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Abstract: In order to improve the prediction accuracy of the machine learning model for concrete
fatigue life using small datasets, a group calculation and random weight dynamic time warping
barycentric averaging (GRW-DBA) data augmentation method is proposed. First, 27 sets of real
experimental data were augmented by 10 times, 20 times, 50 times, 100 times, 200 times, 500 times,
and 1000 times, respectively, using the GRW-DBA method, and the optimal factor was determined
by comparing the model’s training time and prediction accuracy under different augmentation
multiples. Then, a concrete fatigue life prediction model was established based on artificial neural
network (ANN), and the hyperparameters of the model were determined through experiments.
Finally, comparisons were made with data augmentation methods such as generative adversarial
network (GAN) and regression prediction models such as support vector machine (SVM), and the
generalization of the method was verified using another fatigue life dataset collected on the Internet.
The result shows that the GRW-DBA algorithm can significantly improve the prediction accuracy
of the ANN model when using small datasets (the R2 index increased by 20.1% compared with
the blank control, reaching 98.6%), and this accuracy improvement is also verified in different data
distributions. Finally, a graphical user interface is created based on the developed model to facilitate
application in engineering.

Keywords: artificial neural network; data augmentation; fatigue life; predictive model; small datasets

1. Introduction

Concrete is one of the most widely used materials in the construction industry, and
its fatigue damage seriously affects the safety of structures such as crane girders [1],
pavements [2], and bridges [3]. Accurate prediction of fatigue life is of great engineering
significance for the safety of concrete structures [4,5].

The fatigue life of concrete is affected by many complex factors, such as material,
load, and environment. These factors make it difficult to establish an accurate concrete
fatigue life prediction model. The classical methods for predicting the fatigue life of
concrete mainly include fracture mechanics, continuum damage mechanics, and energy
methods [6,7]. However, due to the influence of empirical parameters and specific materials,
these mathematical and physical modeling methods have low prediction accuracy and poor
generalizability. At present, the application of artificial intelligence has developed in vari-
ous research fields of machinery [8–10], medicine [11–14], and civil engineering [15]. Many
scholars use support vector machine (SVM) [16], decision trees [17], random forests [18],
and adaptive boosting (AdaBoost) [19] to predict the mechanical strength properties and
mix proportions of concrete and obtain higher prediction accuracy than traditional models.
However, there is still room for improvement in the prediction accuracy of these statistical
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probability-based models in complex and highly uncertain data. In recent years, artifi-
cial neural network (ANN) has been widely used due to its powerful nonlinear fitting
ability. ANN does not require functional assumptions and can learn complex nonlinear
relationships through a data-driven training process, which is advantageous in fatigue
life prediction research [20]. There are many studies on concrete fatigue life prediction
using ANN, and higher prediction accuracy has been achieved in experiments [21,22].
Therefore, ANN is considered a suitable method to solve the problem of concrete fatigue
life prediction with high uncertainty.

The high prediction accuracy of the ANN model largely depends on sufficient training
data. However, the fatigue life of concrete is usually determined by experiments, and
the available training data are limited. When the training set is too small, the model will
overfit the distribution trend of the training set and cannot grasp the development trend of
concrete fatigue life, resulting in an overfitting phenomenon [23]. Data augmentation is an
effective tool to increase the number of training sets, which increases the amount of data
used for model training by generating synthetic data to improve the prediction accuracy
of the model [24]. Classic sequential data augmentation methods include temporal trans-
formations, statistical generative models, and learning-based models [25]. Time-domain
transformation methods mainly include sampling, slicing, flipping, etc., but it is not easy to
confirm whether this method affects the sequence distribution [26]. Statistical generative
models such as mixed autoregressive (MAR) [27], use statistical models to simulate the
distribution of data, but they rely too much on the initial value. Once the initial value is
disturbed, the data will be generated according to different conditional distributions.

Learning-based models, such as generative adversarial networks (GANs) [28,29], evo-
lutionary search [30], etc., generate augmented data based on the exact fit of the generator
to the distribution of the source data and are currently widely used in the image domain.
Amyar et al. proposed a deep convolutional conditional generation adversarial network to
generate MIP positron emission tomography (PET) images, which solved the problem of
category imbalance and lack of data in medical imaging [29]. However, in augmentation
of series data, such learning-based models perform unstably in too small datasets [31,32].
Given this, Fawaz et al. proposed an average data augmentation method based on dy-
namic time warping (DTW) distance [33] called DTW barycentric averaging (DBA) and
obtained at least 60% of the two training sets in the UCR archive (containing 16 sets of
data and 57 sets of data, respectively). The improved prediction accuracy demonstrates
the effectiveness of the method for small datasets [34]. However, this method also has
problems, such as the amplification result being easily affected by abnormal sequences and
the amplification process being cumbersome.

Therefore, this paper proposes a group calculation and random weight dynamic time
warping barycentric averaging (GRW-DBA) data augmentation algorithm and ANN model
for concrete fatigue life prediction with small datasets through the following innovations.

(1) This paper proposes an optimized GRW-DBA data augmentation algorithm based on
group computing and random weight mechanism. Compared with other algorithms
such as classic DBA, the GRW-DBA algorithm has a simpler operation process, is not
easily affected by outliers, and can obtain generated data that are more in line with
the distribution of source data.

(2) We construct a prediction model based on a GRW-DBA data augmentation algorithm
and ANN and develop a graphical user interface. Compared with classical mechanical
methods, the model can significantly improve the prediction accuracy and at the same
time facilitate engineering applications.

The paper is organized as follows. Section 2 shows the innovative data augmentation
algorithm and the predictive model used. Section 3 describes the extended data-based mod-
eling process and the experimental process of model hyperparameter selection. Section 4
describes the experimental validation. Section 5 provides a discussion of the results.
Section 6 draws conclusions.
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2. Methods
2.1. Group Random Weight DBA Algorithm

The GRW-DBA method proposed in this paper is based on the classic DBA method,
which improves the grouping calculation and random weights and overcomes the short-
comings of the classic DBA method [34], which is easily affected by data outliers and
cumbersome augmentation processes. The process of data augmentation by this algorithm
will be introduced in detail below.

First, divide calculation groups. Different from the classic DBA algorithm that uses all
data to perform calculations, the GRW-DBA algorithm divides N sets of data into multiple
computational groupings, such as any 2 as groups, any 3 as groups, any 4 as groups, . . . ,
and all N as groups. Each calculation group is independent of the other, and subsequent
calculations are performed independently.

Second, determine the sequence weight. In each calculation group, the initial se-
quence Q is first randomly selected and assigned a non-repeating random weight x. Then,
the DTW distance [33] between the initial sequence Q and any other sequence P in the
group is calculated. Suppose the two sequences Q and P are Q = [q1, q2, q3, · · · , qm]
and P = [p1, p2, p3, · · · , pn], respectively. The distance between elements qi and pj in the
sequences is calculated by the formula:

d(i, j) = (qi − pj)
2 (1)

The distances between all corresponding elements of two sequences form an m × n
distance matrix M; M can be expressed as:

M =


d(m, 1) d(m, 2) d(m, 3) · · · d(m, n)

...
...

... · · ·
...

d(3, 1) d(3, 2) d(3, 3) · · · d(3, n)
d(2, 1) d(2, 2) d(2, 3) · · · d(2, n)
d(1, 1) d(1, 2) d(1, 3) · · · d(1, n)

 (2)

Taking d(1, 1) as the starting point, select one of the elements which is above, right,
and top right of the starting point. Then, based on the element, repeat the same steps in this
way until d(m, n) is reached. These selected elements form a path R between sequences Q
and P, which can be denoted as R = {d(r1), d(r2), · · · , d(rs), · · · , d(rN)}, where N denotes
the total number of elements in the path, r is the coordinate of the point on the path, i.e.,
rs = (i, j), and there are many of these paths R. However, there must exist an optimal
path in all path spaces R that minimizes ∑N

s=1 d(rs). Therefore, the DTW distance between
sequences Q and P is:

DTW(Q, P) = min(
N

∑
s=1

d(rs)) (3)

where d(rs) is the path distance calculated between each corresponding value, and N
represents the number of sequence data. To solve for the minimum ∑N

s=1 d(rs) value, the
cumulative distance matrix D is calculated using the dynamic programming method and
the corresponding distance d between two points as:

D(i, j) = d(i, j) + min{D(i, j− 1), D(i− 1, j− 1), D(i− 1, j)} (4)

where i = 1, 2, 3, · · · , m, and j = 1, 2, 3, · · · , n. The last element D(m, n) of D is the final
DTW distance, i.e.,

DTW(Q, P) = D(m, n) (5)

By comparing the DTW distance between the initial sequence and other sequences in
the calculation group, we find the two sequences with the smallest and second smallest
DTW distances from the initial sequence and assign a weight of 0.3x to each of these two
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sequences. Finally, the remaining (1 − 1.6x) weights are equally distributed to the other
remaining sequences. Since x, 0.3x, and 1 − 1.6x represent the weight of each sequence,
it is very important to ensure that all three values are between 0 and 1 according to the
experience of the literature [35]. Therefore, it can be calculated that the value range of
x in this case is between 0 and 0.625. The generation of random weights adopts the
mature Mersenne Twister algorithm [36] in the computer, which generates pseudo-random
numbers by continuously calling the algorithm. After the judgment process, non-repeating
values that meet the requirements are used as random weights and parameters.

We use this method in all calculation groups to calculate combinations of more than
four sequences; due to the limitation on the number of sequences, combinations of two
and three sequences do not satisfy the above weight distribution scheme, so these groups
assign uniform weights to all sequences.

Third, we find the weighted average by group. First, in each computation group, the
sequences are weighted and averaged according to the already determined weights to
obtain an augmented set of sequences. Since the calculation combination of two sequences
and three sequences keeps its calculation result unchanged every time it is repeated, the
result is multiplied by a random factor between zero and one here as the final result. Then,
we aggregate the extended sequences obtained from all calculation groups to obtain all
augmented sequences for one iteration.

Finally, steps 2 and 3 are run iteratively until the amount of augmented data satisfies
the requirement. Then, a certain amount of data is randomly selected from all augmented
data to form an augmented dataset.

The flowchart of the GRW-DBA algorithm is shown in Figure 1. It can be seen from
the algorithm flow that since this method uses group calculations instead of all average
calculations of the classical DBA method, it can not only reduce the impact of abnormal
data but also obtain a large number of extended sequences in one algorithm iteration. At
the same time, the GRW-DBA method uses random weights instead of fixed weights, so the
augmented sequences obtained in each iteration are not repeated, and only a few simple
iterations are required to obtain the required number of augmented sequences. Taking
Figure 1b as an example, in the augmentation experiment of 7 sets of data, 120 sets of
augmented sequences can be obtained in one iteration using the GRW-DBA method.
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2.2. Artificial Neural Networks

The ANN model consists of an input layer, a hidden layer, and an output layer [37].
The number of neural units in the input layer is consistent with the number of input
variables, and the whole structure parameters related to fatigue life are set as the input
layer in this paper. The number of neural units in the output layer is consistent with the
number of output variables. The fatigue life value is used as the output layer. The overall
structure of the model is shown in Figure 2.
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Figure 2. Schematic diagram of ANN model structure.

The neurons within the model are connected by weights and biases, while the nonlinear
activation function (tanh) is used to complete the fitting of the nonlinear data. The weight of
a neuron represents the importance of the output value of the neuron in the final prediction,
while the bias is responsible for the translation of the neuron output value. Thus, the output
value of a layer of neurons can be expressed as Equation (6).

Y = tanh(wixi + bl) (6)

where Y denotes the output of a layer of neurons, xi denotes the value of each neuron, and
tanh is the hyperbolic activation function, which is calculated as:

tanh(x) = (1− e−x)/(1 + e−x). (7)

In addition, wi denotes the weight of the neuron and bl denotes the bias of the layer.
Proper weights and biases can make the model perform well not only on training data but
also on maintaining good prediction accuracy on validation data [38].

3. Fatigue Life Prediction Modeling
3.1. Datasets

Dataset 1: Experimental data used in model building and experiments to determine hy-
perparameters were obtained from the team’s research published in Structural Concrete [39].
The dataset contains a total of 27 sets of data, using 24 parameters that characterize the
pore structure of concrete as the input variables of the model, and the concrete fatigue life
as the output variable.

Dataset 2: To verify the performance of the model in different data distributions, in
Section 4.3, the dataset obtained in the paper [40] is used for experiments. The dataset
contains 28 sets of data in total, 6 variables related to fatigue life are used as the input
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variable, and concrete fatigue life is used as the output variable. A detailed explanation of
the input variables for the two datasets is given in Table 1.

Table 1. Explanation of the meaning of the input variables in the datasets.

Datasets Number Input Variables Explanation

Dataset 1

1 P1% Pore size of 0.1–27.98 nm
2 P2% Pore size 27.98–524.26 nm
3 P3% Pore size 524.26–6463.30 nm

4 PM1% Porosity of pore size corresponding to highest
peak of P1 part of the curve

5 PM3% Porosity of pore size corresponding to highest
peak of P3 part of the curve

6 S1 Rate of change of P1 pore size
7 S3 P3 rate of pore size change
8 Dna P1 pore fractal dimension
9 Dnb P3 pore fractal dimension

10 P1Q% P1 part of the 0.1–7.5 nm pore size porosity
11 P1b% P1 part less than 5 nm pore size porosity
12 P1h P1 part 5–27.98 nm pore size porosity
13 Sz Pore size integrated change rate
14 Cz Pore structure complexity factor
15 Large capillaries Pore size of 50–10,000 nm
16 Small capillaries Pore size 10–50 nm
17 Inter-colloidal pores Pore size 2.5–10 nm
18 Micropores Pore size 0.5–2.5 nm
19 Interlayer pores Aperture size is less than 0.5 nm
20 Non-harmful pores Pore size is less than 20 nm
21 Less harmful pores Pore size is 20–100 nm
22 Harmful pores Pore size is 100–200 nm
23 Multi-harmful holes Pore size is greater than 200 nm
24 Ptotal Total pore size

Dataset 2

1 fc Compressive strength of concrete
2 h/w Height-to-width ratio
3 Shape Shape of the test specimens
4 Smax Maximum stress level
5 R Minimum stress to maximum stress ratio
6 f (HZ) Loading frequency

3.2. Evaluation Indexes

In this paper, three evaluation indexes are used to evaluate the prediction accuracy
of the model. They are correlation coefficient (R2), root mean square error (RMSE), and
mean absolute error (MAE). Among them, R2 indicates the similarity between the predicted
and actual values given by the model, and the closer the value is to one, the closer the
predicted value is to the actual value; RMSE and MAE are the average error magnitude
between the predicted and actual values of fatigue life derived from the model using the
two calculation methods, and the smaller the value is, the smaller the error magnitude
between the predicted and actual values is. Therefore, the closer the values of RMSE and
MAE are to zero and the closer the value of R2 is to one, the higher the prediction accuracy
of the model. The three evaluation indicators are defined by Equations (8)–(10).

R2 =

n
∑

i=1
(yi − yi)(ŷi − ŷi)√

n
∑

i=1
(yi − yi)

2

√
n
∑

i=1
(ŷi − ŷi)

2
(8)



Appl. Sci. 2023, 13, 1227 7 of 17

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (9)

MAE =
1
n

n

∑
i=1
|(yi − ŷi)| (10)

where n is the total number of values, ŷ denotes the actual value, y is the predicted result
calculated by the model, ŷ is the average of the actual value, and y denotes the average of
the predicted result.

3.3. Modeling Process

Step 1: Prepare the source dataset. The source dataset is constructed based on dataset 1
in Section 3.1. The dataset contains a total of 27 sets of data, and each set of data consists
of fatigue life values (output variables) and corresponding 24 pore structure parameters
(input variables). At the same time, the dataset is divided into 70% training data and 30%
test data to verify the effect of data enhancement as a blank control.

Step 2: Prepare the augmented datasets. According to the experience of the litera-
ture [34], we use the GRW-DBA method described in Section 2.1 to perform data augmenta-
tion on the source dataset, and we enhance the 27 sets of data of the source data to 10 times,
20 times, 50 times, 100 times, 200 times, 500 times, and 1000 times. These augmented
datasets are all split into 70% training data and 30% validation data.

Step 3: Determine hyperparameters. First, to determine the optimal factor of aug-
mentation, the effect of augmented data with 10, 20, 50, 100, 200, 500, and 1000 times are
compared. Then, in order to make the model achieve fast and accurate prediction, it is
necessary to select the appropriate number of training iterations, the number of hidden
layers, and the learning rate constant α. With reference to the literature [41], the number of
iterations was chosen to be 100, 500, 800, 1000, and 1200. The number of hidden layers is
generally chosen from small to large and should not be too large [42], so they are chosen as
follows: 1, 2, 3, and 4. In practice, the learning rate constant is generally taken to be 10−n,
with n being a positive integer [43]. Thus, the rate constants α are chosen as: 0.01, 0.001,
0.0001, and 0.00001. The modeling flowchart is shown in Figure 3. In the experiments,
Origin software was used to generate and export the images.
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3.3.1. Determine the Data Augmentation Factor

Experiments were conducted based on Dataset 1, where the hyperparameters of the
ANN model are shown in Table 2. Three evaluation indexes including RMSE, MAE and R2

were used to evaluate the prediction effect.
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Table 2. Hyperparameters used by the ANN model.

Hyperparameters Values

Number of neurons in the input layer 24
Hidden layers 80, 40
Learning rate 0.001
Activation function tanh
Iteration times 1000

Figure 4 shows the performance and training time of the model in different augmented
data amounts. From the results of the evaluation metrics of the comparative experiments,
it is found that when the model is trained and tested using real experimental data or a
smaller number of multiples of the augmented data, the prediction accuracy of the model is
not high due to the small amount. This result proves that the model tends to be overfitted
when the amount of data is small [23]. With the increase of the augmentation multiplier,
the model could fully exploit the hidden features of the input data while avoiding the
overfitting phenomenon. The prediction accuracy shows an overall increasing trend.
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However, the increased amount of data also brings the problem of time consumption
for model training. As shown in Figure 4c, the time used for model training is significantly
longer when using 1000 times the augmented dataset compared to 500 times the data. Fur-
thermore, the improvement in prediction accuracy is low when combined with Figure 4a,b.
Therefore, the fatigue life prediction model is trained using 500 times (13,500 sets) of
augmented data.

3.3.2. Determine the Hyperparameters of the ANN Model

1. Iteration times:

In order to test the prediction performance for 100, 500, 800, 1000, and 1200 iterations,
the data with 500 times augmented were used for training, the source data were used for
testing. The training of the model is essentially the process of adjusting the connection
weights between neural units. The initial values of these weights are randomized. With
each iteration of the model, the optimization algorithm of the model adjusts the values
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of the weights backward according to the difference between the output value given by
the model and the actual value during the iteration, finally minimizing the difference [44].
Therefore, the appropriate number of iterations is a key factor that affects the prediction
accuracy of the model. In the experiment, except for the number of iterations, other model
parameters remain unchanged.

Figure 5 shows the results of model prediction accuracy evaluation for different
iteration times. To clearly characterize the resulting data of 10 independent repetitions of
the experiment, the successive results of the test set are represented as box plots. The box
plot shows not only the trend of the evaluation indexes with the number of iterations but
also the distribution of all the results in the 10 repeated experiments more effectively. The
horizontal line in the middle of the box plot represents the median value of the 10 data, and
the outermost horizontal line represents the maximum and minimum values of the data.
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Figure 5. Evaluation indexes of prediction accuracy of ANN model under different iteration times.

From the results of the iterative experiments, we found that the RMSE and MAE
evaluation indexes of the test set of the model both gradually decrease, and the R2 index
gradually increases as the number of iterations increases, which indicates that the prediction
accuracy of the model is gradually improving as the number of iterations increases. It is
proved that a higher number of iterations has a positive impact on the model performance.
However, after reaching 800 iterations, the indexes of the test set fluctuated steadily. It
indicated that the model has achieved good results. The higher the number of iterations,
the longer it takes. Therefore, 800 is the best number of iterations.

2. Hidden layers:

As the number of hidden layers increases, more weights and biases are involved in
the nonlinear computation of the data inside the model. Then, it can better fit the data
nonlinearly. However, as the model structure becomes more complex, the training time
of the model also increases. What is more, an overly complex model causes overfitting,
and too many hidden layers also cause the optimization of the model to stagnate at a local
optimum point [45], which cannot further improve the accuracy of the model. Therefore,
a reasonable number of hidden layers is crucial for prediction effectiveness. In order to
select an optimal choice of the number of hidden layers, all the model parameters were
kept constant except for the four hidden layers which were set to 1, 2, 3, and 4. All the
500 times augmented data were used as training data, real experimental data were used as
test data, and the number of iterations was fixed to 800 times.

Figure 6 shows the trends of RMSE and MAE evaluation indexes when the hidden
layers are different. The closer to 0, the higher the model accuracy is. It can be seen from
Figure 6 that when the number of hidden layers is 1 to 3, the evaluation index value of the
model gradually decreases with the increase of the number of hidden layers, which shows
that as the complexity of the model increases, the prediction accuracy of the model also
improves. However, when the number of hidden layers exceeds three, both the training
and testing of the model exhibit a decrease in accuracy. This indicates that three hidden
layers are more suitable for fatigue life prediction under this experimental condition.



Appl. Sci. 2023, 13, 1227 10 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 17 
 

From the results of the iterative experiments, we found that the RMSE and MAE eval-
uation indexes of the test set of the model both gradually decrease, and the R2 index grad-
ually increases as the number of iterations increases, which indicates that the prediction 
accuracy of the model is gradually improving as the number of iterations increases. It is 
proved that a higher number of iterations has a positive impact on the model performance. 
However, after reaching 800 iterations, the indexes of the test set fluctuated steadily. It 
indicated that the model has achieved good results. The higher the number of iterations, 
the longer it takes. Therefore, 800 is the best number of iterations. 
2. Hidden layers: 

As the number of hidden layers increases, more weights and biases are involved in 
the nonlinear computation of the data inside the model. Then, it can better fit the data 
nonlinearly. However, as the model structure becomes more complex, the training time 
of the model also increases. What is more, an overly complex model causes overfitting, 
and too many hidden layers also cause the optimization of the model to stagnate at a local 
optimum point [45], which cannot further improve the accuracy of the model. Therefore, 
a reasonable number of hidden layers is crucial for prediction effectiveness. In order to 
select an optimal choice of the number of hidden layers, all the model parameters were 
kept constant except for the four hidden layers which were set to 1, 2, 3, and 4. All the 500 
times augmented data were used as training data, real experimental data were used as 
test data, and the number of iterations was fixed to 800 times. 

Figure 6 shows the trends of RMSE and MAE evaluation indexes when the hidden 
layers are different. The closer to 0, the higher the model accuracy is. It can be seen from 
Figure 6 that when the number of hidden layers is 1 to 3, the evaluation index value of the 
model gradually decreases with the increase of the number of hidden layers, which shows 
that as the complexity of the model increases, the prediction accuracy of the model also 
improves. However, when the number of hidden layers exceeds three, both the training 
and testing of the model exhibit a decrease in accuracy. This indicates that three hidden 
layers are more suitable for fatigue life prediction under this experimental condition. 

 
Figure 6. Evaluation indexes of prediction accuracy of ANN model under different hidden layers. 

3. Learning rate: 
An appropriate learning rate is crucial to the training effect of the model. When the 

rate is too large, the model parameters may repeatedly exceed the minimum value of the 
objective function, resulting in suboptimal parameters. When the rate is too small, the 

Figure 6. Evaluation indexes of prediction accuracy of ANN model under different hidden layers.

3. Learning rate:

An appropriate learning rate is crucial to the training effect of the model. When the
rate is too large, the model parameters may repeatedly exceed the minimum value of
the objective function, resulting in suboptimal parameters. When the rate is too small,
the model parameters may not converge to the optimal value within a limited time, thus
affecting the prediction accuracy of the model [46].

In this experiment, four different learning rate constants were used as follows: 0.01,
0.001, 0.0001, and 0.00001. In the comparison test, 500 times augmented data were used as
training data, source data were used as test data, the number of training iterations was 800,
the number of hidden layers was 3, and other parameters were kept constant.

Figure 7 shows the trend of prediction accuracy at four different learning rates. As
shown in the figure, the prediction accuracy of the model gradually increases when the
learning rate is selected as 0.01, 0.001, and 0.0001 and decreases significantly when the
learning rate is reduced to 0.00001. This shows that when the learning rate is set to 0.00001,
the model cannot find the optimal value in time due to the too small learning rate. Therefore,
when the learning rate is 0.0001, the accuracy of the model is the highest.
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Figure 7. The trend of model prediction accuracy at different learning rates: (a) results of the training
stage; (b) results of the testing stage.
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4. Experimental Verification

A comparative experiment was designed to test the effectiveness of the GRW-DBA
data augmentation method proposed in this paper combined with the ANN model for pre-
diction. According to the augmentation multiple and model hyperparameters determined
in Section 3, in the comparative experiment, the augmentation multiple of the source data
was set to 500 times, the number of iteration was set to 800 times, there were 3 hidden
layers, and the learning rate of the model was 0.0001. The evaluation indexes of prediction
accuracy adopted RMSE, MAE, and R2.

4.1. Validation of Data Augmentation Effects

In order to verify the effectiveness of the GRW-DBA data augmentation method
proposed in this paper, the three classic methods of sampling [47], GAN [28], DBA [34],
and our method were used to augment dataset 1, and the augmented data were used to
train the ANN model. As a test set, the prediction accuracy of the four trained models was
evaluated. At the same time, the ANN model using 70% of the source data as the training
set was used as a blank control. Figure 8 shows the model prediction accuracy obtained by
the four augmentation methods.
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using the GRW-DBA method proposed in this paper and other classical methods.

The smaller the RMSE and MAE index values, the larger the R2 index value, and the
better the prediction effect of the model. As shown in Figure 8, the prediction accuracy
of the model trained using the augmented data obtained by GRW-DBA proposed in this
paper is better than that of GAN [28] and other comparable models. At the same time,
compared with the blank group obtained by using the source data training, the prediction
accuracy of the model is greatly improved. It shows that the augmented data obtained by
the GRW-DBA method is more in line with the distribution of the source data, and at the
same time, the prediction accuracy of the ANN model under the condition of small data
volume is effectively improved.

4.2. Validation of Predictive Models

In order to verify the effectiveness of the ANN prediction model used in this paper,
the ANN model was compared with three classic regression prediction models: logistic
regression (LR) [48], SVM [16], and AdaBoost [19]. The models are trained with the
augmented data of GRW-DBA and tested with the source dataset.

Figure 9 shows that the R2 of the ANN model combined with the GRW-DBA method
reaches 0.986, which is higher than other models. Figure 10 shows the comparison of the
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predicted value of the four comparison models based on 500 times augmented data. From
Figure 10, it can be found that compared with the classical prediction model, the ANN
model combined with the GRW-DBA data augmentation method can better predict the
fatigue life of concrete.
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4.3. Verification of Generalization

To verify the generalization of the model, we used dataset 2 mentioned in Section 3.1
to conduct experiments. The settings of data augmentation factor and hyperparameters
remained unchanged. The comparison model still used three classic regression prediction
models: LR [48], SVM [16], and AdaBoost [19]. The data obtained by the augmentation of
the GRW-DBA method was used as the training set, and the source data were used as the
test set. The differences between the predicted values and observed values given by the
four comparison models are shown in Figure 11. The x-axis represents the observed value,
and the y-axis represents the predicted value. The closer the predicted value given by the
model is to the observed value, the closer the points in the graph are to the y = x line. It can
be seen that in the new data distribution, the prediction method of GRW-DBA combined
with the ANN used in this paper still gives the result closest to the observed value, which
proves the generalization of the proposed method.
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Figure 11. Comparison chart of prediction results of the ANN and the classical regression prediction
model: (a) LR; (b) SVM; (c) AdaBoost; (d) ANN.

4.4. Graphical User Interface Development

In order to allow users to use the GRW-DBA data augmentation method and the ANN
prediction model conveniently, a graphical user interface (Figure 12) was developed using
the Python-based PyQT5 tool to realize functions such as data reading, data augmentation,
model training, and prediction output.
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The user can save the input variable as different types such as excel and text, import it
into the program, and complete the data augmentation by setting the data augmentation
multiple. Then, the user can set the hyperparameters of the predictive model and press the
“Start Training” button to finish training the model with the augmented data. Finally, the
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user presses the “Fatigue Life Prediction” button to give the prediction result according to
the new data input by users.

5. Discussion

In this study, a new modeling approach was developed to predict the fatigue life of
concrete using a small dataset. The method consists of two parts: an innovative GRW-DBA
sequence data augmentation method and an ANN prediction model based on optimized
hyperparameters.

The high-precision prediction of the model depends on a large amount of training
data. Unfortunately, due to the limitation of experimental time and conditions, there is not
enough labeled data for the task of fatigue life prediction. As an effective tool to enhance
the scale and quality of training data, data augmentation is a reliable method to improve
prediction accuracy. Unlike image data, in the application of sequence data, it is difficult
to synthesize data and maintain correct labels due to the nature of sequence data such as
inter-class correlation and large numerical differences.

Compared with data augmentation algorithms, such as GAN or classic DBA, the
GRW-DBA algorithm proposed in this paper reduces the influence of outliers by grouping
calculations, and at the same time, it assigns random weights in the weighted average,
which can more efficiently generate data that conform to the distribution of source data.
Compared with other algorithms, our algorithm can improve the accuracy of the prediction
model in different concrete fatigue life data (including 27 sets and 28 sets of sequence data,
respectively). Among them, the R2 index increased by 10.7% and 4.2% compared with
GAN and classic DBA, respectively.

Due to the data-driven and good nonlinear fitting advantages of the ANN model [49,50],
it is more suitable for modeling with augmented data. Therefore, the ANN prediction model
used in this paper has achieved higher prediction accuracy than classical mathematical
methods such as the energy method and machine learning methods such as AdaBoost and
has improved the R2 index by 8.2% compared with the suboptimal AdaBoost.

Concrete fatigue damage is related to factors such as freeze–thaw cycles, shear failure,
and tensile failure. One of the limitations of this study is the primary use of freeze–thaw
cycle data. In the future, we will test our method on a wider dataset including other
variables to improve its robustness. In addition, we will try more data augmentation
algorithms, such as literature [51–53], to further improve the prediction accuracy.

6. Conclusions

Aiming at the problem of low prediction accuracy of concrete fatigue life under the
condition of small datasets, this paper proposes a method based on the GRW-DBA data
augmentation algorithm and ANN to build a prediction model in which the GRW-DBA
algorithm is improved by grouping calculation and adding random weights based on
the classic DBA algorithm. In this method, the ANN model is first trained based on
the augmented data of the GRW-DBA algorithm, and the hyperparameters of the ANN
model are optimized through experiments to improve the prediction accuracy. The data
augmentation algorithm is compared with prediction models such as SVM, and finally, a
graphical user interface is developed. The following conclusions can be obtained:

(1) The GRW-DBA data augmentation method proposed in this study can conveniently
and effectively augment small datasets while reducing the impact of abnormal se-
quences on the results. Compared with GAN and classic DBA methods, the GRW-DBA
can better improve the prediction accuracy of the ANN model.

(2) The ANN fatigue life prediction model was trained based on the GRW-DBA aug-
mented dataset, under the same conditions. Its prediction accuracy R2 evaluation
index increased by 24%, 10.4%, and 7.8% compared with LR, SVM, and AdaBoost. It
also shows good generalization in datasets with different distributions.
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