We present our conclusions in Section 5.

2. Deep-Learning Schemes

In this section, we discuss different deep-learning schemes which are grouped into four
categories: supervised, semi-supervised, weakly supervised, and unsupervised learning.

2.1. Brief Discussion
2.1.1. Supervised Learning

In supervised learning, for a dataset X containing data denoted by Xi ∈ X, for every
data entry there is a manually annotated label Yi. If there are N labels for the training set
D = {Xi}N

i=0, the loss function is given by:

loss(D) = min
θ

1
N

N

∑
i=1

loss(Xi, Yi) (1)

where θ is defined as the model convergence error parameter in the loss equation.
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When trained accurately with manually annotated labels, supervised learning schemes
achieve state-of-the-art performance on various computer vision tasks [2,6,18,26]. In spite
of this, there are burdens of collection of data and investment of the time and effort required
for manual annotation, which, in turn, requires specific skills. To address these issues, semi-
supervised, weakly supervised and unsupervised learning schemes have been proposed.

2.1.2. Semi-Supervised Learning

In the semi-supervised learning scheme [30–39], for a small labeled dataset X and a
large unlabeled dataset Z, for every data Xi ∈ X, there exists a manually annotated label Yi.
Given N labels in the training set D1 = {Xi}N

i=0 and M unlabeled training set D2 = {Zi}N
i=0,

the loss function is given by:

loss(D1, D2) = min
θ

1
N

N

∑
i=1

loss(Xi, Yi) +
1
M

M

∑
i=1

loss(Zi, R(Zi, X)) (2)

where R(Zi, X) is a task-specific function relating every unlabeled data Zi with the labeled
training set X. Semi-supervised learning can be helpful for a very large corpus of data
where manual annotation is not extensive. However, its accuracy is not as good as that of
traditional approaches.

2.1.3. Weakly Supervised Learning

In the weakly supervised learning scheme [40–44], for a dataset X having data Xi ∈ X,
there exists a coarse-grained label Ci. For a training set Di = {Xi}N

i=0, the loss function is
given by:

loss(D) = min
θ

1
N

N

∑
i=1

loss(Xi, Ci) (3)

The costs associated with weakly supervised learning are much less than for super-
vised learning; hence, large sparsely labeled datasets are much easier to build. Many
studies have proposed learning from images collected from the Internet with the use of
hashtag labels [78,79]. Good performance has been observed after using these techniques,
although, again, the performance may not be as good as that using traditional methods.
Improving the efficacy of the approach requires further research.

2.1.4. Unsupervised Learning

In unsupervised learning [80–83], manually annotated labels are not used. In fact, these
techniques do not use labels. Formulas can serve as effective model representations [84].
The deep networks are trained using auto-generated pseudo-labels; hence, there is no
need for manual annotation. One type of unsupervised learning is the self-supervised
learning scheme. Several self-supervised learning schemes have been proposed [58–76].
This type of learning scheme is referred to in some reports as unsupervised learning [45–57].
In comparison to supervised learning schemes, which require data paired with labels in
the form (Xi, Yi), where Yi is the manually annotated label, self-supervised learning uses
pseudo-label data pairs in the form (Xi, Pi). Here the pseudo-label Pi is auto-generated for
the task without using any manual annotation. The pseudo-labeling is performed with the
help of image attributes, such as the image context [45,85–87].

For a training set Di = {Pi}N
i=0 having N labels, the loss function is given by:

loss(D) = min
θ

1
N

N

∑
i=1

loss(Xi, Pi) (4)

Recently, unsupervised learning schemes have become quite popular. However, the
complexity of the process is greater than that of competing techniques, and performance
might not necessarily be equivalent to the latter.
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2.2. Recent Trends in Deep-Learning Schemes

Here, we indicate some recent trends in the development and application of deep-
learning schemes referred to above. Figure 1 shows the number of related global publica-
tions over the past 10 years. Figure 2 shows the total number of related global publications
(with breakdown) over the last 10 years. Figure 3 presents a breakdown of the numbers of
related global publications for 2010 and 2021, respectively. In the figures, SL, SSL, WSL, and
USL stand for supervised learning, semi-supervised learning, weakly supervised learning,
and unsupervised learning, respectively.
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Figure 1. Related global publications for past 10 years. The trends indicate a notable increase
in the number of global publications. Supervised learning (SL) and unsupervised learning (USL)
publications tend to be equally dominant.
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Figure 2. Total related global publications with breakdown for past 10 years. The trends indicate a
notably increased dominance of supervised learning (SL) and unsupervised learning (USL) to the
same degree.
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Figure 3. Breakdown of related global publications for the years (Top) 2010 and (Bottom) 2021. For
the two sample years, there was a notable increase in the number of global publications relating to
supervised learning (SL) and unsupervised learning (USL).

In the next section, we discuss the formula-driven supervised learning scheme, which,
as the name indicates, is a supervised learning scheme.

3. Formula-Driven Supervised Learning

The development of FDSL [77] was motivated by the need to find a technique for
the automatic generation of pre-training datasets without taking images from nature. The
authors who proposed the concept believed that FDSL would outperform other pre-training
techniques by being more fair, private, and ethical. They also believed that it would reduce
the burden of manual annotation and the massive downloading of images.

3.1. Background of FDSL

Current computer-vision deep-learning schemes use image datasets that have millions
of images to train visual architectures. Although outstanding results have been achieved
using such schemes, there are serious issues associated with them. These include a huge
burden of manual annotation, the cost of image collection and labeling, privacy issues,
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copyright issues, ethical issues, and fairness concerns [77]. In [77], the authors propose
pre-training of computer-vision models without the use of natural images to overcome
these issues. They refer to their technique as formula-driven supervised learning (FDSL).
The technique is used for the creation of pairs of images and labels using mathematical
formulae.

FDSL can be mathematically expressed by

arg max
M

(Ey,s[l(M(x), y)] s.t. x = F(θ, s), y = θ) (5)

In the above equation, E is the Euclidean space representation of the fractal, M is
the classification network used for pre-training, l is the classification-loss, x is the image
obtained by generation, and y is the image label. The FDSL images are mathematically
synthesized using a formula F with a parameter θ, which is an affine transformation
parameter set related to shift or rotation, and a randomly generated seed s. The aim of the
FDSL training is prediction of θ, using which the image x was generated. It is assumed
that the label y has a uniformly distributed value on a set of discrete values Θ = {θk}K

k .
This feature introduces a classification-loss l over K classes, e.g., a cross-entropy-based loss
function. Figure 4 presents an overview of FDSL.

…

Fractal Parameters {θc}

Fractal
Database

Pretraining

Finetuning

Evaluation

Figure 4. Overview of the FDSL technique using a fractal-based database [77].

3.2. Learning Frameworks

Currently, supervised learning represents the state-of-the-art in computer vi-
sion [18–21,88–91]. Research has recently been undertaken to decrease the data volume for
unsupervised, weakly supervised and self-supervised training to avoid the need for manual
annotation. Self-supervised training has the potential to create pre-trained architectures
cost-efficiently. This involves use of a basic, but relevant, ‘pre-text task’ [45,50,51,69,87,92].
Although earlier techniques [45,51,87] were not suitable as alternatives to manual annota-
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tion, new techniques, such as SimCLR [93], MoCo [94], and DeepCluster [53], are much
better. Semi-supervised learning (SSL) [30–39] has the potential to replace human an-
notation, although there are significant issues with downloading, privacy and fairness.
FDSL [77] is superior to these techniques because it generates new mathematically formu-
lated images along with their respective labels.

3.3. Formula Based Projection of Images

Fractals are one of the most popular mathematical image projection techniques. Frac-
tal theory research is extensive [95–97]. It is used to render an image pattern using a
basic mathematical expression [98–100] and to reconstruct architectures for object recogni-
tion [101–104]. Although rendering a fractal pattern leads to potential loss of its infinite
representation for 2D images, humans naturally recognize such renderings. Since fractals
occur naturally [95,105], the founders of FDSL claim [77] that fractals may aid in the learn-
ing of natural-image-based scenes and objects. They also consider [77] other techniques,
such as Bezier curves [106] and Perlin noise [107] for rendering purposes. These techniques
have been implemented and evaluated experimentally [77].

3.4. FDSL Datasets

As work on FDSL has increased, some interesting databases have been developed.
Their details are provided below.

3.4.1. Fractal DataBase

The fractal dataBase (FractalDB) [77] was developed for FDSL. It contains pairs of
fractal images I and their respective category labels c [98], which are generated using an
iterated function system (IFS) [98]. The IFS is defined over a metric space χ as:

IFS = {χ; w1, w2, · · · , wN ; p1, p2, · · · , pN}, (6)

where wi : χ→ χ is the transformation function, pi is probability with summation 1, and N
is the aggregate of transformations.

In IFS, each fractal S = {xt}∞
t=0 ∈ χ is randomly constructed [98] using a two-step

algorithm by repeating it for t = 0, 1, 2, · · · from a starting coordinate x0. First, predefined
probabilities pi = p(w∗ = wi) are used to select a transformation w∗ from {w1, · · · , wN}
for determining the ith transformation. Next, a fresh point xt+1 = w∗(xt) is generated.

2D fractals are constructed using a Euclidean space χ = R2 by an affine transforma-
tion [98]. The transformation has six parameters θi = (ai, bi, ci, di, ei, ji) relating to rotation
or shift:

wi(x; θi) =

[
ai bi
ci di

]
x +

[
ei
fi

]
(7)

The fractal image is generated by drawing dots on a uniform background.
IFS has a set of parameters along with their probabilities, given by:

Θ = {(θi, pi)}N
i=1 (8)

The authors of FDSL assume that every category has a unique Θ. They generate 1k and
10k random categories for the FractalDB-1k and the FractalDB-10k datasets, respectively.
In these datasets, N is chosen from the distribution N = {2, 3, 4, 5, 6, 7, 8}. θi has bounds
[−1, 1] for i = 1, 2, · · · , N. pi is of the form:

pi =
det(Ai)

∑N
i=1 det(Ai)

(9)

where Ai = (ai, bi, ci, di) is the affine rotation. Finally, the new category Θ = {(θi, pi)}N
i=1 is

accepted after further inspections.
Figure 5 shows fractal 2D images from the FractalDB dataset.
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Figure 5. Some images from FractalDB [77].

3.4.2. MV-FractalDB

Moving beyond FractalDB, which is a 2D image database, the authors of [108] devel-
oped an autogenerated multi-view image dataset for FDSL. They used fractal geometry
to construct the dataset. The dataset has been named the multi-view fractal database
(MV-FractalDB). Figure 6 shows some fractal images (3D) from the database.

Figure 6. Sample images from MV-FractalDB [108].

MV-FractalDB has been used for pre-training deep models and promising results have
been obtained. Based on experimentation [108], the MV-FractalDB pre-trained deep models
were found to perform better than other self-supervised methods, such as SimCLR and
MoCo. In addition, the MV-FractalDB pre-trained deep models converged faster than those
trained on ImageNet. A performance comparison of MV-FractalDB pre-trained models
against other state-of-the-art models is shown in Table 1.
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Table 1. Performance in terms of %age accuracy on the ModelNet [109] and the MIRO [110,111]
datasets, respectively [108]. (Note: SFSL = self-supervised learning, SL = supervised learning).

Pretraining Learning ModelNet40 ModelNet40 MIRO
Technique Method (12 Views) (20 Views) (20 Views)

— — 84.0 91.5 91.7
ImageNet SL 88.1 96.1 100.0
SimCLR SFSL 88.1 95.1 100.0
MoCo SFSL 86.4 95.3 100.0
FractalDB1k FDSL 87.4 94.9 100.0
MV-FractalDB1k FDSL 87.6 95.7 100.0

3.4.3. Other Notable FDSL Databases

Another recent FDSL dataset is TileDB [112], which contains patterns made with tiles.
A tile is a group of wallpapers with 2D repetition and complicated textures. It is obtained
by adding three operations for hexagonally shaped tiles: (i) moving vertices, (ii) deforming
edges, and (iii) moving symmetrically in a specific direction. Using this basic technique,
the TileDB dataset was created with 1000 classes and 1071 images for each class. The
FractalDB, Kataoka et al. [91] proposed some formula-based datasets for the pretraining
of computer-vision models, such as convolutional neural networks [14–16,113,114] and
visual transformers [17,115]. These are the Perlin noise-based PerlinNoiseDB and the Bezier
curve-based BezierCurveDB. The DeiT model [116] was pretrained and fine-tuned using
these formula-based image datasets. This enabled determination that FractalDB was the
best choice for FDSL of computer-vision models developed to date. This is confirmed by
data presented in Table 2. Improvements in the percentage classification accuracy of up
to +18.5, +23.9, +74.4, +21.2 on the Cifar-10, Cifar-100, Cars dataset, and Flowers dataset,
respectively, using FractalDB-1k were observed.

Table 2. Performance comparison of visual transformer pretraining in terms of % age accuracy with
FractalDB1k and other FDSL datasets for BezierCurveDB and PerlinNoiseDB [77].

Dataset Cifar-10 Cifar-100 Cars Flowers

— 78.3 57.7 11.6 77.1
PerlinNoiseDB 94.5 77.8 62.3 96.1
BeizerCurveDB 96.7 80.3 82.8 98.5
FractalDB1k 96.8 81.6 86.0 98.3

The authors of FractalDB [77] investigated various adaptable parameters, including
#category, #instance, filling rate, fractal weight, #dot, and image size. For further infor-
mation about these parameters, readers may refer to [77]. The experimentation results
reported in [77] are shown in Table 3.

As it can be seen from Table 3, FDSL showed notable performance improvements when
using FractalDB for pre-training and its potential was highlighted. From the experimental
results presented in Tables 1–3, the performance of FDSL was generally equivalent to that
of other competing methods. This performance was achieved using different models pre-
trained on synthetic data, in contrast to the huge datasets created by conventional methods.
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Table 3. Performance comparison in terms of % age accuracy of FractalDB1k [77], FractalDB10k [77],
TileDB [112], DeepCluster10k (DC) [53], ImageNet100 [12], ImageNet1k [12], Places30 [117] and
Places365 [117] on pretrained ResNet-50 for various datasets, as given in [77]. The datasets used were
CIFAR10 (C-10) [118], CIFAR100 (C-100) [118], ImageNet1k (ImNt-1k) [12], Places365 (P-365) [117],
PascalVOC-2012 (VOC-12) [119] and Omniglot (OG) [120]. (Note: SFSL=self-supervised learning,
SL=supervised learning).

Technique Image Type Method C-10 C-100 ImNt-1k P-365 VOC-12 OG

— – – 87.6 62.7 76.1 49.9 58.9 1.1
DC Natural SFSL 89.9 66.9 66.2 51.5 67.5 15.2
Places30 Natural SL 90.1 67.8 69.1 – 69.5 6.4
Places365 Natural SL 94.2 76.9 71.4 – 78.6 10.5
ImageNet100 Natural SL 91.3 70.6 – 49.7 72.0 12.3
ImageNet1k Natural SL 96.8 84.6 – 50.3 85.8 17.5
TileDB Synthetic FDSL 92.5 73.7 – – 71.4 –
FractalDB1k Synthetic FDSL 93.4 75.7 70.3 49.5 58.9 20.9
FractalDB10k Synthetic FDSL 94.1 77.3 71.5 50.8 73.6 29.2

4. Issues and Future Scope
4.1. Issues

Although FDSL is promising, there are issues associated with it. These include the
limited number of FDSL formulae and their limited parameters [77]. This issue impacts on
pre-training and final validation, leading to lower performance compared to natural-image-
based pre-training, as is shown in Tables 1–3, where the performance is seen to be lower.
Capturing the richness of natural images using mathematically generated images remains
an issue. Capturing color variations and naturally occurring patterns, textures, etc., as
found in natural image pretraining, is also an issue. The limitations in the number of
mathematically generated patterns may also affect performance [77]. FDSL currently lags
behind other competing techniques due to its semi-simplistic model approximation of the
mathematical formulae [77]. Richer mathematical models can help build better pseudo-
natural data, which can be even richer and more compact than natural data. This is, again,
subject to experimental confirmation.

4.2. Future Scope

In spite of the issues associated with FDSL, it is hoped that, with more in-depth
research, better results will be achieved. Colored fractals are also available [108], leading
to better generalizations. Developing stronger mathematical formula for automatic image
generation is a potential area of interest. Pattern generation identical to that for natural
objects is another potential area of interest. In addition, moving beyond simple fractal and
basic patterns [77] by generating richer artificial images can lead to much better results.
The combination of FDSL with other training techniques is also a promising research area,
which may lead to enhanced performance. With the development of stronger large-data
models, e.g., visual transformers [17,115], FDSL performance can improve. Moreover,
by developing large-data models, which are more specifically adaptable to mathematical
models, more success may be achieved for FDSL as it relies on mathematical modeling.

5. Conclusions

In this survey paper, a gentle introduction to formula-driven supervised learning
(FDSL) has been provided. Various aspects of FDSL were discussed including its mathe-
matical background, methodology, experimental results, issues and future scope. It was
observed that FDSL produced promising results for object recognition. It was also em-
phasized that FDSL addresses the issues associated with natural image pre-training on
huge datasets making it a suitable candidate for computer-vision applications. These issues
include manual annotation costs and time, privacy, and fairness. It is hoped that the readers
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will be encouraged to learn about and undertake research in this interesting and promising
area of computer vision.
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