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Featured Application: The proposed CP-KEDL system is supposed to evaluate and predict users’
perceptual preferences of complex products accurately and comprehensively and quickly gener-
ate a set of modeling feature elements that meet the perceptual needs of users to provide design
inspiration for complex products for designers.

Abstract: Complex products (CPs) modeling design has a long development cycle and high cost, and
it is difficult to accurately meet the needs of enterprises and users. At present, the Kansei Engineering
(KE) method based on back-propagated (BP) neural networks is applied to solve the modeling design
problem that meets users’ affective preferences for simple products quickly and effectively. However,
the modeling feature data of CPs have a wide range of dimensions, long parameter codes, and the
characteristics of time series. As a result, it is difficult for BP neural networks to recognize the affective
preferences of CPs from an overall visual perception level as humans do. To address the problems
above and assist designers with efficient and high-quality design, a CP modeling design method
based on Long Short-Term Memory (LSTM) neural network and KE (CP-KEDL) was proposed. Firstly,
the improved MA method was carried out to transform the product modeling features into feature
codes with sequence characteristics. Secondly, the mapping model between perceptual images and
modeling features was established based on the LSTM neural network to predict the evaluation value
of the product’s perceptual images. Finally, the optimal feature sets were calculated by a Genetic
Algorithm (GA). The experimental results show that the MSE of the LSTM model is only 0.02, whereas
the MSE of the traditional Deep Neural Networks (DNN) and Convolutional Neural Networks (CNN)
neural network models are 0.30 and 0.23, respectively. The results verified that the proposed method
can effectively grapple with the CP modeling design problem with the timing factor, improve design
satisfaction and shorten the R&D cycle of CP industrial design.

Keywords: CPs; modeling design; Kansei Engineering; LSTM neural network; GA; truck crane

1. Introduction

Complex products (CPs), such as aircraft and automobiles, are products that involve
complex structures and technologies and complex development, manufacturing and service
processes [1,2]. It is necessary to meet the needs of specific users, the diversity of product
structure, and product design innovation during the design process [3]. Currently, re-
search on CP design mainly focuses on the mechanical structure. For example, Zhang et al.
applied complex network theory and proposed an improved GN algorithm (crowd de-
tection algorithm) to achieve the module division of complex mechanical products [4].
Xue et al. introduced a new CP optimization design framework based on three aspects,
modeling, simulation, and optimization. This design framework can effectively deter-
mine the optimal design structure configuration and optimal functional parameter val-
ues of CPs [5]. Wang et al. proposed a design optimization method for CPs, which can
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improve the design optimization efficiency based on Multidisciplinary Design Optimiza-
tion (MDO) technology [6]. Nevertheless, there are few studies on CP modeling design,
which mainly focus on appearance design innovation. For example, Zhu et al. proposed
a method for the appearance design of Numerical Control (NC) equipment based on prod-
uct identification [7]. Chen et al. proposed a novel method for the appearance design of
mechanical and electrical products based on entity pattern genes [8]. However, the above
methods failed to take affective factors into account in the design process of CPs and are
not suitable for the affective design of CPs.

As the economy evolves, customers pay more attention to affective experience than
functional performance and usability when purchasing and using products [9]. Users’
affective experiences are closely related to their perceptual needs for CPs [10,11]. Compared
with simple products, the design of CPs has a longer cycle [12] and a higher cost [13].
Moreover, it is difficult to effectively meet the perceptual needs of enterprises and users [14].
Therefore, it is a challenge for industrial designers to quickly and efficiently perform CP
modeling design that meets the perceptual needs of enterprises and users.

Kansei Engineering (KE) [15] has been widely used as a quantitative analysis method
for affective design and new product development. KE has three core modules: acqui-
sition of perceptual requirements, the establishment of the mapping models between
modeling features and perceptual images, and design execution [16]. Among them, the
mapping model between the product modeling features and the perceptual images is
the key to affective designs [17]. Based on these mapping models, GAs [18], Tabu search
(TS) algorithm [19], NSGA-II [20], and other methods can be carried out to quickly and
effectively obtain the recommendation strategy of innovative modeling design that meet
the perceptual needs of enterprises and users. In addition, the mapping models are also
the basis for building an emotion preference computing and recommendation systems [21].
For example, Hong et al. proposed a mapping models of Kansei knowledge and emo-
tional color image words to help designers and consumers to obtain the most appropri-
ate color ranges of consumer products [22]. Xue et al. established a user-personalized
clothing-recommendation system through the relationship model between emotional vo-
cabulary and clothing elements to improve the recommendation accuracy [23]. Zhang et al.
proposed a new fashion evaluation method on the basis of the appearance to build
a clothing-recommendation system with higher accuracy [24]. Using online product click
data and offline product sales data to reflect customers’ online and offline preferences,
Hwangbo et al. built a recommendation system to improve product sales and website click
rates [25]. The above studies inspire us by building relationship mapping models between
user emotional preferences and design elements, and user emotion-aware recommender
systems can be established to estimate user emotional preferences, recommend satisfac-
tory products to users, and provide product development strategies that meet the users’
preference to designers.

There are two different types of KE methods applied to established the mapping
models. The first one includes methods based on statistical theory, such as polynomial
regression (PR), support vector (SVR), etc. For example, Yu et al. evaluated the prod-
uct perceptual value through PR [26]. Fan et al. applied SVR to establish the mapping
models between user emotion and car contour and achieved good results in a specific
dimension [27]. This type of method has good interoperability but still has the following
shortcomings: poor model performance and low generalization when dealing with complex
multi-dimensional features and ignoring the multi-dimensional variables and potential
nonlinear relationships in product perceptual images [28]. Therefore, they were difficult to
use to describe the multivariate mapping relationship between CP perceptual images and
modeling parameters accurately.

The second type includes methods based on artificial intelligence (AI). By analyzing the
features and structures of data, excavating the hidden information of data, and preserving
the correlation among data, deep learning based on artificial neural networks can effectively
solve the nonlinear problems among variables and deal with high-dimensional variables.



Appl. Sci. 2023, 13, 710 3 of 24

For example, Guo et al. proposed an affective design method for a multi-dimensional
variable based on the BP neural network, which can effectively grapple with the map-
ping relationship between short-sequence features and perceptual images [28]. Fu et al.
constructed a Convolutional Neural Networks (CNN) neural network to establish the rela-
tionship mapping model between modeling features and perceptual images and achieve
ideal results in processing a small number of feature data [29]. The above neural network
can effectively establish the relationship model between perceptual images and the model-
ing features of simple products. However, CPs have complicated modeling features and
a wide range of visual-influence factors [30], which are difficult to transform into deep
learning data comprehensively and accurately. The methods above cannot recognize the
affective preference of CPs from an overall visual perception level like human beings [31].
Therefore, establishing a mapping model between perceptual images and modeling features
of CPs has become a challenge for designers.

A Long Short-Term Memory (LSTM) network is a variant of the cyclic neural
network [32]. The connection among units of LSTM forms a directed cycle. The intro-
duction of a gate structure enables the network to capture the long-term dependence and
nonlinear modeling parameter characteristics between timing data points, which makes it
excellent in processing timing characteristics [33]. Since users generate an overall percep-
tual cognition of CPs through continuous visual perception, it is crucial for computers to
learn how to observe the continuous feature relationship of products like human eyes and
establish an accurate correlation model between perceptual images and modeling features.
To address the question mentioned above, regarding the acquisition of perceptual evalua-
tion as a sequence problem based on the LSTM neural network and eye movement test,
a modeling design method was proposed to establish a more comprehensive and effective
relationship model between perceptual images and modeling features of CPs. This paper
presents a proposed method that can meet users’ perceptual images more compressively
and effectively based on the LSTM neural network and KE for the rapid modeling design
of CPs (CP-KEDL).

The main contributions of this paper are summarized as follows:
(1) The CP-KEDL method is proposed, which combines KE and deep learning technol-

ogy for innovative concept generation to effectively improve the affective design process of
CPs. It has two core modules, the perceptual evaluation and recognition module of CPs
based on an LSTM neural network and KE and a product-feature-optimization module
based on a Genetic Algorithm (GA).

(2) Users’ perceptual image acquisition of CPs is regarded as a behavior with a visual
sequence. It is proven that the user’s perceptual image acquisition of CPs is a continuous
process, and the user’s visual tracking line of observing CPs is obtained through an eye-
movement experiment. The modeling features of CPs are deconstructed by an improved
morphological analysis (MA), which helps to solve the problem of the accurate extraction
of modeling features.

(3) The proposed CP-KEDL method is applied to the design process of a truck crane to
illustrate the method in detail and validate its feasibility and usefulness.

The rest of the paper is structured as follows. The overarching research framework
is introduced in Section 2. The KE technique, the LSTM neural network, and the GA are
discussed next. An empirical study of truck-crane affective design to demonstrate the
feasibility and usefulness of the proposed method, as well as the relevant experimental
data, is provided in Section 3. In Section 4, we introduced the DNN and CNN models
to conduct comparative experiments, which verified that the proposed KE–LSTM model
has better performance and reliability, and discussed the reasons. Finally, we present the
research conclusions and contributions in Section 5 and pointed out the research limitations.
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2. Methods
2.1. Research Framework

As shown in Figure 1, the proposed CP-KEDL method consists of four parts. The first
part is data preparation, including the collection of product picture data and perceptual
vocabulary pairs. The purpose is to achieve the original sample data of the target product
and the user’s perceptual needs. At this step, product pictures are crawled from the target
websites and the original data are preprocessed to obtain clean picture data. Based on
this part, we can achieve clean and unified product images for perceptual evaluation and
feature extraction. In the second part, aiming to obtain the appropriate data set, the user’s
visual sequence when observing CPs is obtained through an eye-movement experiment,
and the improved MA method is used to manually extract the sample features, including
the sequence. In the third part, KE and LSTM neural networks are used construct the
mapping model between the modeling features and the perceptual evaluations of CPs,
which is named the KE–LSTM model. The model is trained with the perceptual evaluation
data set to predict the perceptual evaluation value of CPs. In the fourth part, GA is applied
to search the product-feature sets that meet the expected perceptual image evaluation value
and to guide the modeling design practice for new products.
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2.2. Acquisition of Sample Picture Data

Data is one of the three key components of artificial intelligence (big data, computing
power, and algorithm). Moreover, KE needs a large number of samples to establish the
mapping relationship models between modeling features and perceptual images. Previous
works [28,34] have shown that extracting product features from high-quality picture data is



Appl. Sci. 2023, 13, 710 5 of 24

more effective. However, few open-source datasets provide high-definition image data. To
obtain high-quality image data, the original product pictures are collected from the target
websites through web crawlers. In addition, the original pictures are processed by deleting
the background and unifying the picture perspective with a 45-degree angle of view to
avoid the influence of irrelevant features and to make it easier and more effective to extract
product features.

2.3. Acquisition of Perceptual Evaluation Data

The acquisition of perceptual evaluation data has two key parts, namely perceptual
vocabulary collection and perceptual evaluation values collection.

Perceptual vocabularies are the adjectives used to describe people’s perceptual feelings.
Perceptual vocabularies can be collected through various channels, such as magazines,
academic papers, product test reports, product manuals, expert comments, user online
comments, and customer interviews, etc. [35]. In addition, representative perceptual
vocabularies can also be collected from relevant academic literature and the Internet.

Firstly, perceptual vocabularies are collected. Next, all collected perceptual vocab-
ularies are clustered to obtain the affective preference attributes. This process is called
perceptual clustering. In current research, the perceptual clustering methods for affec-
tive design are relatively mature, mainly including the clustering method based on fuzzy
equivalence [35], the clustering method based on a design structure matrix (DSM) [36], and
the clustering method based on a rough set [37]. Among those methods, the clustering
research on the perceptual vocabularies of truck cranes is relatively rich, so our research
uses the collected vocabularies that have been clustered in the relevant studies.

The semantic difference (SD) method [38] is applied to quantify users’ preference
evaluations of CPs. As shown in Figure 2, a five-point semantic scale is used to quantify the
affective preferences of participants: each point showing the preference level of customers
and users, ranging from 1 to 5. For example, 1 and 5 represent a pair of bipolar adjectives,
while 3 represents a medium level.
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The Internet and smartphones have become indispensable parts of human lives. Dis-
tributing questionnaires via networks can greatly improve the efficiency and ensure the
authenticity of the survey [31]. Based on the SD method, a questionnaire was constructed
by combining the identified representative perceptual vocabulary pairs and the product
representative pictures, and was distributed online. Finally, we obtain the users’ perceptual
evaluation datasets.

2.4. Acquisition of Sample Feature Visual Sequence

MA is the most common method to parameterize product modeling in the manual
extraction of product features. For example, Han et al. established the Unmanned Aerial
Vehicle (UAV) model evaluation system using the KJ method (named for its inventor, Jiro
Kawakita, and sometimes referred to as the affinity diagram method) and decomposed the
UAV appearance, modeling it into three first-class indices: overall appearance, single piece,
and detail [34]. Using MA, Wu et al. disassembled and encoded the form of an electric
motorcycle and produced a product form design system based on a BP neural network [39].
However, there were complex relationships among the components of CPs [40]. Only using
MA ignored the correlation between product morphological features and the relationship
among product components.
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To extract the modeling features of CPs more accurately and effectively, we propose
an improved MA method based on an eye-movement experiment that is divided into two
steps. In the first step, the users’ observation trace and thermal map of CPs are achieved,
which proves that the user’s acquisition of perceptual images of CPs is a continuous visual
behavior. Furthermore, the visual sequence is obtained through an analysis of the eye-
movement tracking map. In the second step, the MA method is improved, and the product
modeling feature data P = (PA, PC, PC . . . ), (PA = Pa1, Pa2 . . . ) is combined with the visual
sequence relationship obtained in the first step, as shown in Formulas (1) and (2).

P = (p1, p2, . . . pt, . . . pT) (1)

In Formula (1). P is the overall set of product modeling features; pt is the modeling
feature set of a component, and t is the visual sequence number of the component when
the user observing the CP.

pt = (pt
1, pt

2, . . . , pt
n) (2)

In Formula (2), pn
t is the specific modeling feature of pt.

2.5. Coding of Samples’ Modeling Features

Based on the formulas in Section 2.4, we can define the coding principle of the CP
modeling feature set including visual sequence, extract the modeling features, and obtain
a high-quality training data set for the model establishment in the next stage. The modeling
feature extraction work is conducted by experienced designers.

When extracting the modeling features, we found that some modeling features appear
repeatedly, which strengthened the users’ visual experience and accelerated their visual
perception process. This is in line with the law of rhythm in industrial design [41]. This
discovery was exciting and gave us great confidence in the manual extraction of CP
modeling features based on MA. In the proposed research, a method for the coding of
modeling features with the visual sequence is proposed. Firstly, we identify the users’
visual sequence and key modeling features of CPs through eye-movement experiments and
manual extraction to establish the model-features set. Each sample consists of the modeling
features in the set. When a sample has repetitive features, we use the same feature code
to represent the relationship. Secondly, according to Formulas (1) and (2), the modeling
features of each sample are transformed into feature codes. An improved modeling feature
set of CPs is constructed after the two steps, which is the basis of the product perceptual
evaluation prediction and population generation in the following steps.

2.6. Construction of the LSTM Model

In order to quickly and effectively obtain the optimal CP modeling feature set that
meet the needs of the target perceptual image, it is necessary to establish an effective
perceptual evaluation and prediction model. As the modeling features of CPs are taken as
a combination modeling feature set including visual sequence, the mapping relationship
models between modeling features and perceptual images are established based on LSTM
neural network. The LSTM neural network can transport information from one step to the
next, precisely imitate the visual sequence tracking on CPs of human eyes, and deal with
CP features successfully. The gate structure of LSTM allows information to pass through
selectively, change the state each time in the cyclic neural network, and delete or add
information to the cell state [42]. To safeguard and control the cell state, the LSTM has three
gates, each has a sigmoid neural network layer and a point-wise multiplication operation.

The model construction includes data segmentation and LSTM neural network training
process [43]. The training process attempts to establish a deep learning model between the
modeling-feature data extracted by the experienced designers mentioned in Section 2.5 and
the perceptual evaluation values of CPs by learning the training-set data. With the growth of
data, the network is constantly updated. Finally, an affective preference recognition system
based on LSTM is obtained to help designers predict users’ perceptual evaluation scores.
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2.7. Construction of GA Model

GA is applied to quickly carry out CP modeling design to meet the target of percep-
tual images through the relationship model. GA is a classical global class optimization
method [34]. It does not need the properties of the continuous differentiation of function,
and can calculate the fitness in parallel easily. The GA calculating the optimal CP modeling
feature set has five main components: initial population (chromosome), evaluation function,
selection function, crossover function, and mutation function [44].

Firstly, the individuals in the initial population are randomly generated, and each
represents a possible CP modeling feature set.

Secondly, the evaluation function executed the KE–LSTM model established in
Section 2.6 to calculate the perceptual evaluation value of each individual.

Thirdly, the selection function is executed to select individuals with high fitness as
alternatives and parents of the next-generation population.

Fourthly, the cross function is executed to calculate and generate the next-generation
population. Individuals with high fitness are selected, and their codes are randomly
exchanged at the same location to generate the next generation.

Finally, the variogram is executed to maintain the diversity of the next-generation
population. The generated sample individuals are selected according to the set probability.
The codes of their random location are changed, which can ensure the global search ability
of GA.

3. Empirical Study

Truck cranes, as a kind of CPs, have many components and long lengths, and the head
and the operation bin are set separately. Therefore, the modeling design of truck cranes was
taken as an example to verify the feasibility and effectiveness of the proposed method. The
research includes the following steps: (1) Data acquisition and preprocessing. To obtain
high-quality sample data, a series of combined steps and methods were carried out to
collect and process the original data through web crawlers. (2) Product-feature extraction.
In order to accurately extract the modeling features of CPs, the eye-movement experiment
and the improved MA method were applied to obtain the visual tracking of users when
observing CPs. In addition, the representative samples were encoded into modeling feature
sets including visual sequence. (3) The KE–LSTM model was constructed and trained to
quickly predict the perceptual evaluation of different feature combinations of CPs. (4) GA
was applied to quickly generate the optimal CP modeling feature set that meets the target
perceptual images to assist designers in CP modeling design.

The proposed CP-KEDL method was developed with Python. The LSTM module
is developed based on the Python PaddlePaddle framework. All experiments were run
on AI studio (Baidu), equipped with Intel 4 cores 32 GB, Tesla V100 32 g, and Windows
operating system.

3.1. Acquisition of Truck Cranes Picture Data

To ensure the validity of the samples, truck cranes currently on sale in the market
were selected as the sample source. Sample pictures were collected based on the methods
mentioned in Section 2.2. Firstly, truck-crane pictures were crawled from the construction
machinery portal using web-crawler tools. The websites include D1CM, the China Road
Machinery Network, and the official websites of construction machinery enterprises. Sec-
ondly, all collected pictures were manually checked, and the unnecessary and duplicate
pictures were deleted. Thirdly, we selected the left 45-degree angle view pictures of each
sample, removed the background of these pictures, and adjusted them to unified pixels to
reduce the interference in the evaluation and to reduce errors. Finally, 206 product samples
were preserved, and parts of them are shown in Figure 3.
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3.2. Acquisition of the Perceptual Evaluation Data of Truck Cranes

We obtained the perceptual evaluation data by the method proposed in Section 2.3. In
order to identify the customers’ perceptual needs for truck-crane modeling, we collected
perceptual vocabulary related to the truck crane from the available literature. Wang D
put forward the perceptual vocabularies of simple, atmospheric, full, and sporty [45].
Xiao synthesized the semantic vocabulary of lifting equipment perceptual images into six
pairs: masculine–feminine, solemn–frivolous, future–past, solid–flimsy, technological–
conservative, and rational–perceptual [46]. Wang et al. added three pairs of words:
introverted–publicized, complete–fragmented, and dynamic–steady [47]. Based on the
above research, six pairs of relative perceptual words: steady–light, integral–piecemeal,
technological–traditional, safe–dangerous, simple–complex, and dynamic–static were sum-
marized as representative perceptual vocabulary. Furthermore, steady–light, integral–
piecemeal, and technological–traditional were randomly selected as three pairs of target
perceptual vocabulary for the proposed research, as shown in Table 1.

Table 1. The selected perceptual vocabularies of truck cranes.

Perceptual Vocabularies

Steady–light Integral–piecemeal Technological–traditional

3.3. Acquisition of Perceptual Evaluation Data

In order to obtain the perceptual evaluation value of the sample pictures, the selected
three pairs of perceptual vocabulary were combined with 206 representative samples. To
make the evaluation of focus groups obvious, the SD method was carried out to make the
evaluation questionnaire shown in Figure 4.
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machinery enterprises, and three construction machinery operators. The participants
were recruited from experts or expert users of truck cranes and varied from designers,
managers, engineers and operators. This expert-recruitment method helps us to collect
data from different perspectives; avoid the limitations of a single perspective; and enhance
the comprehensiveness, efficiency and credibility of the research results.

First, the meaning of perceptual vocabularies was further explained to participants
to promote for them a more consistent judgment standard of perceptual images. For
example, steady refers to the visual sense of stability, heaviness, and the feeling of not
tipping, while light is the opposite, representing lightness and thinness; integral refers to
the visual integrity, completeness, and visual unity of the car crane, while piecemeal is
the opposite, representing a sense of visual fragmentation and messiness. Technological
refers to the image of future science and technology, while traditional is the opposite,
representing a state of non-advanced technology. After that, each participant was invited to
evaluate the sample picture in the given three perceptual dimensions according to his/her
first impression. Finally, the evaluation mean values of each sample in each perceptual
dimension were calculated, as shown in Table 2.

Table 2. The result and analysis of the first experiment.

Sample Technological–
Traditional Steady–Light Integral–

Piecemeal

Mean Evaluation
Values

X1 4 4.4 3.9
X2 3.2 3.8 3.9
X3 4.3 4.4 4
X4 4.3 3.9 3.7
X5 3.8 3.7 3.4
. . . . . . . . . . . .

X206 4.3 4.3 4.3

Reliability and
validity test

Kendall’s concordance coefficient (W) 0.608

p 0.000

Although an expert evaluation method was used for data acquisition, there may
be statistical reliability errors due to the limitation of the small size of participants and
the large energy and time cost of the questionnaires. Therefore, a reliability test and
retest method were applied to validate the reliability of the collected data. Kendall’s
concordance coefficient (W) is an expert evaluation indicator of question reliability [48] and
is commonly used to measure the degree of concordance of designers in ranking design
goals [49]. Relevant studies have used Kendall’s concordance coefficient (W) to test the
scoring reliability of data with a small size of experts [50–52]. The data in Table 2 was
imported to SPSS to calculate Kendall’s concordance coefficient (W) [53]. As shown in
Table 3, the Kendall’s concordance coefficient test showed significance (p = 0.000 < 0.05),
implying that the evaluations of the invited experts were highly correlated, i.e., indicating
that the evaluations are consistent; Kendall’s W coefficient is 0.608, which is between 0.6
and 0.8, indicating a strong consistency. Therefore, the collected data is verified as reliable
and valid.

In the meanwhile, test–retest reliability has been used for reliability testing in some
studies with a small number of participants [54,55]. To further test the reliability and
validity and avoid the possible errors in a small sample size, the same group of experts
was invited for a second experiment with the same questionnaire [56]. The retest was
carried out two months after the first experiment, which ensured that the participants were
less interfered with by the previous test and could use the first impression to evaluate
the perceptual image of the samples again. The mean evaluation values of the second
experiment results were calculated and imported to SPSS to test the reliability. Results show
that the Kendall’s W coefficient is 0.603, and p is 0.000, which indicates that the results of
the second experiment passed the reliability and validity test and are reliable and effective
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data. In addition, the Pearson correlation coefficient of the two experiment results is 0.917,
i.e., indicating that the two experiments’ results are highly correlated [57]. Therefore, the
retest experiment verified that the data in Table 2 have good reliability and validity. As the
evaluation data in Table 2 was verified to be reliable and valid and was collected by the
first evaluation experiment, it was considered to be closer to the participants’ first intuition
and impression than the retest result. Therefore, the data in Table 2 was used to establish
the perceptual evaluation dataset in Section 3.6.

Table 3. The result and analysis of the retest experiment.

Sample Technological-
Traditional Steady–Light Integral–

piecemeal

Mean Evaluation
Values

X1 4.1 4.2 4
X2 2.8 3.9 3.8
X3 4.2 4.6 4.4
X4 4.2 3.9 3.8
X5 3.7 3.8 3.6
. . . . . . . . . . . .

X206 4.4 4.2 4.8

Reliability and
validity test

Kendall’s concordance coefficient (W) 0.603

p 0.000

Pearson correlation coefficient of the two experiment results 0.917

3.4. Acquisition of Sample Feature Visual Sequence

To obtain the visual sequence of user perceptual evaluation, an eye-movement experi-
ment was conducted. A thermal map area and the observation sequence of user observation
forklift samples were obtained through experiments.

The experiment was designed as follows.

(1) Samples

According to the scores in Table 2, the samples were divided into three groups in each
perceptual dimension: high score, middle score, and low score. A sample picture was
randomly selected from each group, and a total of nine sample pictures were collected, as
shown in Table 4. Furthermore, in order to obtain the process of users’ observing and eval-
uating the perceptual image of samples, the product sample pictures were combined with
three pairs of perceptual vocabularies to design the observation object of the experiment.

(2) Participants

Twelve graduate students (6 males, 6 females) majoring in design at Tianjin Uni-
versity were invited as participants. Neither the shape of the truck crane nor the rele-
vant text prompts were given before and during the test to avoid affecting participants’
subjective feelings.

(3) Devices

The devices include a Tobii Pro Nano eye tracker, a 21-inch computer monitor, and
a game controller with three selection buttons.

(4) Experiment procedure

(1) When the participant entered the laboratory, he/she was informed of the experi-
mental procedures and precautions. After becoming familiar with the environment, the
participant sat about 64 cm away from the display, with eyes staring toward the center of
the screen and head keeping still.

(2) The equipment calibration and pre-test were conducted to ensure the accuracy of
the experimental data.

(3) Participants began the experiment by pressing the confirmation button on the game
controller while looking at the center of the screen. First, a description page appeared,



Appl. Sci. 2023, 13, 710 11 of 24

telling the user which image dimension to evaluate and the evaluation options. Second,
a sample picture of the truck crane in the figure appeared randomly in the center of the
screen for 30 s. At this time, the participant determined the score range (high, middle,
low) of the sample picture in the specific perceptual image dimension and pressed the
corresponding button on the game controller.

(4) A blank gray screen appeared, and the experiment was repeated a total of nine
times (As shown in Figure 5).

Table 4. Eye-movement experiment samples.

Technological–Traditional Integral–Piecemeal Steady–Light

High score
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(5) Results and analysis
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through eye-movement experiments, as shown in Figure 6.
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Based on the analysis of the visual thermal diagrams and the discussion with the
designers of the focus group, the truck crane was finally divided into five components:
the head, body, boom, chassis, and operation cabin. Each sample picture was divided into
corresponding five visual-interest regions.

The visual trace of each participant observing different samples was analyzed. The
first visual-interest region that the participant observed and stayed for more than 1 s was
recorded and scored five points, four points for the second region, three points for the third
region, and so on. In addition, the mean score of each region was calculated, as shown in
Table 5.

Table 5. The mean score of each visual-interest region.

Visual-Interest Region Mean Score

Head 4.75
Body 3.08
Boom 3.09

Operation bin 2.58
Chassis 1.5

According to Table 5, the visual sequence was determined as P = (Head (P1), Boom
(P2), Body–Chassis (P3), Operation bin (P4)).

Most participants observed the head of the truck crane at first sight, followed by the
body, boom, operation bin, and chassis. We interviewed the participants after the test and
found that the users’ vision become used to moving from left to right. What is more, the
observers’ attention to the base is low, and the body is closely connected with the chassis,
so we combined the body and the chassis as one area. Therefore, the users’ general visual
trace when observing the truck crane was summarized, as shown in Figure 7.
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3.5. Coding of Sample’s Modeling Features

Using the coding method of modeling feature proposed in Section 2.5, five designers
formed a focus group, including three designers with five years of design experience and
two construction-machinery-design decision-makers. Name each part that affects the per-
ceptual image of a component as an item and each modeling feature of items as a +category.
The improved MA method and aesthetic principles were applied to reconstruct and analyze
the items, enumerate the design feature of each item, and establish the modeling-feature
category set of truck crane.

Each category represents a feature index, and the repetitive categories use the same
location index. As shown in Table 6, each component has several items wherein category
features have occurred repeatedly.
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Table 6. The modeling-feature-category set of truck crane.

Component
Item

Category
Code Name

Head (P1)

P1
1 Front face line

None
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Table 6. Cont.

Component
Item

Category
Code Name

29 30 31

P2
3 Size

Large Medium Small

32 33 34

P2
4 Decorate

Structure Sign None

45 46 47

P2
5

Color matching
1

Yellow Green Black Gray White Red Blue

52 53 54 55 56 57 58

P2
6

Color matching
2

Yellow Green Black Gray White Red Blue

52 53 54 55 56 57 58

P2
7

Color matching
3

Yellow Green Black Gray White Red Blue

52 53 54 55 56 57 58

Body-
Chassis

(P3)

P3
1 Hub color

Black White

54 56

P3
2

Chassis
package type

Chassis bread wrapping Chassis line wrapping Chassis warning
line wrapping Chassis all tires

37 38 39 40

P3
3 Body

Yes No

41 42

P3
4

Body
decoration

Color division Structure division Mark/logo Division No decoration

45 46 47 48

P3
5

Main body
color matching

Yellow Green Black Gray White Red Blue

52 53 54 55 56 57 58

P3
6

Body auxiliary
color

Yellow Green Black Gray White Red Blue

52 53 54 55 56 57 58

P3
7 Empty area

Yes No

43 44
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Table 6. Cont.

Component
Item

Category
Code Name

P3
8 Tail status

Regular tail Messy tail No tail

49 50 51

Operation
bin (P4)

P4
1

Cockpit front
face line

None
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Based on Table 6, each sample was deconstructed into the modeling feature category
set and encoded into the feature vector, as shown in Table 7. During this process, we found
that the visual relationships among items are further demonstrated by the fact that some
different components have the same categories. Finally, as shown in Table 7, we translated
the product categories into 4 × 8 feature matrices as neural network input codes. For
vectors less than 8 bits, fill in 0 at the empty bit.

Table 7. Modeling-feature-category coding of truck cranes with visual sequence.

Sample Head (P1) Boom (P2) Body–Chassis (P3) Operation bin (P4)

X1 [1,11,13,15,15,25,54,55] [28,31,34,45,53,53,54] [36,39,42,0,0,0,44,50] [1,11,14,15,15,55,54]
X2 [1,8,14,19,15,26,52,54] [28,31,33,47,52,52,52] [36,39,41,47,54,52,44,49] [4,8,14,19,15,54,52]
X3 [1,8,14,19,23,26,56,58] [28,30,32,47,57,56,56] [35,37,41,46,58,56,44,49] [1,8,14,19,23,56,58]
X4 [3,11,13,15,16,26,56,54] [27,31,34,45,53,53,54] [36,38,41,46,56,53,44,50] [1,11,14,15,15,56,54]
X5 [1,9,13,15,23,26,55,54] [27,31,33,45,53,53,54] [36,38,41,46,55,53,44,49] [1,9,14,15,15,55,54]
. . . . . . . . . . . . . . .

X206 [5,8,14,21,22,26,56,54] [28,30,32,47,57,56,56] [36,37,41,46,56,54,43,49] [1,8,14,21,22,56,54]

3.6. Model Construction and Perceptual Evaluation

After the feature-category coding and perceptual evaluation, a dataset of truck crane
modeling evaluation was established, which includes modeling-feature-category coding
with visual sequence (Table 7) and the mean perceptual evaluation values (Table 2).

The modeling-feature-category coding data in Table 7 was used as the input layer, and
the user’s mean perceptual evaluation values on the perceptual dimension of the sense of
technological–traditional, steady–Light, and integral–piecemeal in Table 2 were used as the
output layer to train the KE–LSTM model.

The structure of the LSTM neural network was shown in Figure 8. In the data pro-
cessing stage, it was found that the dimension of a CP sequence encoded by one-hot was
enormous. In order to enable the computer to accurately understand the meaning of the
features extracted manually, we referred to a skip-gram to convert the CP sequence features
p(t)n = (pt

n, pt+1
n , . . . , pt+l−1

n ) ∈ Rl×m into low-dimensional vectors.
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In the encoding stage, the vector with dimension (l, m) is received as the input,
p(t)n = (pt

n, pt+1
n , . . . , pt+l−1

n ) ∈ Rl×m, and the number of LSTM neurons in the hidden layer
is determined by L. According to the structure shown in Figure 8, the inputs of a single
LSTM neuron are the pt

n of the current observation time and the hidden representation
ht−1

E of the previous moment input vector encoded by the LSTM neurons. After encoding,
the hidden representation ht

E at this time is obtained as one of the inputs of LSTM neurons
at the next moment.



Appl. Sci. 2023, 13, 710 17 of 24

Training performance was assessed using the mean square error (MSE) [43], as shown
in Formula (3).

loss =
1
n
‖y− yp‖2 (3)

The data were divided into the training set and test set, accounting for 80% and 20%,
respectively. MSE was reduced continuously during the training process. The parameters
of the KE–LSTM model were as follows: network structure is two layers; LSTM neuron
hidden state size was 32; target error was less than 0.03; the optimizer was Adam; the
learning rate was 0.001; dropout was 0.2; model metrics were the loss function shown as
Formula (3), and the remaining parameters were set as default values [58].

Model training was implemented through the PaddlePaddle package of
Python 3.8 (64-bit).

The experimental results are shown in Figure 9. When the number of iterations
exceeded 100, the error curves of the training set and the testing set tended to be flat, which
met the accuracy requirements of the model. Therefore, the KE–LSTM model can be used
for the prediction of the perceptual evaluation score of truck cranes.
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3.7. Establishment of the GA Model

Based on the KE–LSTM model, the GA model described in Section 2.7 was estab-
lished to optimize the schemes. The experimental process is shown in Figure 10. Firstly,
10,000 original feature-combination populations were generated according to the feature
set in Table 6 through the population generation function. Secondly, the KE–LSTM model
was executed as a fitness function to evaluate and predict the score of each individual in the
population to solve the individual fitness problem. Finally, the dominant population was
chosen for hybrid recombination using the roulette method. Different modeling-feature-
category codes belonging to the same part of the truck crane were hybridized to generate
a new generation. In the process of population generation, the variation ratio was con-
trolled to 0.01. The target fitness was set as 4 points; that is, the sum of the 3 perceptual
dimension scores was more than 12 points. If the target fitness was not satisfied, the model
will be cycled in the same way.
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As shown in Figure 11, after 20 rounds of iteration, the design scheme that met the
perceptual evaluation target was optimized. According to Table 2, the mean values of the
collected samples in the perceptual dimension of steady–Light, integral–piecemeal, and
technological–traditional are 3.15, 3.42, and 2.91 respectively. As shown in Figure 12, the
evaluations of optimal design schemes are all higher than four points in three perceptual
dimensions, which are also far higher than the mean values of the collected samples. There-
fore, based on the KE–LSTM model, the GA model can quickly push the modeling-feature-
category set in line with the target perceptual images, assist designers to conduct creative
design practice of CPs quickly and effectively, and improve design quality and satisfaction.
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4. Discussion

The perceptual evaluation model based on the LSTM neural network (KE–LSTM) is
the basis of the proposed CP modeling design method (CP-KEDL). In order to verify the
validity of the LSTM neural network, two kinds of neural networks were built as controlled
experiments to compare the evaluation results. As a well-known basic traditional machine
learning tool [59], Deep Neural Networks (DNNs) have been applied in many controlled
experiments to validate the efficiency of research [59–61]. In addition, CNNs were reported
that have good performance in processing data that come in the form of multiple arrays [62];
for example, many data modalities are in the form of multiple arrays: 1D for signals and
sequences, including language [63,64]; 2D for images or audio spectrograms [65]; and 3D
for video or volumetric images [66]. Therefore, DNN and CNN were chosen to be the
compared models. The structures of the two networks were set as follows:

(1) DNN, a two-layer network structure, has 32, 24, and 3 neurons in the input, hidden
and output layers, respectively.

(2) CNN has two convolution layers and two pooling layers and finally outputs the
results through the full connection layer.

During training and testing, both DNN and CNN used the same coded number data
in Table 7 as LSTM, and the training set and test set of each model are consistent with
LSTM. Both of them used Formula (3) in Section 3.6 as the performance evaluation index.

In order to quantitatively evaluate the performance of the above models, the root
mean square error (RMSE) [67] and MSE were used to evaluate the error between the
model output and the measured value. The smaller RMSE and MSE, the smaller the model
deviation and the better effect of performance evaluation. The formulas of RMSE and MSE
are as follows:
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RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (4)

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (5)

where ŷi and yi are the output value and the actual value of model, respectively. The
evaluation results of the testing set are shown in Table 8.

Table 8. Evaluation results of LSTM, CNN, and DNN models.

Model Structure MSE RMSE

LSTM 0.02 0.14
CNN 0.23 0.48
DNN 0.30 0.55

According to Table 8 and Figure 13, the LSTM neural network performs best in
evaluating and predicting the users’ perceptual preference of CPs, followed by the CNN,
and DNN is the worst. We suppose the reason is that, compared with CNN and DNN
models, LSTM model takes more product modeling features into account when modeling
and adds an observation time sequence so that the product-feature-coding set can be more
comprehensive and multi-dimensional. Therefore, the results show that, after adding
users’ visual observation sequence features of CPs to product-modeling-feature data, the
neural network can better grasp product-modeling features, showing better accuracy and
efficiency. In addition, the results also verified the necessity of adding the visual sequence
to the feature processing of CPs.
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5. Conclusions

This paper presents a CP-modeling design method (CP-KEDL) based on the LSTM
neural network and KE. Compared with the traditional KE methods or neural networks,
CP-KEDL regards the user’s observation behaviors of CPs as a visual process, which can
be obtained through eye-movement experiments, so that CPs can be decomposed into
modeling-feature sets, including visual observation sequence data. The experiment results
show that adding the visual sequence to neural-network modeling makes the input features
more comprehensive and more consistent with the objective laws of user observation and
perception, so as to obtain a more comprehensive and accurate sample-modeling feature
coding. It can more effectively solve the problem of the mapping model of CP perceptual
images and modeling features and generate the optimal recommended modeling feature



Appl. Sci. 2023, 13, 710 21 of 24

set. With this method, designers can be assisted in meeting users’ perceptual image needs
more accurately and conduct the modeling design of CPs more quickly and effectively. The
main contributions of the article are as follows:

(1) We argue that users’ visual sequence will affect their perception and evaluation when
observing CPs, and the user’s observation sequence should be taken into account
when establishing the mapping relationship model between the product modeling
features and the perceptual images.

(2) The neural network of LSTM was applied to construct a perceptual evaluation model
(KE–LSTM) in order to effectively handle the timing data. It could simulate the
visual sequence of CPs observed by human eyes, effectively process the modeling
information of CPs with temporal characteristics, and improve the robustness of the
model. Moreover, KE–LSTM has a higher model accuracy than DNN and CNN.

(3) To deconstruct the modeling features of CPs, we propose an improved MA method
based on the temporal-association function. It encodes the representative samples
into a modeling feature set including visual sequence data and facilitate the input of
the LSTM neural network to mine its timing information and improve the accuracy of
the model.

The modeling design of CPs is always restricted by its functions, so the establish-
ment of perceptual evaluation models can only be applied to a variable range of modeling
features. Future research can be the construction of a mapping model between function
modeling and perceptual evaluation based on the actual needs of customers. In the mean-
while, as the accuracy of machine learning always depends on the size of samples to be
evaluated, the participants have to spend great energy and time scanning and evaluating
the large number of samples, which limit inviting more experts to participate in the evalu-
ation experiment. The authors guess that the evaluation data may be more accurate and
appropriate if we could invite more experts as our participants. This will be our future
direction and motivation.
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