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Abstract: The state of roads may sometimes be difficult to perceive due to intense climate conditions,
absence of road signs, or simply human inattention, which may be harmful to both vehicles and
drivers. The automatic monitoring of the road states represents a promising solution to warn drivers
about the status of a road in order to protect them from injuries or accidents. In this paper, we present
a novel application for data collection regarding road states. Our application entitled “Road Scanner”
allows onboard users to tag four types of segments in roads: smooth, bumps, potholes, and others.
For each tagged segment the application records multimodal data using the embedded sensors of
a smartphone. The collected data concerns mainly vehicle accelerations, angular rotations, and
geographical positions recorded by the accelerometer, the gyroscope, and the GPS sensor, respectively,
of a user phone. Moreover, a medium-size dataset was built and machine learning models were
applied to detect the right label for the road segment. Overall, the results were very promising since
the SVM classifier (Support Vector Machines) has recorded an accuracy rate of 88.05%.

Keywords: smartphone sensors; road scanning; data collection; in situ labeling; machine learning

1. Introduction

A road is a vital part of people’s daily living. Sadly, in many situations, drivers
can fail to detect road conditions due to serious circumstances or lack of attention. In
many countries around the world, roads may suffer from low maintenance due to high
costs and budget cuts. The automatic scanning of a road state may inform users with
relevant information on road quality and enhance their driving experience. It represents
an innovative solution that helps users to smartly plan their routes and improve safety
and comfort. Efficient road scanning will help to ensure efficient road monitoring and
decrease road accidents and damages. Road scanning may also be used by governments to
supervise road states and optimize their maintenance operations. For these reasons, road
state scanning has grown in popularity in recent years and there is an increasing awareness
of its multiple technical challenges and issues.

Road surface monitoring approaches involve the deployment of advanced hardware
devices, such as ultrasonic and costly data acquisition systems [1]. Thanks to widespread
smartphone applications and wearable devices [2,3], this task can be simply effectuated
by public end-users, making the task more collaborative and more accurate. Moreover,
smartphones are equipped nowadays with several low-cost sensors, such as gyroscopes,
accelerometers, and GPS sensors, allowing for the automatic detection of a road surface
state using machine learning algorithms [4].

The majority of the recent research published during the last few years has focused on
manual methods or threshold-based heuristics. In this context, the following arguments can
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be used to justify the use of machine learning techniques. First, machine learning can aid in
the efficient and effective handling of vast amounts of data. Furthermore, when making
predictions or classifying data, machine learning algorithms can achieve significantly higher
accuracies than humans. Finally, machine learning can aid in the discovery of patterns and
correlations in data that might otherwise go undetected.

Since there is an absence of a road surface scanning feature from well-known ap-
plications, such as “google maps” or “here we go”, our motivation in this research is to
provide—as a first step—a novel smartphone application called “Road Scanner”. This route
application allows onboard users to identify four types of road segments: smooth, bumps,
potholes, and others. For each tagged segment, the application records multimodal data
using the built-in smartphone sensors namely the accelerometer, gyroscope, and GPS. To
test the developed application, a dataset was collected and merged with another online
dataset to serve as a benchmark for classification approaches. Indeed, several machine
learning models were applied to map the collected sensor data to the right route state.
The proposed application represents a great tool for researchers to gather rich data on the
ground and develop machine learning algorithms.

Our technique in this paper has numerous advantages. In fact, the produced program
was built on cross-platform technology, making it compatible with all devices (Android and
iOS). Furthermore, the application’s architecture enables efficient handling of streaming
data and online error management. Furthermore, the chosen architecture considers the
application’s collaborative aspect, as well as online scanning, and user alerting. Aside from
that, the built machine learning models are fine-tuned and examined on top of the acquired
data to achieve the highest classification performance.

Although the current app version is specially designed for researchers, it will soon be
upgraded for general use to make end-users able to exchange valuable tags and information.
In addition, the next version will be improved by online-deployed machine learning models
to ensure real-time alerts about several road surface conditions. Those conditions will be
further integrated when optimizing route plans and trips.

The rest of this paper is structured as follows: Section 2 describes the related work in
literature. Section 3 exposes our methodology for the application development. Application
architecture is covered in Section 4. Section 4 also details how to use the application and the
possible scenarios. The collected data, machine learning models, and evaluation metrics are
described in Section 5. The results of the experiments are presented and discussed in Section 6.
The paper is concluded in Section 7, which also offers ideas for potential future extensions.

2. Related Work

In many countries across the world, authorities in charge of maintaining roads sur-
face primarily rely on statistical analyses of the acquired data, visual field inspections,
or vehicles outfitted with specialized measurement equipment to keep an eye on roads
condition [5,6]. These monitoring techniques are labor-intensive, ineffectual, and time-
consuming. Furthermore, they usually lack adequate data coverage to provide a complete
overview of a road surface status, and they are susceptible to human errors in many situations.

Smartphone-based sensing has been a significant addition to environmental monitor-
ing since the emergence of microelectromechanical systems (MEMS) and other types of
sensors that are now equipping recent smartphones [7]. In this direction, several research
initiatives were conducted to gather data from smartphone sensors installed on moving
vehicles and to analyze roadway surface issues [8–10]. Next, we give a brief overview of
some recent work dealing with the use of smartphone sensors for road quality estimation.

Based on crowdsourcing, the authors of [11] presented a new technique to identify
road surface irregularities, such as bumps, cracks, and holes using smartphone sensors.
Other similar works based on crowdsourcing were presented in [12–15]. The idea behind
crowdsourcing is to collect data from a number of drivers simultaneously and transmit
them to a centralized server for further processing and deducing useful insights about
the monitored roads. In [12], the authors presented a mobile application called “Asfault”,
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which was used for monitoring the state of asphalt pavements. In [13], a system called
“smart-patrolling” was proposed to analyze the quality of road pavements. The authors
of [14] presented a mobile application called “SmartRoadSense” that relies on GPS and
accelerometer data of a driver’s smartphone for detecting road irregularities and problems.

In more recent research, the authors of [16] reported on the use of the so-called “RCT”
mobile application, which allows for identifying the position, speed, and linear acceleration
of each vehicle. In [17], an Android application was used to collect accelerometer data at a
low rate from a driver’s mobile phone for estimating road quality in some streets in Ireland.
In the same direction, the authors of [18] presented the mobile application “Roadsense”,
which uses a frequency of 50Hz for collecting large volumes of data about road surfaces.
However, in this case, the smartphone’s battery was depleted due to the high sampling
frequency. Works presented in [19] and [20] used the integrated smartphone accelerometer
sensor for analyzing signals of vertical vibration of the supervised vehicles. In a different
application, the authors of [21] concentrate on evaluating abnormalities in pedestrian and
bicycle road segments. The proposed technique consists of estimating pavement states
using data extracted from the MEMS modules of a bicycle-mounted mobile phone. A
summary of the previous related works is provided in Table 1.

Table 1. Summary of related works.

Ref Year Techniques Tool Advantages Limitations

[11] 2021

• Threshold-based and Machine
Learning approaches

• MATLAB
• ArcGIS

NA
• Self-updating capabilities
• Hybrid method

• Classifying cracks, bumps, and
potholes not in the scope of
this study

[12] 2018
• Machine learning algorithms
• Web Technology Asfault

• Real-Time Solution
• Good results
• Publicly available

• Limited to Android
• Only accelerometer sensors used

[13] 2017
• Fuzzy system
• Huffman coding

Smart
Patrolling

• Crowdsourcing adopted
• Open source database

• Limited to Android
• Only accelerometer sensors used

[14] 2017
• LPC analysis
• Levinson-Durbin recursion
• Mathematical Models

Smart
RoadSense

• Calculations partially made
on smartphones

• Crowdsourcing adopted

• Tool and experimental
framework borrowed from
existing works

[16] 2021
• S-mile platform
• Multi-class classifiers

Road
Condition

Tool

• Crowdsourcing adopted
• Maturity of the tool used

• Tool and experimental
framework borrowed from
existing works

• Limited to Android

[17] 2021
• Power spectral density analysis
• K-means unsupervised

machine learning algorithm
NA

• Lower sampling frequency
• Lower rate of

battery consumption

• Limited to Android
• Driving at a constant speed
• Fixing the smartphone at

one position

[18] 2017

• C4.5 Decision tree
• Weka data mining tool
• Android API
• SQLite database

RoadSense
• Use of both gyroscope

accelerometer sensors
• Good results obtained

• Limited to Android

[19] 2017

• Gaussian model based mining
algorithm

• X-Z ratio filtering
• Severity estimation algorithm

NA
• Abnormal event detection
• Estimation of severity of

abnormal events

• Only accelerometer sensors used
• No details about the mobile

application provided
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Table 1. Cont.

Ref Year Techniques Tool Advantages Limitations

[20] 2018

• Pothole Lab
• STDEV(Z) Heuristic
• Support Vector Machine
• Standard deviation analysis

NA

• A web platform that can be
freely used to create virtual
roads

• Comparison of many heuristics
• Comparison between real and

virtual data

• Limited to Android
• Only accelerometer sensors used
• Only SVM used

[21] 2018
• High-pass filters
• AutoNavi map SDK
• IRI metric

RoadSR
• Bicycle-mounted smartphones
• Useful for roads not accessible

by professional instruments

• Limited to iOS
• Restricted bike-riding styles

After listing and examining all previous applications, our approach in this work
presents many advantages. In fact, the developed application was based on a cross-
platform technology (React Native: https://reactnative.dev, accessed on 14 November 2022)
enabling it to work on all devices (Android and iOS). The architecture of the application
allows for dealing efficiently with streaming data and online error management. In addition,
the adopted architecture takes into account the collaborative aspect of the application as
well as the online scanning and user alerting.

Furthermore, the developed machine learning models—on top of the collected data—were
finely tuned and investigated to obtain the best classification performance. In the next section,
we will present our methodology for developing the proposed “Road Scanner” application.

3. Methodology

Our methodology in this work relies mainly on a user’s smartphone. Modern mobile
phones host a variety of sensors capable of capturing rich data and inferring significant
amounts of information [22]. This approach is effortless, and simple to develop, without
any pre-deployed infrastructure dependencies or heavy investment in specific sensors
and hardware.

Our research plan will be carried over three steps. First is the stage of the phone app
implementation. It consists of developing a smartphone application for data recording.
The application will be valid for both iOS and Android phones. The application will allow
users to label manually and accurately road segments corresponding to four surface states,
namely smooth, bump, potholes, and others. For each labeled segment, the application
must record multimodal data describing vehicle accelerations (on three-axis as shown
in Figure 1), angular rotations, and geographical positions using the accelerometer, the
gyroscope, and the GPS sensors, respectively, of a user’s smartphone. The application will
be available for public download shortly. This application will constitute a great tool for
researchers to collect in situ labeled data and develop a related machine learning approach.

Using our developed application, the second step of our research is to collect reliable
data that will be available and shared on-demand. To automate the road surface inspection,
we will explore the best state-of-the-art machine learning models. Validated models on
large data will be deployed for real-time scanning and online user alerting. That’s the
third step. In this step, a new version of the application will be developed to make it
more collaborative. Users will be able to see other user tags and share their labels. This
version will be further empowered by trained models deployed for online detection. Please
note that this paper covers only the first and the second steps of our research plan. The
architecture of the proposed application is described in detail in the next section.

https://reactnative.dev
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4. Application Architecture and Usage
4.1. Architecture Overview

In this section, we give an overview of the general architecture of the proposed ap-
plication. The application is called “Road Scanner”. The overall solution architecture is
described in Figure 2. Our application is compatible with both iOS and Android smart-
phones since it is based on cross-platform technology, which is React Native. React Native is
a JavaScript-based framework developed by Facebook for cross-platform app development.
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from collection to map visualization.

To interact correctly with our proposed solution, two interfaces are needed. First the
smartphone application and second a dedicated website to visualize and export data. The
process of data storage is as follows: once the data are recorded from the mobile sensors (i.e.,
accelerometer, gyroscope, and GPS), it is initially stored locally on the smartphone. This
offline process is useful, especially in the case of a loss of connectivity with the application’s
server. Afterward, the application will be continuously synchronizing records with the
server to keep the consistency of the data and to ignore any data replication.

Indeed, once the connection is established, the stored data are sent to a remote cloud
server called “Road Scanner Server” via specified API calls. All the received data are
then saved to a PostgreSQL database. At this stage of the development, to visualize the
labeled segment in a map viewer and to export the data, the user needs to access these
functionalities via the application’s dedicated website.

4.2. Application Usage

After correctly installing the mobile app, data collection can be launched. The driver
has to choose between four labels as shown in Figure 3, which are “Potholed”, “Bumps”,
“Smooth”, and “Other”. Note that we can easily switch from one state to another on the
same screen to give the experimenter the flexibility of use and recording. In the last stage,
the data stored from the mobile phone can be visualized (as shown in Figure 4) and then
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displayed (as shown in Figure 5) on a map with different colors for easy reading and
tracking. This display option is available via the website interface (c.f. Figures 4 and 5).
The display function is dotted with a playback feature allowing the researcher to navigate
between records on the same road with play, pause, and stop options. Moreover, to analyze
or model the stored data, we have provided researchers with the possibility of exporting
records either in JSON format or CSV format. The export function is also available via
the website interface (c.f. Figure 4). In the next section, we will present the dataset, the
classification methods, and the implementation part.
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5. Experiments
5.1. Experiments Presentation

In this section, we introduce the experiment part of our work. As previously men-
tioned, we aim to train machine learning models to be able to detect road states. To this
end, we have built a new dataset containing two types of road status: smooth and potholed.
For each labeled segment, multimodal sensorial data were recorded from the accelerometer
and the gyroscope of a driver’s smartphone. As shown in Table 2 and Figure 6, a total
number of seven features were recorded, namely the 3D accelerometer data (accx, accy, and
accz), the 3D angular rotations from the gyroscope (gyrox, gyroy, and gyroz), and the speed
of the vehicle. Thus, we aim through machine learning models to map the data from the
smartphone sensors to the correct label (smooth or potholed). Technically this problem can
be solved by a binary classification approach.

Table 2. A sample of the data used in the experiments.

Speed acc_x acc_y acc_z gyro_x gyro_y gyro_z Status

13.57 −0.021148682 −0.97845 0.22049 −0.02143 −0.07219 0.047946 smooth

13.57 −0.094284058 −1.04622 0.134445 −0.04775 −0.07095 0.02635 smooth

. . . . . . . . . . . . . . . . . . . . . . . .

8.11 −0.512405396 −0.91891 0.08551 0.496783 0.543487 −0.20743 potholed

8.11 0.346130371 −0.97647 0.704208 0.172343 0.016928 −0.21046 potholed
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To train our classifiers, a dataset was built using our collected data from our developed
application in addition to a richer and larger dataset from the Kaggle website (https:
//www.kaggle.com/datasets/dextergoes/pothole-sensor-data, accessed on 14 November
2022). Merging the two datasets was a better approach since it makes the trained model
more robust and less sensitive to a single smartphone or a single vehicle. The merged
dataset contained nearly 1540 samples (1080 for the smooth label, 460 for the potholed
label). Moreover, on average, each road sample corresponds approximately to one second
of recording, which represents the time granularity of our road segments. Based on this
dataset, several classifiers were deeply investigated to obtain the best hyperparameters that
give the optimal classification results. From all the tested classifiers, seven classifiers were
selected due to their efficient performance in our detection problem. A brief description of
these classifiers is given in the next paragraph.

5.2. Classification Models
5.2.1. Artificial Neural Networks

Artificial Neural Networks (ANNs) [23] are computer systems that take their cue from
the brain’s biological neural networks. Artificial neurons are the building blocks of an ANN.

https://www.kaggle.com/datasets/dextergoes/pothole-sensor-data
https://www.kaggle.com/datasets/dextergoes/pothole-sensor-data
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Similar to brain synapses, these ties carry information between neurons via what we call
edges. The signal strength at an edge connection is affected by the weight. Typically, the
importance of edges weight shifts as learning progresses. Neurons frequently group into
layers. Different layers may modify their inputs in different ways. Signals move through
the layers from the input layer (the first layer) to the output layer (the last layer). The
ANNs’ main advantages are as follows: (1) it is a self-adaptive data-driven approach, and
(2) it is a non-linear model, making it adaptable in modeling real-world problems [24]. The
general structure of an ANN is presented in Figure 7.
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5.2.2. Support Vector Machines

The SVM (Support Vector Machine) [26] is a supervised ML technique that is largely
employed for classification. This approach is founded on two fundamental ideas. The
first premise is the maximization of the hyperplane’s margin. The objective is to iden-
tify the best hyperplane that divides classes by the largest margin. In the case where
data are separable in a linear manner, this is a typical quadratic-type optimization issue.
Nonetheless, data are frequently linearly inseparable. The kernel function that represents
the second essential concept provides the answer by translating the original data space
into a higher-dimensional space, where it is probable to obtain a linear separator. The SVM
concept handles nonlinear classification problems effectively in this manner [27,28]. An
illustration of the SVM Algorithm is shown in Figure 8.
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5.2.3. Random Forests

As an ensemble learning technique, random forests (also known as random decision
forests) build many decision trees and combine their classification outputs. The output of
a random forest is the class chosen by the majority of trees. Among the RF benefits, we
can cite: (1) it works well with all types of data, (2) it prevents overfitting issues when
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compared to decision trees models, (3) it is resistant to noise, (4) it ranks the importance of
each variable, and (5) it is a good choice for data imputation and cluster analysis [29–31].
The common structure of a Decision Tree is presented in Figure 9 and an illustration of the
RF Algorithm is shown in Figure 10.
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5.2.4. Extra Trees

Compared to the random forests approach, the major goal of the Extra-Tree approach
(an acronym for “extremely randomized trees”) is to further randomize tree building. In-
stead of trying to identify an ideal cut-point, similar to random forests, this method chooses
a cut-point randomly [32]. From a statistical perspective, the cut-point randomization
frequently has a beneficial effect on reducing variance. Unlike Random Forest, Extra Trees
do not bootstrap observations and do not search for optimum splits [33]. Therefore, several
high-dimensional and complicated issues were solved using this approach [34].

5.2.5. Bagging

The ML ensemble meta-algorithm called bootstrap aggregating, often known as bag-
ging (from bootstrap aggregating), aims to enhance the stability and accuracy of ML
classification algorithms. Additionally, it lowers variance and aids in preventing overfit-
ting [35]. The fundamental concept is to train a variety of models on various randomly
chosen subsets of the training data, then combine the predictions of these models using a
voting system. It allows to trade off some accuracy for improved resilience, which makes it
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an attractive solution for many specific problems. An illustration of the Bagging Technique
is given in Figure 11.
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5.2.6. Gradient Boosting

Gradient Boosting is an ML technique that provides a prediction tool in the form of
a collection of relatively weak prediction models, most commonly decision trees [36]. It
relies mainly on the boosting technique. The boosting technique begins by fitting the data
to a starting model. Then, a second model is constructed that concentrates on properly
forecasting instances in which the first model performs badly. It is expected that the
combination of these two models will be superior to each model alone. Then, this procedure
is repeated several times and every subsequent model aims to address the deficiencies of
the boosted ensemble of all preceding models.

5.2.7. Stacking

The process of training a machine learning algorithm that takes as inputs the outputs
of several other learning approaches is called Stacking. The combiner algorithm is trained
to create a final prediction using all of the predictions of the other algorithms as extra inputs
once all of the other algorithms have been trained using the available data. Although in
reality a logistic regression model is frequently employed as the combiner, stacking can
potentially represent any other efficient model [37,38].

5.3. Evaluation Metrics

In this work, the results of our experiments through the seven selected classifiers
(ANN, SVM, Random Forest, Extra Trees, Bagging, Gradient Boosting, and Stacking) are
concretely evaluated using five evaluation metrics namely: accuracy, precision rate, recall
rate, F-score, and the AUC metric (Area Under Curve). To compute these metrics, we assign
the “Positive value” to the smooth class and the “Negative value” to the potholed class.
Therefore, the four elements of the confusion matrix are:

• True-Positive (TP) represents the number of instances correctly assigned to the
smooth class;

• True-Negative (TN) represents the number of instances correctly assigned to the
potholed class;

• False-Positive (FP) represents the number of instances wrongly assigned to the
smooth class;

• False-Negative (FN) represents the number of instances wrongly assigned to the
potholed class.

The definitions of the evaluation metrics are as follows.
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5.3.1. Accuracy

The accuracy metric represents the ratio of the samples that were correctly assigned.
Thus, the accuracy of the model is the ratio of all the correct classifier instances over all the
classifications. Hence, the higher the accuracy rate, the better the performance of the model.
It can be defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

5.3.2. Precision

The precision metric represents the ratio of well-classified samples among all those
retrieved for a specific class. For instance, the precision for the smooth class is the ratio of
the correctly classified smooth instances (TP) from all the detected smooth instances (TP +
FP). It can be defined as follows:

Precision =
TP

TP + FP
(2)

5.3.3. Recall

The recall metric represents the ratio of well-classified samples among all the existing
samples for a specific class. For instance, the recall for the smooth class is the ratio of
correctly classified smooth instances (TP) from all the existing smooth instances (TP + FN).
It can be defined as follows:

Recall =
TP

TP + FN
(3)

5.3.4. F-Score

Since precision and recall are inversely proportional, the F-score (a.k.a F-measure) tries
to combine them by computing the harmonic mean of these two metrics. Mathematically, it
is defined as follows:

F − score =
2TP

2TP + FP + FN
= 2 × precision × recall

precision + recall
(4)

5.3.5. AUC

The Receiver Operating Characteristic (ROC) curve represents a popular evaluation
approach for assessing classification efficiency. Indeed, it represents a 2D graph that plots
the True Positive ratio on the Y axis and the False Positive ratio on the X axis. Moreover, the
greater the Area Under this ROC Curve (also known as the AUC metric), the greater the
classification accuracy of the classifier. Therefore, the AUC values range between 0 and 1.
On the one hand, a classifier with all false estimations has an AUC value equal to 0, and on
the other hand, a classifier with all accurate estimations presents an AUC value equal to 1.

5.4. Implementation

Our experiments were practically computed on a computer dotted with an Intel Core
i7-8550 Processor and 16-GB RAM capacity. To limit overfitting issues, a 4-cross validation
approach was adopted. In each iteration, 1155 samples were used for training and 385
for testing. Concretely, all models and evaluation metrics were implemented using the
python language and well-established data science libraries, such as Pandas, NumPy, and
Scikit-learn. For all the models, several hyperparameters were tested and evaluated.

Our empirical tests in finding optimal performances resulted in the following config-
urations: For ANNs, the best network topology was characterized by two hidden layers
(containing each almost 15 nodes), a “relu” activation function, an “adam” solver and an
iteration number of 200 for the training process. For The SVM, an “rbf” kernel is adopted
and the value of 30 was found to be the best tradeoff for the regularization parameter C.
For the Random Forests and the Extra Trees classifiers, the “gini” criterion is adopted and a
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total number of 100 estimators was empirically validated. Similarly, 100 estimators were
used for the Bagging, and the Gradient Boosting classifiers. Particularly for the Bagging,
the SVM classifier was found to be the best choice as a base estimator among several other
methods. For the Gradient Boosting classifier, the “friedman_mse” criterion was selected as
a measure for the split quality, and for the stacking approach, two classifiers were chosen
as the best base estimators, namely Decision Trees and SVM. In this latter approach, the
final combining estimator was a Logistic Regression classifier. The results of these finely
tuned models are presented in the next section.

6. Results and Discussion

The presented results in the following tables (Tables 3–5) correspond to the average
metrics (accuracy, F-score, and AUC) followed by the standard deviation, all computed from
the four iterations of the cross-validation process. These table results are also summarized
in Figure 12.

Taking the accuracy results (Table 3), the best two classifiers were SVM—with an
accuracy rate of 88.05%—and Random Forest with an accuracy rate of 87.79%. Similar
results were observed for the F-score metric (Table 4). Their respective rates were 87.87%
and 87.43%. For the AUC metric (Table 5), remarkable results were given by the Extra Trees
classifier (AUC = 94.94%) and the Random Forest classifier (AUC = 93.89%).

In addition, low standard deviation rates were observed for all metrics and all classi-
fiers. For instance, the Random Forests classifier has outputted a standard deviation rate of
1.31, 1.30, and 0.22 for the three measured metrics (Accuracy, F-score, and AUC). Overall,
the high average rates and the low standard deviation rates (among all metrics) confirm
the good performance of the chosen classifiers.

Moreover, execution times for all the models were also computed. Precisely both
training and testing times were calculated as shown in Table 6. For the training part, we
notice higher times for ANNs and the non-tree-based ensemble methods (e.g., bagging). For
ANNs, this can be explained by the high number of epochs that were needed in the training
process. Additionally, because ensemble methods integrate a large number of estimators
(e.g., 100 estimators for bagging), the learning step may take a longer time, especially
for the non-tree-based models. For the testing part, all models (except bagging) present
great performances, which is suitable for the deployment of these models in real-time
applications.

Furthermore, for a better understanding of the results, we have also computed the
confusion matrix of the SVM classifier, which has shown the best performance in terms of
Accuracy and F-score. The confusion matrix is shown in Table 7.

On the one hand, the model has succeeded to detect 1007 instances (TP) among the
1080 instances of the smooth class. On the other hand, 349 instances (TN) were correctly
detected among the 460 instances of the potholed class. From these confusion matrix
statistics, per-class metrics were computed as shown in Table 8. These per-class metrics are
mainly Precision, Recall, and F-score.

Taking the smooth class, the detection rates are significantly higher than those of the
potholed class. For instance, the precision rate of the smooth class is 90.07% versus 82.70%
for the potholed class. The difference is much larger for the Recall metric as the smooth
class recorded 93.24% versus only 75.87% for the potholed class.

Indeed, the classifiers seem to be accurate and precise when detecting a certain class
since both precision rates are relatively high. However, the classifiers seem to have more
difficulties in recalling the totality of the potholed-class instances. This confusion may be
caused by the speed dependency problem [39]. Actually, when a vehicle crosses a pothole
at various speeds, the captured signal by the accelerometer will have a variable amplitude
which may confuse the trained classifiers. This issue may be overcome in the future by
increasing the sampling rate when recording the potholed segments. Higher sample rates
deliver more data per second, which enhances recognition rates.



Appl. Sci. 2023, 13, 683 13 of 17

Another limitation of our work and which represents a challenge, is the accuracy and
precision of the smartphone sensors themselves. It differs depending on the brand, the
specifications, and the quality of the smartphone; therefore, appropriate preprocessing
operations should be applied to filter the possible noises related to the sensing process.

In addition to this, a car’s suspension quality can also affect the sensing accuracy and
precision.

Moreover, although we prepared our smartphone application to record four types of
segments, we could not collect enough data for the ‘bumps’ and ‘other’ classes. Therefore,
we had to omit the aforementioned classes due to the concern that their inclusion might
compromise the validity of the machine learning-based models.
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Table 3. Accuracy results for all classifiers.

Classifier Accuracy (Standard Deviation)

ANN 86.88 (±1.14)
SVM 88.05 (±1.81)

Random Forest 87.79 (±1.31)
Extra Trees 87.34 (±2.07)

Bagging 86.75 (±0.80)
Gradient Boosting 87.14 (±0.54)

Stacking 86.95 (±0.43)

Table 4. F-score results for all classifiers.

Classifier F-Score (Standard Deviation)

ANN 86.74 (±1.13)
SVM 87.87 (±1.97)

Random Forest 87.43 (±1.30)
Extra Trees 86.65 (±2.37)

Bagging 86.29 (±0.99)
Gradient Boosting 86.69 (±0.49)

Stacking 86.25 (±0.53)
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Table 5. AUC results for all classifiers.

Classifier AUC (Standard Deviation)

ANN 91.44 (±1.93)
SVM 91.83 (±1.60)

Random Forest 93.89 (±0.22)
Extra Trees 94.94 (±1.21)

Bagging 92.13 (±1.21)
Gradient Boosting 92.43 (±0.78)

Stacking 93.12 (±0.49)

Table 6. Execution times (training and testing) for all classifiers.

Classifier Training Time Testing Time

ANN 6.024 0.002
SVM 1.066 0.073

Random Forest 1.737 0.055
Extra Trees 0.7 0.059

Bagging 46.805 5.776
Gradient Boosting 3.796 0.004

Stacking 5.13 0.101

Table 7. Confusion matrix of the SVM classifier.

Accuracy = 88.05
Predicted

Smooth Potholed

Actual
Smooth 1007 73

Potholed 111 349

Table 8. Results per class for the SVM classifier.

Class Precision Recall F-Score

Smooth 90.07 93.24 91.63
Potholed 82.70 75.87 79.14

7. Conclusions

In this study, we described the “Road Scanner” route application, which enables
onboard users to distinguish between four different types of road segments: smooth,
bumpy, potholed, and others. The application uses the accelerometer, gyroscope, and GPS
integrated into smartphones to record multimodal data for each tagged segment. A dataset
was gathered and combined with other online datasets to serve as a comparison for the
classification methods in order to evaluate the application. In fact, a number of machine
learning models were used to map the sensors-data that were gathered to the appropriate
route state. Python and well-known data science tools were used to implement all models
and evaluation criteria. SVM and Random Forest were the top two classifiers. The Extra
Trees classifier and the Random Forest classifier produced excellent outcomes for the AUC
metric. Additionally, all measures and all classifiers showed low standard deviation rates.
Overall, the high average rates and the low standard deviation rates (across all metrics)
attest to the chosen classifiers strong performance.

Future work will involve increasing the sampling rate when recording the potholed
segments in order to address the speed dependency issue that was previously mentioned.
Additionally, the future edition will be enhanced by machine learning models that are
deployed online to provide real-time notifications regarding various road surface condi-
tions, which represents a challenge because of the problem of sensor qualities and precision
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that varies depending on a smartphones brand and specifications; a challenge that we are
willing to face by developing appropriate noise filters for use with different smartphones
sensor specifications. Furthermore, we are willing to include the actual excluded classes
‘bumps’ and ‘other’ by focusing on road areas that will permit us to record sufficient data.
We will also attempt to use formal verification techniques to validate the different steps of
the proposed approach [40]. The security challenges related to the use of our application
need to be considered as well [41,42]. Our application may be also extended in order to
cover other aspects and needs in our modern smart societies, cities, and homes [43,44].

Author Contributions: A.M. conceived the presented approach, worked on computations, and
participated in the redaction of many parts of the paper. M.K. participated in the development of
the approach and conducted the literature review. M.A. worked on the results section as well as
the discussion and interpretation. S.M. worked on the theoretical part of the experiment. R.B.H.S.
participated in the application development for data collection. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: The researchers would like to thank the Deanship of Scientific Research, Qassim
University for funding the publication of this project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumar, T.; Acharya, D.; Lohani, D. Modeling IoT Enabled Classification System for Road Surface Monitoring. In Proceedings of

the 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, 4–8 January
2022; pp. 836–841.

2. Mihoub, A.; Lefebvre, G. Social Intelligence Modeling Using Wearable Devices. In Proceedings of the 22nd International
Conference on Intelligent User Interfaces, Limassol, Cyprus, 13–16 March 20217; Association for Computing Machinery: New
York, NY, USA, 2017; pp. 331–341. [CrossRef]

3. Mihoub, A.; Lefebvre, G. Wearables and Social Signal Processing for Smarter Public Presentations. ACM Trans. Interact. Intell.
Syst. 2019, 9, 1–24. [CrossRef]

4. Chugh, G.; Bansal, D.; Sofat, S. Road Condition Detection Using Smartphone Sensors: A Survey. J. Electron. Electr. Eng. 2014, 7,
595–602.

5. Siriborvornratanakul, T. An Automatic Road Distress Visual Inspection System Using an Onboard In-Car Camera. Adv. Multimed.
2018, 2018, e2561953. [CrossRef]

6. Shaghlil, N.; Khalafallah, A. Automating Highway Infrastructure Maintenance Using Unmanned Aerial Vehicles. In Construction
Research Congress 2018; ASCE: Reston, VA, USA, 2018; pp. 486–495. [CrossRef]

7. Krichen, M. Anomalies Detection Through Smartphone Sensors: A Review. IEEE Sens. J. 2021, 21, 7207–7217. [CrossRef]
8. Sattar, S.; Li, S.; Chapman, M. Road Surface Monitoring Using Smartphone Sensors: A Review. Sensors 2018, 18, 3845. [CrossRef]
9. Li, X.; Goldberg, D.W. Toward a mobile crowdsensing system for road surface assessment. Comput. Environ. Urban Syst. 2018, 69,

51–62. [CrossRef]
10. Aljaafreh, A.; Alawasa, K.; Aljaafreh, S.; Abadleh, A. Fuzzy Inference System for Speed Bumps Detection Using Smart Phone

Accelerometer Sensor. J. Telecommun. Electron. Comput. Eng. 2017, 9, 133–136.
11. Sattar, S.; Li, S.; Chapman, M. Developing a near real-time road surface anomaly detection approach for road surface monitoring.

Measurement 2021, 185, 109990. [CrossRef]
12. Souza, V.M.A.; Giusti, R.; Batista, A.J.L. Asfault: A low-cost system to evaluate pavement conditions in real-time using smart-

phones and machine learning. Pervasive Mob. Comput. 2018, 51, 121–137. [CrossRef]
13. Kumar, R.; Mukherjee, A.; Singh, V.P. Community Sensor Network for Monitoring Road Roughness Using Smartphones.

J. Comput. Civ. Eng. 2017, 31, 04016059. [CrossRef]
14. Alessandroni, G.; Carini, A.; Lattanzi, E.; Freschi, V.; Bogliolo, A. A Study on the Influence of Speed on Road Roughness Sensing:

The SmartRoadSense Case. Sensors 2017, 17, 305. [CrossRef]

http://doi.org/10.1145/3025171.3025195
http://doi.org/10.1145/3234507
http://doi.org/10.1155/2018/2561953
http://doi.org/10.1061/9780784481295.049
http://doi.org/10.1109/JSEN.2021.3051931
http://doi.org/10.3390/s18113845
http://doi.org/10.1016/j.compenvurbsys.2017.12.005
http://doi.org/10.1016/j.measurement.2021.109990
http://doi.org/10.1016/j.pmcj.2018.10.008
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000624
http://doi.org/10.3390/s17020305


Appl. Sci. 2023, 13, 683 16 of 17

15. Lima, L.C.; Amorim, V.J.P.; Pereira, I.M.; Ribeiro, F.N.; Oliveira, R.A.R. Using Crowdsourcing Techniques and Mobile Devices for
Asphaltic Pavement Quality Recognition. In Proceedings of the 2016 VI Brazilian Symposium on Computing Systems Engineering
(SBESC), Paraíba, Brazil, 1–4 November 2016; pp. 144–149.

16. Staniek, M. Road pavement condition diagnostics using smartphone-based data crowdsourcing in smart cities. J. Traffic Transp.
Eng. Engl. Ed. 2021, 8, 554–567. [CrossRef]

17. Dong, D.; Li, Z. Smartphone Sensing of Road Surface Condition and Defect Detection. Sensors 2021, 21, 5433. [CrossRef]
18. Allouch, A.; Koubaa, A.; Abbes, T.; Ammar, A. RoadSense: Smartphone Application to Estimate Road Conditions Using

Accelerometer and Gyroscope. IEEE Sens. J. 2017, 17, 4231–4238. [CrossRef]
19. Harikrishnan, P.M.; Gopi, V.P. Vehicle Vibration Signal Processing for Road Surface Monitoring. IEEE Sens. J. 2017, 17, 5192–5197.

[CrossRef]
20. Carlos, M.R.; Aragon, M.E.; Gonzalez, L.C.; Escalante, H.J.; Martinez, F. Evaluation of Detection Approaches for Road Anomalies

Based on Accelerometer Readings—Addressing Who’s Who. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3334–3343. [CrossRef]
21. Zang, K.; Shen, J.; Huang, H.; Wan, M.; Shi, J. Assessing and Mapping of Road Surface Roughness based on GPS and Accelerometer

Sensors on Bicycle-Mounted Smartphones. Sensors 2018, 18, 914. [CrossRef]
22. Chu, H.L.; Raman, V.; Shen, J.; Choudhury, R.; Kansal, A.; Bahl, V. In-Vehicle Driver Detection Using Mobile Phone Sensors. In

Proceedings of the ACM MobiSys, Washington, DC, USA, 28 June–1 July 2011; Volume 2.
23. Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.S.; Asari, V.K.

A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics 2019, 8, 292. [CrossRef]
24. Kukreja, H.; Bharath, N.; Siddesh, C.S.; Kuldeep, S. An introduction to artificial neural network. Int. J. Adv. Res. Innov. Ideas Educ.

2016, 1, 27–30.
25. Zidi, S.; Mihoub, A.; Qaisar, S.M.; Krichen, M.; Abu Al-Haija, Q. Theft detection dataset for benchmarking and machine learning

based classification in a smart grid environment. J. King Saud Univ. Comput. Inf. Sci. 2022, in press. [CrossRef]
26. Awad, M.; Khanna, R. Support Vector Machines for Classification. In Efficient Learning Machines: Theories, Concepts, and Applications

for Engineers and System Designers; Awad, M., Khanna, R., Eds.; Apress: Berkeley, CA, USA, 2015; pp. 39–66.
27. Mihoub, A.; Snoun, H.; Krichen, M.; Salah, R.B.H.; Kahia, M. Predicting COVID-19 Spread Level Using Socio- Economic Indicators

and Machine Learning Techniques. In Proceedings of the 2020 First International Conference of Smart Systems and Emerging
Technologies (SMARTTECH), Riyadh, Saudi Arabia, 3–5 November 2020; pp. 128–133.

28. Qaisar, S.M.; Mihoub, A.; Krichen, M.; Nisar, H. Multirate Processing with Selective Subbands and Machine Learning for Efficient
Arrhythmia Classification. Sensors 2021, 21, 1511. [CrossRef] [PubMed]

29. Louppe, G. Understanding Random Forests: From Theory to Practice. arXiv 2014, arXiv:1407.7502.
30. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
31. Cutler, A.; Cutler, D.; Stevens, J.R. Random Forests. In Ensemble Machine Learning; Zhang, C., Ma, Y., Eds.; Springer: Boston, MA,

USA, 2012; Volume 45, pp. 157–176. [CrossRef]
32. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
33. Bhati, B.S.; Rai, C.S. Ensemble Based Approach for Intrusion Detection Using Extra Tree Classifier. In Intelligent Computing

in Engineering; Advances in Intelligent Systems and Computing; Solanki, V., Hoang, M., Lu, Z., Pattnaik, P., Eds.; Springer:
Singapore, 2020; Volume 1125, pp. 213–220.

34. Sharaff, A.; Gupta, H. Extra-Tree Classifier with Metaheuristics Approach for Email Classification. In Advances in Computer
Communication and Computational Sciences; Bhatia, S.K., Tiwari, S., Mishra, K.K., Trivedi, M.C., Eds.; Springer: Singapore, 2019;
Volume 924, pp. 189–197.

35. Ghojogh, B.; Crowley, M. The Theory Behind Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial. arXiv
2019, arXiv:1905.12787.

36. Hastie, T.; Tibshirani, R.; Friedman, J. Boosting and Additive Trees. In The Elements of Statistical Learning: Data Mining, Inference,
and Prediction; Hastie, T., Tibshirani, R., Friedman, J., Eds.; Springer: New York, NY, USA, 2009; pp. 337–387.

37. Wolpert, D.H.; Macready, W.G. An Efficient Method to Estimate Bagging’s Generalization Error. Mach. Learn. 1999, 35, 41–55.
[CrossRef]

38. Alexandropoulos, S.-A.N.; Aridas, C.K.; Kotsiantis, S.B.; Vrahatis, M.N. Stacking Strong Ensembles of Classifiers. In IFIP
International Conference on Artificial Intelligence Applications and Innovations; MacIntyre, J., Maglogiannis, I., Iliadis, L., Pimenidis, E.,
Eds.; Springer: Cham, Switzerland, 2019; Volume 559, pp. 545–556. [CrossRef]

39. Pandey, A.K.; Iqbal, R.; Maniak, T.; Karyotis, C.; Akuma, S.; Palade, V. Convolution neural networks for pothole detection of
critical road infrastructure. Comput. Electr. Eng. 2022, 99, 107725. [CrossRef]

40. Krichen, M.; Mihoub, A.; Alzahrani, M.Y.; Adoni, W.Y.H.; Nahhal, T. Are Formal Methods Applicable to Machine Learning and
Artificial Intelligence? In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging Technologies
(SMARTTECH), Riyadh, Saudi Arabia, 9–11 May 2022; pp. 48–53.

41. Ben Fredj, O.; Mihoub, A.; Krichen, M.; Cheikhrouhou, O.; Derhab, A. CyberSecurity Attack Prediction: A Deep Learning
Approach. In Proceedings of the 13th International Conference on Security of Information and Networks, Istanbul, Turkey, 4–6
January 2022; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–6.

42. Mihoub, A.; Ben Fredj, O.; Cheikhrouhou, O.; Derhab, A.; Krichen, M. Denial of service attack detection and mitigation for
internet of things using looking-back-enabled machine learning techniques. Comput. Electr. Eng. 2022, 98, 107716. [CrossRef]

http://doi.org/10.1016/j.jtte.2020.09.004
http://doi.org/10.3390/s21165433
http://doi.org/10.1109/JSEN.2017.2702739
http://doi.org/10.1109/JSEN.2017.2719865
http://doi.org/10.1109/TITS.2017.2773084
http://doi.org/10.3390/s18030914
http://doi.org/10.3390/electronics8030292
http://doi.org/10.1016/j.jksuci.2022.05.007
http://doi.org/10.3390/s21041511
http://www.ncbi.nlm.nih.gov/pubmed/33671583
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1007/978-1-4419-9326-7_5
http://doi.org/10.1007/s10994-006-6226-1
http://doi.org/10.1023/A:1007519102914
http://doi.org/10.1007/978-3-030-19823-7_46
http://doi.org/10.1016/j.compeleceng.2022.107725
http://doi.org/10.1016/j.compeleceng.2022.107716


Appl. Sci. 2023, 13, 683 17 of 17

43. Javed, A.R.; Shahzad, F.; ur Rehman, S.U.; Zikria, Y.B.; Razzak, I.; Jalil, Z.; Xu, G. Future smart cities: Requirements, emerging
technologies, applications, challenges, and future aspects. Cities 2022, 129, 103794. [CrossRef]

44. Mihoub, A. A Deep Learning-Based Framework for Human Activity Recognition in Smart Homes. Mob. Inf. Syst. 2021, 2021,
6961343. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.cities.2022.103794
http://doi.org/10.1155/2021/6961343

	Introduction 
	Related Work 
	Methodology 
	Application Architecture and Usage 
	Architecture Overview 
	Application Usage 

	Experiments 
	Experiments Presentation 
	Classification Models 
	Artificial Neural Networks 
	Support Vector Machines 
	Random Forests 
	Extra Trees 
	Bagging 
	Gradient Boosting 
	Stacking 

	Evaluation Metrics 
	Accuracy 
	Precision 
	Recall 
	F-Score 
	AUC 

	Implementation 

	Results and Discussion 
	Conclusions 
	References

