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Abstract: The key to intelligent traffic control and guidance lies in accurate prediction of traffic flow.
Since traffic flow data is nonlinear, complex, and dynamic, in order to overcome these issues, graph
neural network techniques are employed to address these challenges. For this reason, we propose
a deep-learning architecture called AMGC-AT and apply it to a real passenger flow dataset of the
Hangzhou metro for evaluation. Based on a priori knowledge, we set up multi-view graphs to express
the static feature similarity of each station in the metro network, such as geographic location and zone
function, which are then input to the multi-graph neural network with the goal of extracting and
aggregating features in order to realize the complex spatial dependence of each station’s passenger
flow. Furthermore, based on periodic features of historical traffic flows, we categorize the flow data
into three time patterns. Specifically, we propose two different self-attention mechanisms to fuse
high-order spatiotemporal features of traffic flow. The final step is to integrate the two modules
and obtain the output results using a gated convolution and a fully connected neural network. The
experimental results show that the proposed model has better performance than eight other baseline
models at 10 min, 15 min and 30 min time intervals.

Keywords: graph neural network; passenger flow; self-attention mechanisms; gated convolution

1. Introduction

With the continued development of cities in recent years, people’s transportation
needs have greatly increased, and urban transportation issues are becoming increasingly
severe. Scientific and effective management of road congestion has become a challenging
problem for traffic management departments. As an effective means of solving traffic
problems, the intelligent transport system (ITS) has become a hotspot in the transport field.
In smart city and intelligent transport system (ITS) development and operation, traffic
status is sensed by sensors installed on the roads (such as loop detectors), transaction logs
of subway and bus systems, traffic monitoring videos, and so on. A key component of ITS
is traffic flow prediction. Accurately predicting traffic flow ahead of time can help travelers
to manage their trips reasonably, avoid rush hour, and reduce travel times and costs. In
the case of transportation operators, early intervention may improve network capacity and
efficiency and reduce accidents.

The mathematical statistics-based model named historical average (HA) and the
autoregressive integrated moving average (ARIMA) model have good time-series perfor-
mance in the early stages, but are not proficient at predicting traffic flows [1,2]. Subse-
quently, machine learning and deep-learning techniques were introduced to improve the
prediction accuracy. Recurrent neural networks (RNN) derived from natural language
processing (NLP), which can capture non-linear relationships in the temporal dimensions
of traffic flows, and gated recurrent unit network (GRU), with gate control mechanisms
and long short-term memory network (LSTM), were later introduced to predict the speed
and throughput of traffic [3,4]. These methods, however, consider only temporal depen-
dencies and ignore spatial ones. CNN-based convolutional neural networks model cities
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as grids and traffic streams as images in order to extract spatial correlations [5], but this
method can only be used for Euclidean forms of data and is not optimal for graph-based
forms of transportation networks, such as metro systems and the road network [6]. Net-
works combining LSTM with CNNs will be able to extract spatial–temporal correlations,
but RNN-based models do not use parallel computation during training, which requires
longer training times, and some of the structural information of the graph is lost during
pre-processing [7,8].

Graph neural networks have become the frontier of deep-learning research in recent
years, showing state-of-the-art performance in a variety of data based on graph struc-
tures [9]. The existing graph convolution neural network is split into the spectral method
and the spatial cube method [10]. The spectral method uses the graph convolution theo-
rem to define graph convolution from the spectral domain, whereas the spatial method
converges each central node and its adjacent nodes from the domain of nodes through a
defined convolution function. Chebyhev’s spectral CNN (ChebNet) [11] uses the truncated
expansion of the Chebyshev polynomial to reach order k in order to make an approximation
to the diagonal matrix. GCN [12] is a first-order approximation to ChebNet, using the
Chebyshev polynomial approximation filter of the diagonal matrix of eigenvalues. An
alternative method is spatial graph convolution, in which graph convolution is defined by
propagating information. Diffusion Graph Convolution (DGC), message passing neural
network (MPNN), GraphAEGE, and graph attention network (GAT) all follow this ap-
proach [13–16]. With the development of graph neural networks, it has been found that
GNN-based models can be used to simulate spatial–temporal correlations in complex traffic
networks. The spatial–temporal convolution network (STGCN) [17] is an excellent model
based on spectral graph convolution and gated convolution neural network. Conv-GCN
combines spectral convolution with the three-dimensional convolutional neural network
(3DCNN), which compensates for the inability of spectral convolution to capture spatial
correlation in depth, and divides the traffic flows into near-term, daily, and weekly seg-
ments in order to extract spatial–temporal correlations [18]. Temporal Graph Convolution
Network (T-GCN) combines GCN with GRU in order to extract spatiotemporal features [19].
Diffusion Convolutional Recurrent Neural Network (DCRNN) extracts spatial correlations
using the stochastic wandering strategy of GCN [20]. In the multivariate time-series pre-
diction network (MTGNN), a graph learning module is proposed to automatically extract
the correlation between segments in order to improve the graph representation and make
predictions [21]. Given the inadequacy of expressing a single graph, the spatial–temporal
multigraph solution network (ST-MGCN) encodes pairwise non-Euclidean correlations
between regions in multiple graphs, then explicitly models these correlations using multi-
graph convolution, and uses recurrent contextual-gated neural networks, which augment
recursive neural networks to reweight different historical observations using contextual
sensor-gated mechanisms [22]. Attention-based graph neural networks are also widely
used in traffic flow prediction. An example is the spatial–temporal graph attention net-
work (AST-GAT), which uses multi-head graph attention to capture the spatial correlation
between segments of a road traffic network [23].

In general, the existing models have some disadvantages. RNN-based graph neu-
ral network models, for example, typically require more loss of training time and lack
robustness. Second, a single-graph neural network model cannot extract deep spatial
features between the nodes of a graph. While a few studies have proposed neural networks
with multiple graphs, or even the relationship between nodes learned by the model itself,
the lack of a priori knowledge of the traffic means that the accuracy and robustness of
predictions can still be improved.
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To overcome these shortcomings, in this paper we propose a deep-learning architecture
called AMGC-AT, which consists of a multi-view convolutional network and a spatiotem-
poral attention network. In the multi-view convolutional network module, spatial features
are extracted from four different spatial adjacency matrices, which are based on different
domain knowledge. In addition, the spatiotemporal attention module is composed of
two attention mechanisms, which can better integrate spatiotemporal features across three
time patterns. The model is evaluated with the Hangzhou Metro Passenger Flow Data Set
and the results show that the model is superior to eight other baseline models in subway
passenger flow prediction. The main contributions of this research are as follows:

1. The AMGC-AT model proposed in this paper is based on the domain knowledge
of transport and achieves a better balance between the complexity of the model
framework and the comprehensive exploration of this knowledge.

2. The AMGC-AT model is based on three types of traffic flow patterns (recent, daily and
weekly), and innovatively combines two kinds of self-attention mechanisms in order
to drill deeply into the high-order spatial temporal information of subway patronage.
The features learned by the neural network can be fully expressed in a reasonable
output layer configuration.

3. In this study, we perform a large number of comparative and ablation experiments,
which show that the AMGC-AT model outperforms the other eight base models at all
time points at randomly chosen locations. The ablation experiment provides evidence
for the validity and rationality of each component of the model framework.

2. Data
2.1. Dataset Description

The AMGC-AT model presented in this paper was evaluated using a real-world
dataset. The dataset was the Hangzhou Metro smart-card data, published by the Tianchi
Big Data Competition, for 25 days from 1 January 2019 to 25 January 2019. The data covered
about 70 million metro passengers across 81 metro stations from three metro lines. The raw
data, as shown in Table 1, recorded tap-in and tap-out time, line ID, device ID, user ID, and
pay type. The data obtained from AFC card processing has an operating time from 06:00 to
23:30 for tap-in and outgoing station passenger flow sequence data, which is integrated
into specific time intervals of 10 min, 15 min, 30 min, and progress passenger flow sequence
at 10 min time granularity, as shown in Table 2. The first week passenger inflow as shown
in Figure 1. The distribution map of the Hangzhou metro line as shown in Figure 2.

Table 1. Example of original data record.

Time Line ID Station ID Device ID Status User ID Pay Type

1 January
2019 6:54 B 30 1482 0 D92a70cb 3

1 January
2019 7:24 A 72 3311 1 Af95c8cc 0

1 January
2019 8:03 C 46 2176 0 Bf8ed2b8 1

. . . . . . . . . . . . . . . . . . . . .

Table 2. Example of passenger flow.

Station Index 06:00–06:10 06:10–06:20 06:20–06:30 23:20–23:30

1 21 40 37 8
2 17 14 29 28
3 25 56 77 15

. . . . . . . . . . . . . . .
81 10 11 15 10
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Figure 1. First week passenger inflow. 
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2.2. Dataset Preprocessing

During the raw data processing process, completely duplicated records were first
removed, and the data from station entry and exit times outside the subway operating
time were also removed. We then deleted the same input and output records and removed
records for travel times of more than three hours as Hangzhou Metro requires a fee of $2 to
stay in a station for more than 3 h, and very few riders will travel more than 3 h.

As can be seen in Figure 1, the pattern of flow volume on 1 January (the blue curve in
the figure) was significantly different from that on other weekdays and weekends. This
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is due to the fact that peak traffic did not occur at the usual morning and evening peak
traffic period and is lower than normal peak traffic. Considering the negative impact
of the holiday season on projections of passenger traffic, we used only 24 days of travel
data from 2 to 25 January in this paper. All data were normalized to the range (0, 1) with
min–max scalers.

2.3. Problem Definition

In this section, the definitions of important symbols are introduced and the definition
of the research task is formally presented.

Definition 1 (Metro Station). For a city subway system, each station serves as the spatial unit
for metro passenger flow prediction. We define V = {v1 ,v2, v3, . . . , vn} to represent the set of
subway stations, wherein n is the station number. In addition,A ∈ Rn×n is an adjacency matrix
representing the node’s proximities between any pair of nodes.

Definition 2 (Time Interval). For the temporal dimension, the entire time period is divided into
time intervals of equal length, i.e., T = {t1 , t2, t3, . . . , tm}. At each time segment, we calculate the
inflow or outflow of traffic from each site at different time intervals, such as 15, 30 and 60 min.

Definition 3 (Passenger Flow). The passenger flow matrix F∈Rn×m = {Xt,Xt−1,Xt−2, · · · ,Xt−m+1},
whereby n is the station number that is ordered according to the metro line number, m denotes past
time intervals used to predict passenger traffic at the next time interval, and X ∈ Rn×1 is the inflow
vector in a specific time interval.

Problem 1 (Problem Statement). Given the above definitions, our research problem can be
defined according to (1), whereby f (·) is the mapping function to be learnt using the proposed
deep-learning framework.

Xt+1 = f (A; Xt, Xt−1, Xt−2, · · · , Xt−m+1) (1)

3. Methodology

This section begins by describing the framework of the proposed model, followed by
a step-by-step description of each component.

3.1. Overview of the Proposed Model

The AMGC-AT model architecture is shown in Figure 3. The model framework
consists of two parts: the graph representation module and the traffic flow prediction
module. The pictorial representation is a pre-defined set of four schemas based on a
priori knowledge. Macroscopically, the predefined scheme considers location information,
functional location splitting, network topology information, and the flow of traffic between
stations in the metro network. The second part is intended to predict traffic volumes
throughout the metro system. The system consists of a multi-view convolution module, a
spatial–temporal self-attention module, and a gated convolution network. Firstly, multi-
view convolution networks can capture the correlation in depth of each metro station point
in space. Second, the spatiotemporal self-attention mechanism can be used to learn the
dependency of spatial embeddings on different epochs of a road segment. Finally, the
output goes into the complete connection layer through the gated convolution network. To
reduce the dimensionality of the planar layer, we use a fully connected layer and capture
the non-linear relationship between high-level features and predicted outcomes. The final
step is to reconstruct the output of the full connection layer as the target shape.
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3.2. Pre-Defined Affinity Graph Representation

In the macro-level graph section, we show different types of correlations among
regions with multiple graphs, including: (1) the neighborhood graph GN = (V, AN), which
encodes the spatial proximity; (2) the SimRank graph GSim = (V, ASim), which encodes the
similarity in distant regions; (3) the Functional similarity graph Gpoi =

(
V, Apoi

)
, which

enhances the representation of spatial similarity in neighborhood graphs; (4) the Cosine
similarity graph Gcosine = (V, Acosine), which considers the similarity of node volume at a
macro level. Note that it is straightforward to extend our approach to model new types of
relevance by constructing correlation graphs.

3.2.1. Neighborhood Graph

Neighborhood of a subway network is defined based on L-space modeling. Nodes
represent subway points, and if two subway points are adjacent to each other on a particular
line, they have a contiguous border corresponding to that line. This approach preserves the
fundamental geometry of the rail network.

AN,ij = 1, when vi and vj are adjacent, otherwise AN,ij = 0

3.2.2. SimRank Graph

SimRank similarity between metro points is calculated as follows [24]:

ASim, ab = s(a, b) =
C

|I(a)||I(b)|

|I(a)|

∑
i=1

∑|I(b)|
j=1 s

(
Ii(a), Ij(b)

)
(2)

where C is a constant between 0 and 1. We iterate over all in-neighbor pairs Ii(a), Ij(b) of
(a, b), and sum up the similarity s

(
Ii(a), Ij(b)

)
of these pairs. Then we divide by the total

number of in-neighbor pairs, |I(a)||I(b)|, to normalize. That is, the similarity between a
and b is the average similarity between in-neighbors of a and in-neighbors of b. Note that
the similarity between an object and itself is defined to be 1. This method can be used to
encode similar relationships between more distant stations in the subway network.

3.2.3. Functional Similarity Graph

When a region is predicted, it is intuitively possible to refer to other regions that are
functionally similar to it, and this method is also applicable for subway-network passenger-
flow forecasting. Peripheral POIs of each category can be used to characterize the function
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of the area around the station, and the edge between two subway station points is defined
as POI similarity.

Apoi, ij = simpoi
(

Pi, Pj
)

(3)

where Pi, Pj denote POI vectors of node i and j, with dimension equal to the number of
POI categories.

3.2.4. Cosine Similarity Graph

In this paper, we use cosine similarity to calculate the similarity of flow between any
pair of stations in a subway network. This is a common method to obtain the similarity
between two vectors.

Acos ine,ij =
xi · xj

|xi|
∣∣xj
∣∣ (4)

where Xi and Xj are volume vectors of subway point i and j.

3.3. Prediction Network Module
3.3.1. Multi-Graph Convolution Module

Based on the four predefined diagrams based on a priori knowledge (presented in
Section 3.2), we designed the following multi-layer spatial convolution for each represen-
tation based on spectral graph theory. The GCN model in this paper uses an efficient
layered-propagation rule based on a first-order approximation of spectral convolution on
a graph. Experimental results on a large network dataset show that the GCN model can
encode the graph structure and node characteristics in a useful semi-supervised classi-
fier [12]; thus, our application of this model for predicting station traffic in metro networks
is reasonable and effective, and results of this research in Section 4 again confirm this.

H(l+1)
ne = ReLU

(
D̃−

1
2

ne ÃneD̃−
1
2

ne H(l)
ne W(l)

ne

)
(5)

where W(l)
ne represents the learnable neural layer, Ãne = Ane + I and D̃s,ii = ∑

j
Ãs,ij. H(0)

ne =

X ∈ Rn× f , where X denotes the feature matrix of all metro stations. Here, f denotes the
feature dimension, H(l)

ne ∈ Rn×d represents the I-th layer’s output. The dimension of the
hidden state for the potential representation of all metro points is denoted by d. Similarly,
we can write the formalization of the convolution of the other three graphs.

H(l+1)
sr = ReLU

(
D̃−

1
2

sr ÃsrD̃−
1
2

sr H(l)
sr W(l)

sr

)
(6)

H(l+1)
di = ReLU

(
D̃−

1
2

di ÃdiD̃
− 1

2
di H(l)

di W(l)
di

)
(7)

H(l+1)
cs = ReLU

(
D̃−

1
2

cs ÃcsD̃−
1
2

cs H(l)
cs W(l)

cs

)
(8)

In reality, these four representations are not completely unrelated. Therefore, we
designed a generic GCN for convolution operations using parameter-sharing strategies.
where ave denotes the average. We formally define the dissemination plan through the
following operations:

H(l+1)
c = ave

(
H(l+1)

cne + H(l+1)
csr + H(l+1)

cdi + H(l+1)
ccs

)
(9)

Then we concatenate the features from the convolution of the five graphs as follows:

H1 = att
(

H(l+1)
ne , H(l+1)

sr , H(l+1)
di , H(l+1)

cs , H(l+1)
c

)
(10)

where att denotes the attention mechanism, H1 represents the output feature of the GCNs.
Eventually, H1 will be entered into the output layer along with the H2 mentioned in the next
section, and the output will be the predicted target shape through the full connection layer.
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3.3.2. Spatial and Temporal Self-Attention Module

In a real subway network scenario, passenger flow patterns may exhibit cyclical trends
in multi-time granularity, such as time-dependence on weekly, daily, and adjacent time
slots. In order to effectively capture trends in passenger flow state evolution over different
periodic, three types of time intervals are coded in our model: (1) recent time intervals
(e.g., trends over the first few adjacent periods of the forecast period), (2) short-term time
intervals (e.g., daily trends), and (3) long-term time intervals (e.g., weekly trends). Semantic
embedding of the different time intervals learned is then fed into the spatial and temporal
Self-Attention Module. Formally, the formula for the temporal and spatial self-attention
module is defined as follows:

P(pos,2i) = sin
(

pos/100002i/dmodel
)

(11)

P(pos,2i+1) = cos
(

pos/100002i/dmodel
)

(12)

eii = a1

(
WQ(Xi + P

)
, WK(Xi + P)) (13)

eij = a2

(
WQXi, WKXj

)
(14)

Time interval-specific representations of metro stations are concatenated as
Xi =

{
xtw

i , xtd
i , xtr

i

}
. Here, WQ ∈ Rd×d and WK ∈ Rd×d represent the parametrized weight

matrix of the embedding Xi. a1 and a2 are two common forms of attention computing. a1
refers to “Scaled Dot-Product Attention”, P refers to where we further embed the position
into the node representation in order to segment the chronological information of the
sequence. We use

√
d in order to scale the input vector, and we can prevent it from getting

into saturated areas or making the gradient too small. a2 is a shared attentional mechanism
which indicate the importance of node j’s spatial features to node i. And a : Rd ×Rd → R .

αi = so f tmax
(

eii√
d

)
(Xi + P)WV (15)

In this paper, a2 is a single-layer feedforward neural network, and we further inject
graphic structure into the mechanism by performing masking attention, which means
only eij for nodes j ∈ Ni could be computed attention coefficients, where Ni is some
neighborhood of node i in the L-space metro network. In addition, softmax function is
used for normalization in order to make the coefficient easy to compare between nodes.
Finally, the attention coefficient is passed through the LeakyReLU nonlinear function, with
the final expansion as follows:

αij =
exp

(
LeakyReLU

(
eij
))

∑k∈Ni
exp(LeakyReLU(eik))

(16)

This paper will use a multi-heads mechanism to capture information along temporal
dimensions, which will also enhance the capabilities of the prediction module and the
robustness of the training process as follows:

Hw
t = concat

(
α1

i , α2
i , α3

i , · · · αM
i ,
)

(17)

Hw
s = ELU

(
1
M

M

∑
m=1

(
αij
)mWmxtw

i

)
(18)

Hw
st = (Hw

t + Hw
s )/2 (19)

H2 = att
(

Hw
st , Hd

st, Hr
st

)
(20)
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where ELU is activation function, M represents the number of attention heads in temporal
encoder, we concatenate the output of M heads and average the final result, H2 is the output
feature of the multi-head spatial and temporal self-attention.

3.3.3. Output Layer

The output layer of this model is based on the gated convolution neural network.
The output layer consists of two temporal gated convolution layers, normalization layer
and fully connection layer. For traffic flow prediction, many researchers use GRU or
LSTM to extract time features, but this leads to many difficult training problems such
as model parameters and gradient disappearance. In order to simplify the model, we
use gated convolution to extract temporal signatures. Unlike RNN, where subsequent
time steps must be predicted pending completion by their predecessors, convolution can
be performed in parallel because the same filters are used in each layer. The time–gate
convolution layer consists of 1D causal convolution and the gated linear unit. The output
of 1D causal convolution is divided into two parts, one of which is activated by the Sigmoid
function, the other by the addition of input for residual connection, and two parts for GLU
by Hadamard multiplication.

After the multi-graph convolution and spatial–temporal self-attention module, the in-
put of gated convolution is X ∈ RB×c0×D×N , the output of fully connected layer
Ŷ ∈ RB×p×N , where B is the batch-size, c0 is the number of channels, N is the num-
ber of metro stations, D is the sequence length after reshape, p is the predicted time steps,⊗
is the dot product, W, V, b and c are learnable parameters, Z is the output of two temporal
gated convolution layers. The formula of output layer is as follows:

X = concat(H1, H2) (21)

H3(X) = (X ∗W + b)⊗ σ(X ∗V + c) (22)

Ŷi = Zw + b (23)

The fully connected layer is used to reduce the data dimension, as well as capture
the non-linear correlation between high-level features and outputs. We used only one
fully connected layer to reduce the dimension of the flattening layer to the dimension we
adopted. The output of the fully connected layer is finally reshaped into the final predicted
results as Ŷi, and this paper chose the mean square error (MSE) as the loss function.

Loss = MSE =
1
N ∑N

i=1

(
Ŷi −Yi

)2 (24)

4. Experiments

In this section, we will first describe the experimental settings used in this study,
and then give evaluation indicators for the model. Several popular models will be used
as baseline models to be compared to our proposed new model framework. Secondly,
ablation experiments will be conducted to analyze the utility of different components in
the framework. Finally, we analyze the predictions.

4.1. Experimental Settings

All figures were generated and executed on a desktop computer with an AMD Ryzen
7–5800H with Radeon Graphics, and an NVIDIA GeForce RTX 3070. The model presented
in this paper was deployed and experimented with on Google Colaboratory using Pytorch
version 1.12.0. We use two layers of GCN layer in the multi-graph convolution module, the
number of heads in the temporal self-attention module was set to 3, the number of heads in
the spatial self-attention module was set to 2, and we set the kernel size in the temporal
convolution module to 3. Dropout = 0.2 was set up in both the multi-graph convolution
module and the spatial–temporal self-attention module. In addition, the historical time
step was set to [5,15], and the batch-size was set (4, 8, 16, 32, 64, 128, 256) in this experiment;
the testing results are shown in Figures 4 and 5. Notably, during the training phase, the
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model was trained with 200 iterations and an early stop was set as 40 to preserve the
optimal model, with a learning rate of 1 × 10−3. MAE was used as a loss function for the
training process, and the optimizer used Adam optimization. We divided the Hangzhou
datasets according to the rules of 70% training, 10% validation, and 20% testing. The
result evaluation was conducted after the predicted results were rescaled to their original
scale range.
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4.2. Baselines

In our experiments, we compared the predictive capabilities of the proposed AMGC-
AT model and classical time-series models (ARIMA and HA), deep-learning-based models
(LSTM, TCN and GCN), and existing advanced methods (MTGNN, AGCRN and STGCN).

ARIMA [2]: It is one of the most common statistical models used to predict time
series. It represents a standard ARIMA model that uses historical data-fitting parameters
to predict future metro passenger flow.

HA [1]: Historical average model. We use the average value of the last time step of
three patterns to predict the value of the next time step.

LSTM [3]: LSTM was first introduced in transport in 2015. The long-term temporal
characteristics of traffic flow sequences can be modeled by a time-series prediction model
with three more gate control units than a typical RNN.

TCN [25]: A Convolution Neural Network with Dilation Causal Convolution for
Sequence Modeling.

GCN [12]: Graph Convolution Neural Network is a prediction method for mining the
spatial correlation of traffic flow. It should be noted that we performed GCN operations on
all graphs in a comparative experiment.

MTGNN [21]: Multi-variable time-series prediction based on a graph neural network.
MTGNN has designed a graphical learning module to learn spatial unidirectional correla-
tions between variables. It proposes a convolution of graphs with mix-hop propagation
and an extended starting layer for multi-variable time-series prediction.
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STGCN [17]: spatial–temporal graph convolution network. STGCN is the fastest
model to train in recent years, At the spatial feature level, the spatial dependencies between
nodes are achieved using graph convolution neural networks, and sequences of traffic
flows in terms of temporal characteristics are modelled using one-dimensional convolution.

AGCRN [26]: AGCRN proposes two adaptive learning modules to generate new
adjacencies to better represent spatial correlations of nodes, enabling the use of GRU-based
graph convolution networks to perform some multi-variable time-series prediction tasks
without input of predefined adjacency matrices.

We compared our AMGC-AT model to the baseline and measured the performance
of all methods using three widely used metrics: mean square root error (RMSE), mean
absolute error (MAE), and weighted mean absolute percentage errors (WMAPE).

RMSE =

√√√√ 1
N

N

∑
i=1

(
Ŷi −Yi

)2 (25)

MAE =
1
N

N

∑
i=1

∣∣Ŷi −Yi
∣∣ (26)

WMAPE =
N

∑
i=1

(∣∣Ŷi −Yi
∣∣

∑n Yi

)
(27)

where N denotes the total number of values that need to be predicted, Ŷi is the predicted
value and Yi is the actual value.

4.3. Results and Analyses

We compared our AMGC-AT model to all baselines with three different prediction
time intervals (10, 15, and 30 min). Table 3 shows a comparison of projections with ground
realities. Our observations demonstrate that the proposed AMGC-AT model is superior to
all baselines in all metrics regardless of time interval, demonstrating the robustness of our
model. The bold data in Table 3 indicates the best results and the underlined data shows
the second best.

Table 3. Performance comparison of different methods on in-flow dataset.

Model
10 Min 15 Min 30 Min

RMSE MAE WMAPE RMSE MAE WMAPE RMSE MAE WMAPE

HA [1] 58.45 31.28 17.20% 101.73 51.17 18.92% 312.10 159.71 29.99%
ARIMA [2] 51.53 29.38 15.58% 81.94 42.21 15.97% 189.89 102.36 19.25%
LSTM [3] 38.21 22.85 13.51% 42.92 29.03 12.86% 97.35 57.82 11.79%
TCN [25] 36.18 19.77 12.71% 40.28 26.34 10.45% 65.21 39.68 7.47%
GCN [12] 37.21 19.82 12.82% 42.59 28.65 11.78% 67.23 40.05 7.62%

AGCRN [26] 31.09 17.78 11.95% 38.18 25.63 10.22% 57.66 35.81 6.89%
ST-GCN [17] 30.31 17.74 12.49% 36.94 21.31 8.67% 56.30 33.85 6.64%
MTGNN [21] 29.56 16.94 11.65% 35.76 20.40 8.89% 54.41 32.50 6.36%

AMGC-AT (ours) 25.32 16.65 10.62% 31.24 19.67 8.45% 50.79 30.68 5.86%
Improvement 16.74% 5.54% 12.52% 14.47% 3.71% 5.20% 7.12% 5.93% 8.53%

4.3.1. Overall Comparison

1. Traditional HA and ARIMA performed the worst in both the short and long term.
The reason is that the two models capture only a limited temporal correlation and
ignore some important but indispensable influences, such as the cyclical impact of
urban residents’ daily travel patterns on subway traffic. In addition, important spatial
and topological information about the subway network is missing.

2. LSTM, TCN and GCN perform better than traditional models because they capture
more temporal correlations and GCN captures more spatial correlations. However,
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the performance of the LSTM was significantly reduced in the long-term forecast. As
can be observed, in most cases, complex deep-learning architectures (such as AGCRN,
ST-GCN and MTGNN) yield more favorable results than single models. This is mainly
because spatiotemporal features can be extracted from these models simultaneously.

3. Notably, our self-attention based multi-graph approach has better performance in
extracting joint spatiotemporal features compared to AGCRN, STGCN and MTGNN.
Compared to STGCN, our model showed a significant increase in the accuracy of
the predictions, because the AMGC-AT has two mechanisms of self-attention while
the STGCN does not. For AGCRN and MTGNN, there are a number of differences
compared to our proposed model. Firstly, AGCRN and MTGNN rely on their own
adaptive graph-learning modules in order to learn the spatial correlations, while our
proposed AMGC-AT relies on four different graph structures that use domain knowl-
edge in order to learn spatial correlations, and our model is more direct and effective
at learning spatial correlations. Secondly, MTGNN uses a mix-hop propagation graph
solution, whereas STGCN, AGCRN, and our AMGC-AT all make use of spectral
convolution, which is more suitable for node prediction on a metro network of this
size. AGCRN also uses RNN to extract temporal features, which hurts the robustness
of the model due to severe sample fluctuations and specific gradient explosions, while
our AMGC-AT uses a more efficient gated convolution for extracting and outputting
temporal features. In conclusion, compared to the most advanced models to date,
only our model incorporates two self-attention mechanisms that are an integral part
of AMGC-AT’s state-of-the-art performance. The effectiveness of the components
of the AMGC-AT model will be analyzed and validated in the next chapter of the
ablation experiment.

4. In the case of RMSE, the significant improvements in three time intervals compared
to the best (available) models were 16.74%, 14.47%, and 7.12%, respectively. The
MAE improvement rates were 5.54%, 3.71% and 5.93%, respectively. Corresponding
improvements in WMAPE were 12.52%, 5.2% and 8.53%, respectively.

5. Figure 6 shows the distribution of RMSE errors for passenger inflow at 10-min gran-
ularity demonstrated using AMGC-AT and STGCN models. Yellow color indicates
a relatively small error, and red color indicates a relatively large error. It is clear to
see that the AMGC-AT model proposed in this paper can capture the variations of
morning and evening peak passenger flow more efficiently and accurately to reduce
the prediction error.
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Figure 6. The RMSE errors distribution of inflow at 10-min granularity. (a) AMGC-AT; (b) STGCN.

4.3.2. Results Analysis

In order to test the model’s performance in the network-level prediction task, the
prediction results for four stations were selected based on the degree distribution of the
nodes in the metro station and compared to the STGCN network model. It should be noted
that the experimental data used inflow passenger at ten-minute intervals.

The locations of the four metro stations are shown in Figure 7 below
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1. Station 4: this is a Jianglin road station on Line 1, located in the Binjiang neighborhood
of Hangzhou, surrounded by hospitals and schools, less than 500 m from the Binjiang
government line.

2. Station 18: Jiuhe road station on Line 1 is situated in the upper section of Hangzhou
city. Today it is surrounded by farmhouses in both urban and rural areas. The
surrounding areas will see more commercial and residential development.

3. Station 46: Qianjiang Road Station on Line 2, with a degree value of 4 on the metro
system, is situated in the upper city of Hangzhou and is a transfer station between
Line 2 and Line 4 of the metro system. It is surrounded by many commercial and
residential areas.

4. Station 76: The Citizen Center Station on Line 4, with a degree value of 2 on the
subway network, is located in the upper part of Hangzhou city. The station has eleven
entrances and exits, and is surrounded by large complexes such as the Hangzhou
Grand Theater, Hangzhou International Convention Center, and the Civic Center,
among others.

Figure 8 shows that the AMGC-AT model and the STGCN model presented in this
paper can accurately predict the flow of passengers on different routes, functions, and
geographical locations. It should be noted that our model is most accurate at both peak and
sub-peak times, and neither model can fit the fluctuations well at flat peak times, which we
believe is related to the min–max normalization method causing the model to lose some
sensitivity to numerical fluctuations at lower traffic volumes. However, the AMGC-AT
model predictions were not significantly different from the actual values. We conclude that
the prediction results demonstrate that our proposed model is reasonable and robust. This
model will guide subway operators in making reasonable peak-period travel schedules
and assist travelers in planning their trips.
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4.4. Ablation Study

To validate each component of the proposed AMGC-AT model, we performed further
ablation studies. We compared our model to eight carefully designed variants. Although
some changes were made, all variants have the same framework and parameter settings.
Performance on the Hangzhou datasets is shown in Table 4.
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Table 4. Ablation study.

Time Interval
10 Min

RMSE MAE WMAPE

AMGC-S 28.81 31.28 17.20%
AMGC-T 28.56 29.30 15.58%
AGC-AT 29.53 19.56 13.01%
AMG-AT 26.29 16.71 11.24%
AGC1-AT 25.97 16.31 11.04%
AGC2-AT 27.02 17.78 11.95%
AGC3-AT 26.81 17.74 12.49%

AMGC-AT1 26.45 16.94 11.65%
AMGC-AT2 25.85 15.53 8.99%
AMGC-AT3 26.47 15.74 9.18%
AMGC-AT 25.32 16.65 10.62%

1. AMGC-S: This variant eliminates the temporal self-attention mechanism and uses
representations learned from spatial graphs directly to infer traffic flow.

2. AMGC-T: This variant eliminates the spatial self-attention mechanism, while the other
components remain the same, using only spatial features derived from multi-graph
convolution to infer traffic flow.

3. AGC-AT: This variant eliminates the convoluted components of Multi-graph and does
not use predefined graph representations based on a priori knowledge constructs for
feature extraction, leaving the components unchanged.

4. AMG-AT: This variant removes the Multi-graph shared parameter section in the Multi-
graph convolution component, which assumes that there is not sufficient correlation
between predefined graph representations. The remaining components, including the
spatiotemporal attention component and the causal convolution output component,
remain the same.

5. AGC1-AT: This variant removes the schematic representation of a station-based POI
information construct in a multi-graph convolution component, leaving the rest of the
component unchanged.

6. AGC2-AT: This variant removes graphical representations of convoluted components
based on station traffic volume similarity, leaving the rest of the component unchanged.

7. AGC3-AT: This variant eliminates the schematic representation of the simrank-based
convolution component, leaving the rest of the component unchanged.

8. AMGC-AT1: This variant eliminates the periodic, short- and long-term division of
traffic flow in the temporal and spatial self-attention component, with traffic flow
information fed directly into the temporal and spatial self-attention component and
the rest remaining the same.

9. AMGC-AT2: This variant eliminates the short- and long-term division of traffic flows
in the temporal and spatial self-attention segments; only the adjacent traffic flows
are fed into the temporal and spatial self-attention segments, and the rest remain
the same.

10. AMGC-AT3: This variant eliminates the adjacent division of traffic flow in the tem-
poral and spatial self-attention segments and only inputs traffic flow containing
short-and long-term information into the temporal and spatial self-attention segments,
leaving the remainder unchanged.

11. AMGC-AT: The complete model presented in this paper.

As shown in Table 4, the experiment to verify the validity of each predefined graph
of the multi-graph convolution component clearly demonstrates that the performance of
the whole model decreases to varying degrees when removing any graph, which shows
that the representation of the graph based on a priori knowledge is effective. Secondly,
in the AMG-AT model, after removing the convoluted portion of the graph with shared
parameters, the performance of the model decreased, suggesting that there is common
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information between graph representations based on different a priori knowledge that are
not completely unrelated. Finally, the effects of periodic trends in traffic flow on model
performance were verified by setting the AMGC-AT1, AMGC-AT2 and AMGC-AT3 models
to compare the influence of adjacent and long-term trends in traffic flow on prediction
accuracy. It is clear from Table 4 that the AMGC-AT model’s three modes of transportation—
adjacent, daily and weekly—are reasonable.

5. Conclusions

AMGC-AT is proposed as a new traffic flow prediction model to address the problem
whereby existing graph convolution-based traffic flow prediction methods cannot fully
account for correlation variation characteristics in the metro cyberspace. By means
of four types of diagrams based on the pre-conception of a priori knowledge, traffic
flow data was characterized by long stretches of static space. The passenger flow was
then split into three different time patterns based on analysis of the original passenger
flow data, and dynamic spatial–temporal correlation of subway passenger flow was
investigated through two mechanisms of self-attention. The AMGC-AT model presented
in this paper is superior to the state-of-the-art baseline method in the publicly available
Hangzhou Metro Real Traffic Dataset. Evidence for the validity and robustness of the
AMGC-AT model comes from the passenger flow prediction results of subway stations
with different geographic locations and regional functions, and the rationality of each
component in the proposed model was tested through ablation experiments. AMGC-AT
has disadvantages, however: (1) we did not consider external factors such as weather
conditions and metro schedules; and (2) the flow of vacation passengers is more random
and less regular, and vacation data were omitted from this research, so this limitation
should be addressed in future studies. In the future, we will explore how to improve the
model’s generalization and migratory learning capability, and transfer the model to other
urban metro passenger flow prediction tasks. Finally, the availability of transportation
big-data resources also varies from city to city, and for some cities data volume and
variety are high; thus, the integration of heterogeneous transport data from multiple
sources (e.g., text, images and video) is a potential hotspot in this field in the future.
Migration learning and small-sample learning can be key solutions to this problem for
cities with fewer data resources.
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