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Abstract: To study the mechanical damage characteristics of rock under the effect of subversion,
a series of mechanical experiments, including both uniaxial and triaxial mechanical compression
experiments under various levels of water content were performed. In this study, researchers
investigate the impact of water content on the mechanical characteristics of rock, based on the
compliance of the rock damage variants to the Weibull statistic distribution, and Drucker–Prager
strength rule, aiming to construct a constitutive model under the joint effect of load and moisture.
In addition, the established constitutive model is tested in the experiment. According to the test
results, during the initial phase of the submersion, the water content in the rock increases following
the exponential function until reaching the threshold. The water content remains stable after the
threshold. Under the uniaxial and triaxial loads, the damage detected in the rock and the elasticity
modulus decreases linearly as the water content increases. The rock’s mechanical parameters and the
damage evolution rate are significantly impacted by the surrounding pressure. As the surrounding
pressure increases, the weakening effect of the water in the rock decreases. The theoretic curves
developed to describe the rock damage under the joint effect of the water and load are consistent with
the curves drafted based on the test, indicating that the constitutive model can accurately describe
the stress and strain behaviors of rock under various water contents and loading conditions.

Keywords: sandrock containing water; loading condition; stress–strain behavior; damager
constitutive model

1. Introduction

Rock, as one of the common natural materials in engineering projects, often is featured
with various degrees of internal macrostructure flaws. Rock failure tends to occur when
rock damage continues to accumulate, exceeding the load-bearing capability [1,2]. It
is common in the natural environment that rock is surrounded or submerged in water.
Water can change the macrostructure of rock through physical, chemical, and mechanical
interactions, resulting in decreases in strength, and geological disasters [3–5]. Therefore,
studying rock damage variances under the joint effect of load and water content through
the constitutive model can provide insightful guidance to engineering project development
and implementation [6–8].

The interaction between rock and rock was first proposed by A. M. O Bynhhnkob from
the Soviet Union. Since then, the study of water and rock interaction has been transformed
into multi-field and interdisciplinary, especially regarding the physical and mechanical
characteristics of rock [9–12]. In the mechanical study of rock, compared with the study
of elasticity and the study of plastics, the damage theory was launched at a later time. In
the year 1958, Kachanov first introduced some basic concepts in the study of rock damage,
such as the effective stress and continuous factors, marking the beginning of rock damage
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study [13]. In the year 1976, J.W. Dougill first applied damage mechanics to rock study [14],
followed by Lemaitre, Chaboche, Krajcinove, Taehyo, Murakami, and Heping Xie, who
studied the damage mechanics of rock by taking advantage of different definitions of
damage variables, damage parameters, yield principles, and conditions. Now, damage
theory has become one of the effective approaches to the study of rock [15–26].

Rock damage mechanic behaviors can be described using the damage variables and
the constitutive formulas, which have been studied intensively by domestic and overseas
scholars. The constitutive model based on the statistic damage theory has been consistently
proven effective. Commonly used probability distribution functions for rock damage mod-
els based on statistical theory include the Weibull distribution function, normal distribution
function, power function, etc. The statistical damage constitutive model of structure has
been proven to be effective in fitting rock constitutive relations and describing the process
of rock deformation and failure [27–31]. For example, Erguler Z.A. and Ulusay, R. [32]
quantified the effects of water content on the mechanical properties of rocks and developed
a method for estimating rock strength and deformability based on physical properties.
Cao Wengui and his team [29,33] established a rock statistical damage constitutive model
considering the changes of the elastic module, combined with a rock strain softening sta-
tistical damage simulation method based on the characteristics of the pore compaction
stage. Conil and his team [34] proposed an anisotropic damage model for mudstone based
on the Drucker–Prager criterion, which takes into consideration the degradation of the
mudstone pore matrix and the changes in hydro-mechanical properties caused by damage.
Wang Junbao and his team [35] adopted the Hoek–Brown strength criterion to describe
the micro-element strength of rock and deduced the statistical damage constitutive model
of rock under three-dimensional stress conditions. Jia Shanpo et al. [36] established a
seepage–damage coupling model of mudstone by introducing the damage variables into
the seepage–stress coupling control equation. Zhang Xiangdong [37] et al. deduced the
modified damage–softening constitutive model of sandstone following a nonlinear fitting
method based on the characteristic that rock damage variables comply with the Weibull
distribution. Based on the unified strength theory, Hu Xuelong et al. [38,39] established an
elastic-plastic damage constitutive model of rock, reflecting the dynamic and static load
characteristics of rock. According to the typical triaxial test results of argillaceous sandstone
fractured rock mass, Gao Wei et al. [40] proposed a method of establishing the constitutive
model suitable for a fractured rock mass in a deep engineering fracture zone. Liu, He, and
Cai [41] proposed a damage model featured with the Logistic equation to simulate the
stress–strain relation of rocks, which can describe the complete deformation process of rock
under uniaxial compression satisfactorily with the simple mathematical function of four
model parameters.

In order to describe the stress-strain relationship and the evolution law of rock damage
accurately [42], based on the experimental data of loading mechanics, a general expression
to describe the effect of rock water content on the weakening of mechanical parameters
is proposed in this study. Based on the damage mechanic theory and Weibull statistical
distribution theory, the Drucker–Prager criterion is introduced to measure the strength of
micro-elements. In addition, a rock damage constitutive model under the joint action of
humidity and load is established, which has been verified in the test.

2. Damage Constitutive Model of Waterstone
2.1. The Mechanical Damage Characteristics of Rock

Considering that the evolution of rock micro-defects is often random, the evolu-
tion process of the micro-defect system can be regarded as a non-equilibrium statistical
process [2,31], with the following assumptions, including 1© the rock materials are macro-
scopically isotropic; 2© the rock micro-units follow Hooke’s law; 3© the micro-unit strength
follows Weibull distribution, with the probability density function as:
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ϕ(F) =
m
F0
(

F
F0
)

m−1
exp[−( F

F0
)m] (1)

In Formula (1) listed above, F is the random distribution variable of Weibull distribu-
tion of microelements; m refers to the parameter reflecting rock brittleness; F0 represents the
macroscopic average strength of rock; and ϕ(F) refers to a measurement of elemental dam-
age rate during the loading. The damage to the macro elements leads to the macroscopic
deterioration of rock specimens.

The damage parameter D is a measure of the damage degree of the material, following
the relationship with the probability density of micro-element damage listed below:

ϕ(F) =
dD
dF

(2)

D =
∫ F

0
ϕ (F)dF = 1− exp[−( F

F0
)m] (3)

According to the equivalent strain assumption, the damage can only affect the strain
behavior of the rock through the effective stress, which serves as the foundation of the
damage constitutive relationship establishment.

σ = E0ε(1− D) (4)

In Formula (4), E0 is the elastic module of the rock in the dry (no damage) status.
Substituting the damage variable D into Formula (4), the constitutive formula of the

sandrock damage can be obtained as follows.

σ = E0εexp[−( F
F0
)m] (5)

In Formula (5), the damage principle of the rock follows the Drucker–Prager yield
rule, which takes the main middle stress, and the hydrostatic pressure into consideration,
resulting in the selection of the micro-strength of the rock.

F = f (σ) = αI1 + J2
1
2 (6)

whereas, I1 = σii = σ1 + σ2 + σ3, is the first invariant of the stress; J2 = 1
6 [(σ1 − σ2)

2 +

(σ2 − σ3)
2 +

(
σ3 − σ1)

2], is the second invariant of the stress; α = tanφ

(9+12tan2φ)
1
2

, is constant

related to the internal friction angle of rock (ϕ = 37.27◦).

(1) Uniaxial compression status

Under the uniaxial compression, the stress status follows σ = σ1, σ2 = σ3 = 0.

F = f
(
σ′
)
=

(
α +

1√
3

)
σ

1− D(σ)
(7)

Taking the effective stress into consideration, which allows the substitution of
Formula (4) into Formula (7), resulting in:

F = f (σ) =
(

α +
1√
3

)
E0ε (8)

Substituting Formula (8) into Formula (5), the following formula can be developed.

σ = E0εe−(
(α+ 1√

3
)E0ε

F0
)

m1

(9)
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dσ

dε
= E0e−[

(α+ 1√
3
)E0ε

F0
]

m1

{1−m1[

(
α + 1√

3

)
E0ε

F0
]m1} (10)

Considering that in the conventional compression test, in the curve, when ε = εmax,
σ = σmax, dσ

dε

∣∣∣
ε=εmax

= 0, the following formula can be obtained.

F0 =

(
α +

1√
3

)
E0εmaxm

1
m1
1 (11)

m1 =
1

ln( E0εmax
σmax

)
(12)

The constitutive formula of rock under the uniaxial compression is obtained:

σ = E0εe−
1

m1
( ε

εmax )
m1

(13)

Combining Formulas (12) and (13), the mechanical damage of rock due to load can be
obtained.

D(σ) = 1− e−
1

m1
( ε

εmax )
m1

(14)

(2) Conventional Triaxial Compression Status

Under triaxial compression status, the stress should follow σ1 = σ ≥ σ2 = σ3 6= 0.
Assuming that σ3 = f31(σ1), following the unloading stress path, the axial confining
pressure demonstrates a linear relationship, which is σ3 = f31(σ1) = Kσ, with K as the
linear coefficient. Taking the effective stress into consideration, the following formula can
be obtained.

F = f (σ) = [α(1 + 2K) +
1√
3
(1− K)]E0ε (15)

Substituting Formula (15) into Formula (4), the following formula can be obtained.

σ = E0εe−{
[α(1+2K)+ 1√

3
(1−K)]E0ε

F0
}

m2

(16)

dσ

dε
= E0e−[

α(1+2K)+ 1√
3
(1−K)E0ε

F0
]m2 {1−m2[

α(1 + 2K) + 1√
3
(1− K)E0ε

F0
]m2} (17)

Considering that during conventional triaxial compression, in the curve, when
ε = εmax, σ = (σ1 − σ3)max = (1− K)σmax, dσ

dε

∣∣∣
ε=εmax

= 0, the following can be obtained.

F0 = α(1 + 2K) +
1√
3
(1− K)E0εmaxm

1
m2
2 (18)

m2 =
1

ln
[

E0εmax
(1−K)σmax

] (19)

The constitutive formula under the triaxial compression is obtained:

σ = E0εe−
1

m2
( ε

εmax )
m2

(20)

Combining Formulas (19) and (20), the mechanical damage of rock due to load can be
obtained.

D(σ) = 1− e−
1

m2
( ε

εmax )
m2

(21)
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2.2. The Rock Damage Constitutive Model under the Joint Effect of Moisture and Load

After the rock material absorbs water, the macroscopic mechanical parameters of
the rock are weakened. In addition, the rock material after water absorption is affected
by the load during the loading process. As a result, the damage of the water-containing
sandstone specimen under different stress path conditions should be humidity damage
and mechanical damage. The coupling effect can be expressed as:

D = D(ω, σ) (22)

Since the rock is first weakened by water immersion and then subjected to different
stress path correlation tests, it is possible that the damage caused by the two is independent
of each other, with the two factors standing alone. According to the equivalent strain
assumption, the damage constitutive relation of rock material can be obtained.

σ = E0ε[1− D(σ)][1− D(ω)] (23)

3. The Mechanical Test of Sandrock Containing Water
3.1. Experimental Overviews

Samples were processed into a dimension of Φ50 mm × h100 mm, with groups and
numbers shown in Figure 1a,b. The mineral composition of this batch of sandstone samples
was obtained by D8 ADVANCE X-ray diffractometer analysis, including 35.5% of quartz,
23.4% of plagioclase, 35.9% of calcite, and 5.1% of kaolinite and chlorite, and the test results
are shown in Figure 1c.
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Figure 1. Experimental preparation. (a) Standard sample used in the uniaxial compression experi-
ment; (b) Standard sample used in the triaxial compression experiment; (c) Mineral composition of 
sandstone samples used in the study. 

Figure 1. Experimental preparation. (a) Standard sample used in the uniaxial compression experi-
ment; (b) Standard sample used in the triaxial compression experiment; (c) Mineral composition of
sandstone samples used in the study.

Before the immersion experiment, some tests were performed to obtain basic physical
and mechanical properties of the initial state of the rock samples, indicating an average
natural water content of 0.45%, and an average natural density of 2.44 g/cm3. The average
uniaxial compressive strength is 67.03 MPa. The average compressive strengths under
various confining pressure conditions of 10 MPa, 20 MPa, and 30 MPa are 129.08 MPa,
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174.99 MPa, and 210.49 MPa, respectively. The calculated internal friction angle of the rock
sample is ϕ = 37.27◦ with a cohesion C = 22.33 MPa.

All groups of samples were dried in an XMTD-8222 constant temperature oven, the
oven was heated to 105 ◦C, and maintained at a constant temperature for 48 h, followed by
colling till room temperature. The water content of the rock samples was measured after
0.75 h, 1.5 h, 6 h, 24 h, and 720 h of natural soaking.

The mechanical tests of rock samples are all completed by an RMT-301 rock and
concrete mechanical test system, as shown in Figure 2. The detailed experimental scheme
is as follows:

(1) Single Axis Compression Test: The test samples are numbered from Ai-j, with i = 1~6
(1 refers to the sample in dry status, sample 2 to 6 refer to the samples submerged for
0.75 h, 1.5 h, 6 h, 24 h, and 720 h, respectively) and j = 1~3 (three samples in one test
group). The test adopted the displacement control, with the load increased at a rate of
0.5 mm/min until sample failure.

(2) Conventional Three-axis Compression Test: The test samples are numbered from
Bi-j, with i = 1~6 (1 refers to the sample in dry status, sample 2 to 6 refer to the
samples submerged for 0.75 h, 1.5 h, 6 h, 24 h, and 720 h, respectively) and j = 1~9
(The surrounding pressure is categorized into three sections, with 3 samples in each
section). The test adopted the stress control, with the surrounding pressure increased
at a rate of 0.05 MPa/s, along with the axial pressure. The initial pressure settings
are 10 MPa, 20 MPa, and 30 Mpa, respectively. During the later phases, the control is
switched to the displacement control, with a constant surrounding pressure and an
increasing axial pressure at a rate of 0.5 mm/min.
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3.2. The Water Content Test

After the measurement and calculation, the corresponding relationship between the
immersion time t of the rock specimen and the water content ωt of the specimen is shown
in Figure 3. In the initial stage of water immersion, the water content of the rock specimen
increased rapidly, and then the growth rate of water content gradually slowed down. After
the water was fully absorbed by the rock, resulting in saturation, the water content of
the rock remained at a stable value. Therefore, with a sufficient water supply, the water
content of the rock specimen increases with a time threshold t0. In other words, before
the time threshold t0 is reached, the corresponding relationship between the immersion
time t of the rock specimen and the water content ωt follows an exponential growth. After
reaching the time t0, the water content of the rock tends to remain constant, reaching the
final saturated water content. According to the test results of the water content of rock
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samples, the variation law of water content ωt with t can be summarized as Formula (24),
with the saturated water content of 2.790% after function fitting.

ωt =

{
2.71− 1.23e−0.26t 0 < t < t0

ωt0 t ≥ t0
(24)
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3.3. The Mechanical Test Results of Sandrock Containing Water

As demonstrated in Figures 4 and 5, respectively, the full stress-strain curves of
sandstone specimens under different loading stress paths and different water content are
plotted based on the experimental data. The statistics data of rock mechanical parameters
in uniaxial and triaxial compression tests are shown in Tables 1 and 2.
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Figure 4. The uniaxial compression test results of sandrock containing water. (a) Dry Sample;
(b) Sample Submerged for 0.75 h; (c) Sample Submerged for 1.5 h; (d) Sample Submerged for 6 h;
(e) Sample Submerged for 24 h; (f) Sample Submerged for 720 h.
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Figure 5. The triaxial compression test results of sandrock containing water. (a) Dry Sample;
(b) Sample Submerged for 0.75 h; (c) Sample Submerged for 1.5 h; (d) Sample Submerged for
6 h; (e) Sample Submerged for 24 h; (f) Sample Submerged for 720 h.

Table 1. Statistics of rock mechanical parameters in uniaxial compression tests.

t/h ωt/% σc/MPa t/h ωt/% σc/MPa

A1-1 Dry 0 91.789 A4-1 6 2.742 57.172
A1-2 Dry 0 81.508 A4-2 6 2.709 59.629
A1-3 Dry 0 92.376 A4-3 6 2.834 57.153
A2-1 0.75 1.611 68.809 A5-1 24 2.811 56.808
A2-2 0.75 1.561 64.340 A5-2 24 2.960 52.465
A2-3 0.75 1.638 68.704 A5-3 24 2.912 58.207
A3-1 1.5 1.977 65.309 A6-1 720 2.692 55.681
A3-2 1.5 1.970 65.609 A6-2 720 2.824 55.135
A3-3 1.5 2.158 68.540 / / / /

According to Figure 4 and Table 1, the comparison of the stress and strain values
of each specimen group indicates that the average uniaxial compressive strength of each
group of rock specimens decreases significantly with the increase in water content. In
addition, the variation of the strain value ε corresponding to the yield point of each group
of rock specimens is not obvious.

As shown in Figure 5 and Table 2, the stress-strain curves of each group of specimens
can be divided into three levels based on different confining pressures, indicating that the
increase of confining pressure can enhance the specimens. In addition, under the same
confining pressure conditions, with the increase of water content, the failure strength of the
sandstone specimens significantly decreased, indicating that a smaller confining pressure
leads to a faster decrease of the peak strength.

3.4. The Impacts of Water Content on the Mechanical Characteristics of Sandrock

In order to further explore the impacts of the water content on the mechanical charac-
teristics of the sandstone specimens, based on the experimental results, the relationship
between the failure strength, elastic modulus, and water content of the specimens was
fitted and analyzed, as shown in Figures 6 and 7.
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Table 2. The rock mechanical parameters in triaxial compression tests.
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B1-5 Dry 20 1.56 179.99 21.51 B4-2 6 10 2.21 127.32 18.55
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Figure 7. The correlation between water content and mechanical parameter in triaxial test. (a) σ-ω;
(b) E-ω.
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According to Figure 6, in the uniaxial compression test, with the increase of water con-
tent, the failure strength of rock decreases, along with the elastic modulus, demonstrating a
relatively clear linear relationship with water content.

According to Figure 7, in the conventional triaxial compression test, the peak strength
and elastic modulus of the sandstone under different confining pressures decrease linearly
with the increase of water content, demonstrating a higher level of fitting linear relationship
under the condition of the low confining pressure. Meanwhile, a lower confining pressure
leads to a larger slope of the fitting curve, indicating that the increase in the confining
pressure has a positive effect on restraining rock mass damage.

4. The Damage Constitutive Model of Water Containing Sandrock Specimens
4.1. The Impact of Moisture on the Specimen Damage

According to the previous mechanical tests, under different stress paths, the elastic
modulus of sandstone specimens decreases linearly with the increase in water content.
Therefore, the elastic modulus E can be used as a damage variable to characterize the effect
of water content on the mechanical properties of sandstone specimens. Assuming that the
damage value of the dry sandstone specimen is 0, the fitting function of the elastic modulus
of the sandstone specimen and the water content is presented below.

E = Aωt + B (25)

In Formula (25), A and B are constants, obtained from experimental statistics.
The elastic modules at different moisture contents are normalized, and the continuity

factor can be defined.
ω =

Eωt

E0
(26)

In Formula (26), E (ωt) is the elastic module at the water content of ωt. According to
the test results, E0 = 15.375 GPa, E0–10 = 20.090 GPa, E0–20 = 21.749 GPa, E0–30 = 18.475 GPa.

Therefore, the damage in the submerged sandrock specimen is:

D(ω) = 1−ω = 1− Awt + B
E0

(27)

Based on the test results, the damage variance curve of the water-containing sandstone
specimen under different stress paths is drawn as shown in Figure 8. As shown in Figure 8,
with the increase in water content, the damage to rock samples increases sharply. When the
water content reaches the limit, the damage value reaches 1, with no more accumulation.
Meanwhile, with the increase of the confining pressure, the rate of damage evolution slows
down, indicating that the ability of rock to resist damage can be strengthened with the
increase of confining pressure.
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4.2. The Rock Damage Constitutive Model of Water-Bearing Rock

According to the results of mechanical experiments and Formula (23), the rock damage
constitutive model under the joint effect of moisture and load can be deduced, as shown in
Formulas (28) and (29).

1. Uniaxial compression status

σ = E0εωt [1− D(σ)][1− D(ω)] = E0εωt e
− 1

m1
(

εωt
εmax )

m1

(
−1.1025ωt + 15.6623

E0
) (28)

2. Conventional Triaxial Compression Status


σ10 = E0−10εωt e

− 1
m2

(
εωt

εmax )
m2(

−0.5795ωt+22.6895
E0−10

)
σ20 = E0−20εωt e

− 1
m2

(
εωt

εmax )
m2(

−0.7624ωt+21.8785
E0−20

)
σ30 = E0−30εωt e

− 1
m2

(
εωt

εmax )
m2(

−0.9438ωt+20.0379
E0−30

) (29)

4.3. The Verification of Damage Evolution Law of Water-Bearing Rock

Based on the average strength σ and the average strain (εωt ) of the sandstone speci-
mens at different water contents (ωt), the corresponding m1 and m2 values can be obtained,
as shown in Tables 3 and 4. The further stress–strain experimental curves and theoretical
damage curves of sandstone specimens are shown in Figures 9 and 10, respectively.

(1) Uniaxial compression status

Table 3. The value of m1 under uniaxial compression status.

A1 A2 A3 A4 A5 A6

t/h Dry 0.75 1.5 6 24 720
σc/MPa 89.065 67.837 65.391 58.892 56.270 54.893
¯
E/GPa 15.431 13.359 12.994 13.282 11.805 13.247

ωt/% 0 1.603 2.035 2.762 2.894 2.758
εωt 8.627 6.795 7.643 7.313 6.100 8.627
m1 2.953 1.686 1.405 1.725 1.344 1.898
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Figure 9. The stress-strain experimental curves and theoretical damage curves of sandrock contain-
ing water under uniaxial compression status. (a) Dry Sample; (b) Sample Submerged for 0.75 h;
(c) Sample Submerged for 1.5 h; (d) Sample Submerged for 6 h; (e) Sample Submerged for 24 h;
(f) Sample Submerged for 720 h.

(2) Conventional Triaxial Compression Status

Table 4. Value of m2 under triaxial compression status.

B1 B2 B3 B4 B5 B6

t/h Dry 0.75 1.5 6 24 720
ωt/% 0 1.688 2.007 2.212 2.619 2.749

εωt−10 11.243 10.759 11.148 11.343 11.582 /
m2−10 5.184 2.911 2.713 2.393 2.097 /
εωt−20 13.445 13.793 14.137 13.890 15.424 13.050
m2−20 3.628 3.004 2.958 2.550 2.351 2.839
εωt−30 15.637 15.691 16.922 17.725 18.333 14.760
m2−30 4.471 3.294 2.925 2.237 2.596 2.962
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Figure 10. The stress-strain experimental curves and theoretical damage curves of sandrock con-
taining water under triaxial compression status. (a) Dry Sample; (b) Sample Submerged for 0.75 h;
(c) Sample Submerged for 1.5 h; (d) Sample Submerged for 6 h; (e) Sample Submerged for 24 h;
(f) Sample Submerged for 720 h.

According to Figures 9 and 10, under both uniaxial and triaxial loading conditions,
the overall shape of the theoretical rock damage curve is similar to the overall shape
of the experimental curve, indicating that the theoretical curve of water-containing rock
damage evolution can better reflect the sandstone damage under different water contents.
Before reaching peak strength, the rock deformation exhibits linear elasticity, and after
peak strength, the strength decreases rapidly. With the increase of confining pressure, the
theoretical damage curve gradually slows down, which proves that the ability of rock to
resist damage increases gradually with the additional increase of confining pressure.

5. Discussion

Overall, the theoretical prediction curve derived in this study is consistent with the
experimental curve, with some limited deviations, including:

1. The compaction stage of the theoretical damage curve is not obvious, with the curve
value higher than the experimental value;

2. The stress of the theoretical damage curve shows a deceleration increase before the
peak value, which continues to decrease at an accelerated rate after the peak value,
while the stress change rate in the actual compression process is more complicated.

The analysis indicates that the main reasons for the difference are as follows:
1© In this study, the researchers assume that the damage value of the dry sandstone spec-

imen is zero (0), and the damage value increases continuously with the accumulation
of water content and strain. However, in the compaction stage, the damage value
is, in fact, almost unchanged or even reduced, which leads to the stress value of the
theoretical curve being larger than the experimental value in the first part of the peak
front region.

2© Since the theoretical model is a continuously changing function, it is difficult to
reflect the localized process in rock failure. Therefore, in order to establish a damage
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constitutive model that is more in line with the actual deformation of the rock, the
theoretical model needs to be further improved to reflect the actual damage evolution
process more accurately.

6. Conclusions

Based on the experimental and theoretical analysis results, the following conclusions
can be drawn.

1. In the initial stage of immersion, the relationship between the immersion time and
the water content of the rock specimen demonstrates exponential growth as a whole.
In addition, the water content of the rock remained basically constant after the time
threshold t0 is reached.

2. Under both uniaxial compression and conventional triaxial compression, the failure
strength and elastic modulus of the sandstone specimens decrease linearly with the
increase in water content.

3. As the confining pressure increases, the rate of damage evolution becomes lower,
indicating that the increase of the confining pressure tends to reduce the weakening
effect of water on rock mass, and demonstrates a positive effect on restraining rock
mass damage.

4. The overall shape of the theoretical prediction curve is similar to the loading mechanics
curve, indicating that the model can better reflect the stress-strain behavior of sandrock
under different water content and uniaxial/triaxial loading conditions.
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