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Abstract: Modeling the nonlinearity of a system is of primary importance both for optimizing its
design and for controlling the behavior of physical systems operating with a wide dynamic range of
input values, for which the linearity hypothesis may not be sufficient. To become of practical use,
the identification of nonlinear models must be accurate and computationally efficient. For these
reasons, in recent years, among the numerous models of nonlinear systems that have been proposed
in the technical literature, the Hammerstein model has been widely applied as a consequence of the
proposal of a new pattern identification technique based on pulse compression, which makes the
identification of the model very accurate in numerous applications for which it has been adopted.
Hammerstein model identification of a nonlinear system requires characterization of the linear filters
present on the different branches of the model. These linear filters, which constitute the parameters of
the model to be identified, must be considered with respect to their trends over time or, equivalently,
in their frequency trends, as amplitude and phase responses. The identification can be considered
accurate if the trends obtained for each filter adequately characterize it for the entire frequency
range to which that specific filter is subjected in the normal operation of the system to be identified.
This work focuses on this aspect, i.e., on the adequacy of the frequency range for which the filter
is identified and on how to obtain correct identification in the entire frequency range of interest.
The identification procedure based on exponential swept-sine signals defines these filters in the
time domain by making use of intermediate functions that are related to the impulse responses
of the model filters through a linear transformation. In this paper, we analyze, in detail, the roles
of the bandwidths of both the excitation signal and the matched filter, which are the basis of the
procedure, we verify the assumptions made about the amplitudes of their frequency bands, and we
propose criteria for defining the bandwidths in order to maximize accuracy in model identification.
The experiment performed makes it possible to verify that the proposed procedure avoids possible
limitations and significantly improves the quality of the identification results, both if the description
is made in the time domain and in the frequency domain.

Keywords: nonlinear systems; pulse compression; Hammerstein model identification; bandwidth
limitation effects

1. Introduction

A number of different modeling techniques that are capable of representing the nonlin-
ear behavior of physical devices have been proposed and, for each of these, there are sophis-
ticated techniques for identifying the parameters that characterize the modeling technique.

Modeling techniques of nonlinear devices can be grouped into three main categories
that differ in the level of knowledge of the physical phenomenon that is represented in
the model itself. The so-called white-box approaches require complete knowledge of the
physics governing the nonlinear system [1]. Examples of these techniques are those that
define the model of the real physical system by making use of differential equations [2] or
wave digital filters [3,4].

The complexity of a physical system often makes it necessary to carry out simplification
techniques. Depending on the degree of simplification, the techniques are considered to
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be part of the grey box or black box approaches. The grey box techniques imply partial
knowledge of the physical phenomenon [5,6], for example, in [7,8]; the black box techniques,
which in fact are among the most widely adopted, do not require prior knowledge of the
physics of the system and the device is defined through its input–output relation [1,9]. In
the following, only nonlinear systems of the black box type are considered.

In the case of black box techniques, the most widely adopted model is the Volterra
series [10,11]. For practical reasons, the series must be truncated to bring the number of
model parameters to a finite number. Even in the case of a truncated Volterra series, the
number of coefficients needed to define the model quickly becomes very large as the degree
of the model increases. This becomes a serious limitation in that, in practice, it allows this
technique to be used only with systems characterized by a limited degree of nonlinearity.
Simplified models with respect to the Volterra series have been studied to deal with cases
of strong nonlinearities. Among them, the Hammerstein and Wiener models are based
on a split between a part of the model representing the dynamics of the response through
linear filters, and a part of the model representing the nonlinear part of the response,
which is considered static. In this way, these models provide accurate, though less general,
representations of nonlinear systems even in the case of high-degree nonlinearities [12,13].

There are numerous techniques in the technical literature for identifying such mod-
els [14,15], and in particular, in the case of the Hammerstein model, a technique that has
proven to be particularly effective is based on the use of appropriate swept-sine signals as
input [16–19]. This technique has yielded excellent results in numerous application areas,
including acoustics and nondestructive testing and evaluation [20–23].

The excellent results achieved with this identification technique are, however, always
related to integral analyses performed in the frequency domain. The results of this identi-
fication method appear to be less brillant with regard to the time behavior of the model
response, or equivalently of the impulse response of the filters present in the different
branches associated with the different orders of the model. Anomalies in the time response
are often found, among which the most frequent is related to oscillations at transitions.

Artifacts of this type are known in the technical literature as Gibbs artifacts, and they
manifest themselves in the form of spurious oscillations in the time domain response. It
is well known that the cause of the occurrence of such spurious oscillations comes from
bandwidth limitations of the performed measurements [24,25].

In the present paper, the focus is on the optimization of the Hammerstein’s model
identification procedure for the purpose of the optimization of its results as seen in the
time domain. To this end, the entire identification procedure is revisited in order to
verify the adequacy of the frequency band of each of the components that contribute
to the identification procedure. A possible cause of criticality is identified in the choice
of the parameters characterizing both the swept-sine signal used as excitation and the
corresponding matched filter; the consequent criteria for choosing these parameters to
optimize the response of the model even in the time domain are hypothesized.

The proposed solution is verified through experimental tests in simulation; the tests
are defined by making use of a simulated nonlinear system so that the expected ideal
response is known, and this allows the effectiveness of the proposed solution to be verified.
The results of these experiments fully confirm the hypothesis made; consequently, in this
paper, we provide clear guidance for choosing the signal parameters to be used in applying
the identification procedure.

This paper is organized as follows: In Section 2.1, the Hammerstein’s model of non-
linear systems is briefly described and its identification procedure based on the use of
exponential swept-sine signals as input is presented. In Section 2.2, we analyze the identifi-
cation procedure based on swept-sine signals in the frequency domain and we highlight the
features of the identification procedure that have the potential to lead to frequency limita-
tions in the functions describing the responses of the individual filters of the Hammerstein
model. We then identify the possible causes of the above limitations and propose a possible
solution. In Section 3, we define an experiment to test the reliability of the assumption



Appl. Sci. 2023, 13, 1223 3 of 19

made about the causes of the limitations in the identification procedure and to identify
the characteristics that the exponential swept-sine input signal is required to possess in
order to enable accurate characterizations, in both the time and frequency domains of the
linear filters present in the Hammerstein model to be identified. In Section 4, we discuss
the results obtained. In Section 5, we draw conclusions and indicate possible evolution of
the work.

2. Materials and Methods

A system for which the superposition principle is not valid in the relationship between
input and output cannot be modeled through the usual methods of representing linear
systems, and needs specific models. Historically, the model proposed by Volterra was the
first among the representation models of nonlinear systems proposed in the technical litera-
ture [10,11]. It can be interpreted as an extension of convolution, i.e., of the input–output
relation representing linear systems. The Volterra model, even for minor nonlinearities, is
characterized by a very large number of parameters, which makes it extremely complex to
define their values that fit the representation of a specific nonlinear system to be identified.

Block-structured models, such as the Wiener model, the Hammerstein model, and
their combination, have been proposed as they imply a much lower number of parameters.
The Wiener model consists of the sequence of a linear system with memory placed before
the nonlinearity of the static type. The Hammerstein model is the reverse of the Wiener
model. It consists of a static nonlinearity followed by a dynamic filter representing the
memory of the system. The so-called NH-order cascade of Hammerstein models also
belong to this family, which consists of paralleling NH structures, each consisting of a static
nonlinearity followed by a dynamic filter. This is the structure shown in Figure 1, and it is
the one to which the paper refers in the following section. The identification methods are
procedures for defining the parameters of the chosen model in such a way that the model’s
input–output behavior is equivalent to that of the nonlinear physical system it is intended
to represent.
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2.1. Hammerstein Model and Pulse-Compression Identification Procedure

Assume that the representation of the nonlinear system is validly carried out through
a Hammerstein model of order NH , the schematic description of which is shown in Figure 1.
The physical system is designed to operate in the frequency band between fMIN and fMAX .

A specific technique must be followed to identify the Hammerstein structure filter
kernels that allow the model to have behavior equivalent to that of the nonlinear system
being modeled. Among the identification techniques, those based on correlation involve
using a specific input signal to the nonlinear system and analyzing the corresponding
outputs of the system to define the individual filter kernels that identify the model. The
identification technique based on pulse compression (PuC) belongs to this category [16–19];
it relies on the ability to define a couple of signals, x(t) and ψ(t), of which one represents the
excitation signal and the other the impulse response of the matched filter, respectively. They
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are defined such that the convolution between the two is the best possible approximation
of the mathematical pulse:

o(t) = x(t)⊗ ψ(t) ∼= δ(t) (1)

Since the signals have to be necessarily band limited, their convolution can only
approximate the mathematical pulse. If the two signals are chosen in such a way that, in the
frequency band from fMIN to the frequency fMAX , the transform of their convolution has a
nearly constant magnitude, the time course of this convolution will be of the type [23]:

f(t) ∝ fMAX sin[2π fMAXt]/[2πfMAXt]− fMIN sin[2π fMIN t]/[2π fMIN t] (2)

For the input–output relation of the system, if defined in the time domain, the follow-
ing expression will hold:

yH(t) = x(t)⊗ h1(t) + x(t)2 ⊗ h2(t) + . . . + x(t)NH ⊗ hNH (t) (3)

in which the symbol ⊗ denotes convolution. The NH impulsive functions hi(t) completely
characterize the model, and therefore, model identification coincides with the identification
of these functions. To apply the PuC procedure for identification, the swept-sine signal of
unit amplitude can be adopted as input, described by x(t) = Cos(φ(t)). In this case, the
previous equation can be expressed in compact form as:

yH(t) =
[
[Cos(φ(t))]k

]T
⊗ [h(t)] (4)

where the entities in square brackets represent vectors; [h(t)] is the vector of the different

kernels hk(t), k = 1, . . . , NH ;
[
[Cos(φ(t))]k

]T
is the transpose of the vector of powers of

the input signal.
The Chebyshev polynomials of the first kind allow the vector of powers of the cosine

functions to be expressed through the harmonics of the same functions [26], therefore, the
above expression can be rewritten in an alternative form as:

yH(t) =
[
[Ac]

−1Cos(k φ(t))
]T
⊗ [h(t)] = [Cos(k φ(t))]T ⊗ [g(t)] (5)

in which [Ac] is the matrix of coefficients of the Chebyshev polynomials of the first kind and
the vector and [g(t)] contains NH impulsive patterns directly related to the kernels [h(t)],

through the relation [g(t)] =
[
[Ac]

−1
]T

[h(t)] [19,21]. A comparison of Relations (4) and (5)
shows that the output of the Hammerstein model can be expressed alternatively through
the sum of the convolutions between the powers of the input signal and the [h(t)] kernels
or through the sum of the convolutions between the harmonics of the cosine functions
and the [g(t)] kernels. The [g(t)] kernels and the [h(t)] kernels are related through a linear
transformation.

The identification procedure is based on this correspondence between the vectors of
the [h(t)] and [g(t)]. Let the evolution law of the instantaneous frequency of the swept
signal be the exponential type, that is, let ω(t) = dφ(t)/dt = 2 π fMIN Exp(t/L), where the
constant L = T0/ln( fMAX/ fMIN) describes how quickly the frequency changes over time
between fMIN and fMAX in a signal whose duration is T0; then, the kth harmonic of the
input signal corresponds to a simple shift of the signal x(t) by the quantity ∆tk = L ln(k).
In fact:

f (t + ∆tk) = fMIN Exp[ t+∆tk
L ] = fMIN Exp[ t+L ln(k)

L ] =

= k fMIN Exp[t/L] = k f (t)
(6)

This property is depicted in Figure 2 and is the basis of the Hammerstein model
identification procedure described in [16–19]. In the particular case where the signal used
for pulse compression is a swept sine of the exponential type and if, in addition, the
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instantaneous phase of the input signal respects some specific constraints, as described
in [27], the compression filter, which is characterized by a frequency trend as a function of
time that is exactly the same as that of the excitation swept-sine signal, fits not only with the
input signal at instant ∆t0, but also at instants ∆tk with its harmonics of order k produced
by the nonlinear system.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 19 
 

𝑓(𝑡 + Δ𝑡௞) = 𝑓ெூே 𝐸𝑥𝑝 ൤𝑡 + Δ𝑡௞𝐿 ൨ = 𝑓ெூே 𝐸𝑥𝑝 ቈ𝑡 + 𝐿 𝑙𝑛(𝑘)𝐿 ቉ = = 𝑘 𝑓ெூே 𝐸𝑥𝑝ሾ𝑡/𝐿ሿ = 𝑘 𝑓(𝑡) 

(6)

This property is depicted in Figure 2 and is the basis of the Hammerstein model 
identification procedure described in [16–19]. In the particular case where the signal used 
for pulse compression is a swept sine of the exponential type and if, in addition, the 
instantaneous phase of the input signal respects some specific constraints, as described in 
[27], the compression filter, which is characterized by a frequency trend as a function of 
time that is exactly the same as that of the excitation swept-sine signal, fits not only with 
the input signal at instant Δ𝑡଴ , but also at instants Δ𝑡௞  with its harmonics of order k 
produced by the nonlinear system. 

  
(a) (b) 

Figure 2. Exponential swept-sine signal at the output of a nonlinear device: (a) Time behavior of the 
fundamental frequency and of the first two harmonics. Note that the time distance between the 
frequency of a harmonic and the same frequency seen as the fundamental frequency is independent 
of the considered frequency; (b) time placement of the 𝑔௞(𝑡) functions at the output of the matched 
filter for the fundamental frequency and for the first harmonics. 

The signal 𝑦ு(𝑡), processed through the matched filter 𝜓(𝑡), consists of a sequence 
of impulsive functions centered in the instants Δt୩; these impulsive functions coincide 
with the functions 𝑔௞(𝑡), as it is possible to write: u(𝑡) = 𝑦ு(𝑡) ⊗  𝜓(𝑡) = ሾ𝑐𝑜𝑠ሾ𝑘𝜙(𝑡)ሿ௖ሿ் ⊗ ሾ𝑔(𝑡)ሿ ⊗  𝜓(𝑡) = 

= ቄൣ𝛿መ(𝑡 + 𝛥𝑡௞)൧்ቅ ⊗ ሾ𝑔(𝑡)ሿ (7)

where the kth element of the vector 𝛿መ(𝑡) is the band-limited approximation of the Dirac 
delta function. Then, impulsive 𝑔௞(𝑡) waveforms are generated at such Δ𝑡௞  instants. 
Each of the 𝑔௞(𝑡)  functions is associated with a specific harmonic generated by the 
nonlinear system, and the time positions of each 𝑔௞(𝑡) in the response of the matched 
filter indicate the order of the corresponding harmonic. In other words, the function 𝑔௞(𝑡) 
associated with the kth harmonic is present in the output signal to the matched filter and 
is shifted in time by an amount Δ𝑡௞ relative to the function 𝑔଴(𝑡) associated with the 
fundamental harmonic. Then, the functions 𝑔௞(𝑡) follow each other in the signal output 
to the matched filter; and then, each of the 𝑔௞(𝑡)  functions is simply obtained by 
windowing the response of the matched filter at a time interval associated with the kth 
harmonic. 

The PuC procedure, in all its phases up to the windowing required to obtain the 𝑔௞(𝑡) functions, is schematized in Figure 3. Once the 𝑔௞(𝑡) functions have been obtained 

Figure 2. Exponential swept-sine signal at the output of a nonlinear device: (a) Time behavior of
the fundamental frequency and of the first two harmonics. Note that the time distance between the
frequency of a harmonic and the same frequency seen as the fundamental frequency is independent
of the considered frequency; (b) time placement of the gk(t) functions at the output of the matched
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The signal yH(t), processed through the matched filter ψ(t), consists of a sequence of
impulsive functions centered in the instants ∆tk; these impulsive functions coincide with
the functions gk(t), as it is possible to write:

u(t) = yH(t)⊗ ψ(t) = [cos[kφ(t)]c]
T ⊗ [g(t)]⊗ ψ(t) =

=
{[

δ̂(t + ∆tk)
]T
}
⊗ [g(t)]

(7)

where the kth element of the vector δ̂(t) is the band-limited approximation of the Dirac
delta function. Then, impulsive gk(t) waveforms are generated at such ∆tk instants. Each
of the gk(t) functions is associated with a specific harmonic generated by the nonlinear
system, and the time positions of each gk(t) in the response of the matched filter indicate
the order of the corresponding harmonic. In other words, the function gk(t) associated
with the kth harmonic is present in the output signal to the matched filter and is shifted
in time by an amount ∆tk relative to the function g0(t) associated with the fundamental
harmonic. Then, the functions gk(t) follow each other in the signal output to the matched
filter; and then, each of the gk(t) functions is simply obtained by windowing the response
of the matched filter at a time interval associated with the kth harmonic.

The PuC procedure, in all its phases up to the windowing required to obtain the gk(t)
functions, is schematized in Figure 3. Once the gk(t) functions have been obtained by
taking them at appropriate and known time instants of the signal u(t), the desired hk(t)
functions can be obtained through the simple linear transformation [h(t)] = [Ac]

T [g(t)].
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2.2. Discussion on the Pulse-Compression Identification Procedure

In the first part of the present section, we verified, by analyzing the results of an
experiment, the actual existence of the problem highlighted in the introduction, that is, the
presence of spurious oscillations at the transitions, which alter the quality of the result,
especially when considered in its trend over time. In the second part, the procedure leading
to the identification of the patterns is analyzed and an interpretation of the highlighted
problem is given, thus, also configuring a possible solution.

2.2.1. Limitations in the Identification Procedure

The pulse-compression identification technique has allowed excellent results to be
obtained in numerous applications. For example, the results obtained in the estimation
of intermodulation distortion carried out by means of a double exponential swept-sine
signal [20], or in increasing the sensitivity of defect detection systems in materials by
means of non-destructive techniques [21]. A careful analysis of the results, however, shows
limitations that, while they do not affect the characteristics of the result in the case of
integral-type estimator as, for example, in [21,22], they become significant in the case where
there is interest in the time course of the response of the system represented through the
nonlinear model. A verification of this statement can be achieved by analyzing the results
of a laboratory experiment, the bench of which is shown in Figure 4. The experiment was
performed to verify the presence of nonlinear effects in a couple of identical Tx and Rx
air-coupled ultrasonic transducers.
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The system configuration, shown in Figure 4, consists, in sequence, of a personal
computer for measurement management and supervision, a TiePie handyscope HS5 [28]
used as an arbitrary waveform generator, a Falco System power amplifier [29], a pair of
identical Ultran brand transmit and receive transducers designed to emit in air [30], a TiePie
handyscope HS5 used as a data logger, and a personal computer used for data storage.

The ultrasonic probes operate at a center frequency of 200 kHz and allow a maximum
input voltage of 150 volts; both probes are of the focused type, with nominal focal distance
F = 10 cm. The beam emitted in air by the transmitting piezoelectric transducer is focused
at a single point (the focal point); the receiving system detects the signal emitted from a
point on the axis of the transducer and placed at a focal distance of 10 cm. The Falco System
signal amplification system is used on the signal generation side and has an amplification
factor of 50× in the useful band. The resolution adopted in the measurement was 14 bits.
The ultrasonic probes were mounted on precision mounts and positioned at a distance of
21 cm, slightly more than twice the focal distance, which proved to be the distance at which
the received signal level was found to be maximum.

Figure 5 shows the signal obtained at different stages of processing, starting from the
data measured in the laboratory with the measuring bench described in Figure 4. Figure 5a
shows the signal picked up by the receiving probe; Figure 5b plots the output of the
matched filter, the figure also reports the positions in which the pulses corresponding to
the different harmonics deriving from nonlinearity -if present- can be expected (dotted
lines at ∆δk = L ln(k)); Figure 5c,d report a magnification of the curve in Figure 5b in the
neighborhood of the time where the peaks corresponding to the fundamental frequency
and to the second harmonic are expected.

Figure 5b,c highlight the aspect described in the Introduction, i.e., the presence of
artifacts in the response over time, which manifest themselves in the form of spurious
oscillations that are particularly evident in the instants preceding the ideal response attack.
Possible causes of such limitations in the identification process will be analyzed in the
following section.

2.2.2. PuC Identification Procedure Reformulated in the Frequency Domain to Highlight Its
Limitations and Their Causes

The PuC technique of Hammerstein model identification relys on the functions gi(t)
extracted from the response of the matched filter to the exponential swept-sine signal input
to the nonlinear system. Let us analyze, in detail, the procedure described in Section 2.1
and reformulate it in the frequency domain.

The procedure makes no reference to limitations in the bandwidth of each of the
signals involved, implicitly considering them to have infinite bandwidth (or, in the case of
sampled signals, bandwidth up to the Nyquist frequency).

This assumption is not fulfilled in practice. Let the nonlinear system be modeled exactly by an
Hammerstein model of order OrdMax. If a sinusoidal signal s(t) = Cos(φ(t)) = Cos(2π f0t+ϕ0)
is used as the input, the output from the model can be represented by the expression:

u(t) =
OrdMax

∑
k=0

Hk(ω) [Cos(2π f0t +ϕ0)]
k (8)

where Hk(ω) is the transfer function on the kth branch of the model, and, for generality,
the zero frequency component ( fMIN = 0) is considered. Each of the powers of the cosine
function can be represented as a sum of its harmonics. The amplitude of these harmonics,
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some of which have zero amplitude, are given by the [A−1] matrix, and the inverse of the
matrix of the coefficients of the Chebyshev polynomials, given here in the OrdMax = 4 case:

Cos[ω0t]0 = 1
Cos[ω0t]1

Cos[ω0t]2

Cos[ω0t]3

Cos[ω0t]4

 =
[
A−1

]
·


Cos[0ω0t] = 1

Cos [1ω0t]
Cos [2ω0t]
Cos[3ω0t]
Cos[4ω0t]

 =


1 0 0 0 0
0 1 0 0 0
1
2 0 1

2 0 0
0 3

4 0 1
4 0

3
8 0 1

2 0 1
8

 ·


1
Cos[1ω0t]
Cos[2ω0t]
Cos[3ω0t]
Cos[4ω0t]

 (9)
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in the laboratory with the measuring bench described in Figure 4: (a) Signal received by the Rx
probe; (b) output of the matched filter; (c,d) magnifications of the fundamental frequency and 2◦

harmonic peaks.

This equivalence makes it possible to give an alternative representation of the output
signal u(t), again of the additive type, in which the sum is extended to harmonics rather
than to powers of the input signal. Expanding each power by means of the [A−1] matrix
and grouping by harmonics rather than by powers gives:

u(t) =
OrdMax

∑
i=0
|Gi(i ω0)| Cos(i 2π f0t + i ϕ0 +ϕi(i ω0)) (10)
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The functions Gi(ω), whose argument isϕi(ω), are obtained from the functions Hk(ω)
through the relationship that, again in the OrdMax = 4 case, is:

G1(ω)
G2(ω)
G3(ω)
G4(ω)

 =
[
A−1

C

]T
·


H1(ω)
H2(ω)
H3(ω)
H4(ω)

 =


1 0 3

4 0
0 1

2 0 1
2

0 0 1
4 0

0 0 0 1
8

·


H1(ω)
H2(ω)
H3(ω)
H4(ω)

 (11)

where superscript T denotes transposed matrix. In this case, the zero frequency component
was not considered. The resulting matrix [A−1], deprived of the first row and of the first
column, is denoted [A−1

C ] as in [19]. The fact that the matrices [A−1] and [A−1
C ]T , which

appear in Equations (10) and (11) and link the functions Hk(ω) and Gi(ω), are upper
triangular, has relevant consequences from the examined perspective, as discussed in
the following.

All the above considerations apply both in the case where the input signal is a simple
cosine function and in the case where the signal is an exponential swept-sine signal, or
any other signal characterized by containing, for each instant of time, a single harmonic
component.

In the PuC identification technique of the Hammerstein model, the functions gi(t) are
obtained by the convolution between the matched filter and the exponential swept-sine
signal at the input, or with its harmonics generated by the nonlinear system. The band in
which each gi(t) is identified is the frequency band common to the i-th harmonic of the
exponential swept-sine input signal and the matched filter. The i-th harmonic of the input
signal, under the ideal assumption of product T x B tending to infinity, has components
between i∗ fMIN and i∗ fMAX. The frequency band in which the gi(t) is defined is, thus,
related to the choices made for the bands of the input signal and those of the corresponding
matched filter. Figures 6–8 consider some possible cases of choosing the frequency bands
of the input signal and of the matched filter, and graphically depict how these choices
affect the frequency band in which the gi(t) functions are identified, in the case where
they are estimated by the pulse compression technique. First, let us consider the case in
which both the swept-sine signal and the matched filter are defined between fMIN and
fMAX ; the situation will be that which, in the case of model order 4, is described in Figure 6.
The matched filter, defined between fMIN and fMAX , is represented by the dotted curve in
the four correlation lags in which it fits the fundamental frequency, and the second, third,
and fourth harmonics. It is evident that, in this manner, the function gi(t) is represented
only up to the frequency fMAX whatever harmonic i is considered. It can then be assumed
that, if the function gi(t) being approximated has significant components of the amplitude
response beyond fMAX, they will not be identified; by adopting this implementation of
the PuC technique, there will be a sudden reduction in the amplitude of the identification
result obtained as an approximation of the function Gi(ω).

Figure 7 represents the superposition between the harmonics and the matched filter in
the case where the swept-sine signal is defined between fMIN and fMAX and the matched
filter is defined in the frequency range from fMIN to OrdMax ∗ fMAX . Figure 7 evidences
that the frequency bands in which the different gi(t) functions can be identified are different
from each other, with each having the frequency i ∗ fMAX as its upper extreme. It follows
that, as shown below, when these gi(t) functions are adopted to reconstruct the hk(t)
functions that identify the Hammerstein model, the gi(t) functions combine only partially
in the higher frequency ranges, and this is a limitation in the quality of the reconstruction
of the hk(t) functions. This aspect is all the more significant the lower the order k of the
hk(t) function, since, as noted before, the fact that the reconstruction matrices are upper
triangular implies that the lower the order k considered for the Hk(ω), the greater the
number of gi(t) functions that must compose, and in the case that their frequency bands
are not the same, it leads to severe limitations in the quality of the result. Finally, Figure 8
shows the situation of the superposition between harmonics and the matched filter in
the case in which both the matched filter and the exponential swept-sine input signal are
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defined in the frequency range from fMIN to OrdMax ∗ fMAX, i.e., their bandwidths are
commensurate with the order of the model adopted. All gi(t) functions are defined in the
same frequency band between fMIN and OrdMax ∗ fMAX .
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Figure 6. Frequency overlap in the case in which both the swept-sine signal and the matched filter
are defined between fMIN and fMAX . The solid lines represent the swept-sine signal (blue line) its
second harmonic (orange line) its third harmonic (green line) and its fourth harmonic (red line). The
dotted line represents the frequency band covered by the adapted filter. The four panels represent the
cases when the matched filter correlates with (a) the fundamental frequency; (b) the second harmonic;
(c) the third harmonic; (d) the fourth harmonic.
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Figure 7. Frequency overlap in the case in which the Swept-Sine signal is defined between fMIN and
fMAX and the matched filter is defined between fMIN and OrdMax ∗ fMAX . The solid lines represent
the swept-sine signal (blue line) its second harmonic (orange line) its third harmonic (green line) and
its fourth harmonic (red line). The dotted line represents the frequency band covered by the adapted
filter. The four panels represent the cases when the matched filter correlates with (a) the fundamental
frequency; (b) the second harmonic; (c) the third harmonic; (d) the fourth harmonic.
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Figure 8. Frequency overlap in the case in which both the matched filter and the input swept signal
range between fMIN and OrdMax ∗ fMAX . The solid lines represent the swept-sine signal (blue line)
its second harmonic (orange line) its third harmonic (green line) and its fourth harmonic (red line).
The dotted line represents the frequency band covered by the adapted filter. The four panels represent
the cases when the matched filter correlates with (a) the fundamental frequency; (b) the second
harmonic; (c) the third harmonic; (d) the fourth harmonic.

In the next section, an experiment is defined to analyze what impact these limitations of
the frequency bands in which the different functions gi(t) are defined have on the estimation
of the functions hk(t) or Hk(ω), that is, on the identification of the Hammerstein model.

3. Results

The consequences of the aspects that were highlighted in the previous section need to
be verified experimentally. To this end, a specific synthetic experiment, described later in
this section, was defined to verify the correctness of the observations made in the previous
section regarding the bandwidth of the signals involved in the identification step carried
out by means of the PuC technique, and to analyze what consequences the choices made
on the frequency bands of these signals have on the quality of the Hammerstein model
identification result. The choice was made that the simulated nonlinear physical system
defined for the experiment was constructed following the exact Hammerstein model. The
reason for this choice is that, as a result, the reference transfer functions, Hk(ω), of each
branch, or, equivalently, the corresponding functions, hk(t), are known to us. The ideal
parameters to which the identification procedure should strive are known. The PuC
identification technique is applied to this simulated physical system in order to obtain,
through the identification procedure, an estimate of the different branch functions of the
model. Knowledge of the ideal reference trend of the Hk(ω) or hk(t) functions allows us
to compare these reference trends with the corresponding trends obtained through the
identification technique. Thus, it is possible to verify the impact of different choices of the
parameters of the identification procedure on the quality of the result obtained.

The nonlinear physical system was defined by simulating it through a Hammerstein
structure. Then, since the ideal functions hk(t) were known, it was possible to calculate the
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output corresponding to the exponential swept-sine signal at the input. Through the PuC
technique, the g̃i(t) functions were estimated, their equivalent G̃i(ω) functions evaluated
in the frequency domain and, from these, the H̃k(ω) functions (and thus the h̃k(t)). The
PuC estimate of the ideal Hk(ω) is obtained through Relation (12), which is the inverse of
Relation (11): 

H1(ω)
H2(ω)
H3(ω)
H4(ω)

 =
[
AT

C

]
·


G1(ω)
G2(ω)
G3(ω)
G4(ω)

 =


1 0 −3 0
0 2 0 −8
0 0 4 0
0 0 0 8

·


G1(ω)
G2(ω)
G3(ω)
G4(ω)

 (12)

A comparison of the amplitude responses of the estimated H̃k(ω) functions obtained
from G̃i(ω) by applying (12) on the results obtained in simulation, comparing the mod-
uli, and the ideal Hk(ω) or a comparison of the corresponding time functions hk(t) and
h̃k(t) give us an indication of the effects of the choice of parameters adopted in the PuC
identification technique.

The system considered in our simulation experiment is a fifth-order Hammerstein sys-
tem at the input of which an exponential swept-sine signal was input, sampled at 300 kHz,
extending in the frequency range from 300 Hz to 10 kHz, with a growth rate L = 0.16583.
Consequently, the exponential swept-sine signal duration from fMIN to fMAX is calculated
to be T = 0.5815 [s] while the duration up to the frequency OrdMax∗ fMAX = 50 kHz is
T = 0.8484 [s].

On the five branches of the nonlinear system simulated through a Hammerstein
model, bandpass filters of different types and order were placed: on branches 1, 3, and
5, Butterworth-aligned bandpass filters of orders 6, 4, and 2, respectively; on branches
2 and 4, Chebyshev-aligned bandpass filters of orders 5 and 3, respectively. The cutoff
frequencies of all five bandpass filters are 300 Hz and 20 kHz for the lower and upper
cutoff frequencies; the high end cutoff frequency is twice fMAX, therefore, that there are
significant components of the amplitude responses up to the frequency OrdMax∗ fMAX . All
parameters used to define the simulated system in accordance with Hammerstein model
are given in Table 1. The simulations were carried out using the software Mathematica™.

Table 1. Filter parameters in the five branches of the nonlinear system simulator.

Model Order Filter Name Filter Alignment Filter Order Low End Cutoff (Hz) High End Cutoff (Hz)

1 H1(ω) Butterworth 6 300 20.000
2 H2(ω) Chebyshev 5 300 20.000
3 H3(ω) Butterworth 4 300 20.000
4 H4(ω) Chebyshev 3 300 20.000
5 H5(ω) Butterworth 2 300 20.000

Figure 9 shows, on the first line, the five amplitude responses of the filters that were
inserted into the branches of the Hammerstein structure that represent the nonlinear
system in the simulation. The second line of Figure 9 shows the corresponding five impulse
responses. The curves on the two rows are our references in the frequency and time
domains, respectively.

Figure 10 compares the results obtained by applying the PuC procedure of model
identification, viewed in terms of estimating the frequency responses of the filters on the
five branches of the model itself, according to the three different procedures described
above for the choice of frequency bands adopted for the exponential swept-sine signal at the
input and for the corresponding matched filter. The three procedures can be summarized
as follows: All have as their starting point the frequency range from fMIN to fMAX , within
which the nonlinear system must operate. Specifically, for Procedure 1, the exponential
swept-sine input test signal is defined in the range from fMIN to fMAX and the matched
filter operates in the same frequency range; for Procedure 2, the range of the exponential
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swept-sine input test signal goes from fMIN to fMAX , while the matched filter covers the
frequency range from fMIN to OrdMax ∗ fMAX; for Procedure 3, both the exponential
swept-sine test signal at the input and the impulse response of the matched filter cover the
frequency range from fMIN to OrdMax ∗ fMAX .

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 19 
 

Table 1. Filter parameters in the five branches of the nonlinear system simulator. 

Model Order Filter Name Filter Alignment Filter Order Low End Cutoff (Hz) High End Cutoff (Hz) 
1 𝐻ଵ(𝜔) Butterworth 6 300 20.000 
2 𝐻ଶ(𝜔) Chebyshev 5 300 20.000 
3 𝐻ଷ(𝜔) Butterworth 4 300 20.000 
4 𝐻ସ(𝜔) Chebyshev 3 300 20.000 
5 𝐻ହ(𝜔) Butterworth 2 300 20.000 

Figure 9 shows, on the first line, the five amplitude responses of the filters that were 
inserted into the branches of the Hammerstein structure that represent the nonlinear 
system in the simulation. The second line of Figure 9 shows the corresponding five 
impulse responses. The curves on the two rows are our references in the frequency and 
time domains, respectively. 

Figure 9. Panels from (a–e) show the amplitude responses of the filters on the five branches of the 
Hammerstein model considered as reference behaviors in the experiment. Panels from (f–j) show 
the corresponding reference impulse responses. 

Figure 10 compares the results obtained by applying the PuC procedure of model 
identification, viewed in terms of estimating the frequency responses of the filters on the 
five branches of the model itself, according to the three different procedures described 
above for the choice of frequency bands adopted for the exponential swept-sine signal at 
the input and for the corresponding matched filter. The three procedures can be 
summarized as follows: All have as their starting point the frequency range from 𝑓ெூே to 𝑓ெ஺௑, within which the nonlinear system must operate. Specifically, for Procedure 1, the 
exponential swept-sine input test signal is defined in the range from 𝑓ெூே to 𝑓ெ஺௑ and 
the matched filter operates in the same frequency range; for Procedure 2, the range of the 
exponential swept-sine input test signal goes from 𝑓ெூே to 𝑓ெ஺௑, while the matched filter 
covers the frequency range from 𝑓ெூே  to 𝑂𝑟𝑑𝑀𝑎𝑥 ∗ 𝑓ெ஺௑ ; for Procedure 3, both the 
exponential swept-sine test signal at the input and the impulse response of the matched 
filter cover the frequency range from 𝑓ெூே to 𝑂𝑟𝑑𝑀𝑎𝑥 ∗ 𝑓ெ஺௑. 

In the case of Procedure 1 (panels “f” to “j”), it is evident that the amplitude response 
estimation is strictly limited to the maximum frequency 𝑓ெ஺௑ (10 kHz in the experiment) 
common to the exponential swept-sine signal and the matched filter, and this is in line 
with what was assumed following the observation of Figure 6. 

In the case of Procedure 2 (panels “k” to “o”), the trends exhibit discontinuities at 
frequency multiple integers of 𝑓ெ஺௑ . For example, panel “k” shows a discontinuity at 𝑓ெ஺௑ (10 kHz) and an additional discontinuity at 3𝑓ெ஺௑ (30 kHz). The trends between one 

Figure 9. Panels from (a–e) show the amplitude responses of the filters on the five branches of the
Hammerstein model considered as reference behaviors in the experiment. Panels from (f–j) show the
corresponding reference impulse responses.

In the case of Procedure 1 (panels “f” to “j”), it is evident that the amplitude response
estimation is strictly limited to the maximum frequency fMAX (10 kHz in the experiment)
common to the exponential swept-sine signal and the matched filter, and this is in line with
what was assumed following the observation of Figure 6.

In the case of Procedure 2 (panels “k” to “o”), the trends exhibit discontinuities at
frequency multiple integers of fMAX. For example, panel “k” shows a discontinuity at
fMAX (10 kHz) and an additional discontinuity at 3 fMAX (30 kHz). The trends between
one discontinuity and the next are not in line with the desired ideal trend of the amplitude
response (first row). This result confirms two aspects highlighted earlier. It confirms the
considerations made in correspondence to Figure 7, which show that, in this case, the
different functions, Gi(ω), are characterized in frequency bands that are different from each
other, and therefore, only up to fMAX are all the components that must add up present,
while in higher frequency bands the lower order functions Gi(ω) are not defined and the
combination occurs in the absence of some contributions that would be essential. A second
aspect that is evidenced by examining the panels from “k” to “o,” is that only some of
the components enter into the combination, as evidenced by the structure of matrix [AT

C]
in Relation (12). The Gi(ω) functions that combine to give rise to the first order function,
H1(ω), are all the Gi(ω) components of odd index starting from G1(ω), and thus, the
frequencies at which the components will be involved are odd integer multiples of fMAX
(10 kHz, 30 kHz, . . . ); for Hk(ω) of higher orders, given the upper triangular structure
of the [AT

C] combination matrix, the Gi(ω) functions that will combine will be those of
indices k to OrdMax, and therefore, discontinuities in the combination will occur at higher
frequencies. For example, in H2(ω), the first discontinuity occurs at 2 fMAX (20 kHz) and
the next discontinuity occurs at 4 fMAX (40 kHz); in the case of H3(ω), the first discontinuity
is found at 3 fMAX (30 kHz) and the next discontinutiy is found at 5 fMAX (50 kHz).
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Figure 10. Panels from (a–e) show the reference amplitude responses of the filters on the five branches
of the Hammerstein model in the experiment. Panels from (f–j) show the amplitude responses
estimated with the Procedure 1 (swept-sine range from fMIN to fMAX ; matched filter range from
fMIN to fMAX). Panels from (k–o) show the result applying Procedure 2 (swept-sine range from fMIN

to fMAX ; matched filter range from fMIN to OrdMax ∗ fMAX). Panels from (p–t) show the amplitude
responses estimated with the Procedure 3 (swept-sine range from fMIN to OrdMax ∗ fMAX ; matched
filter range from fMIN to OrdMax ∗ fMAX).

In the case of identification Procedure 3 (panels “p” to “t”), the trends faithfully reflect
throughout the frequency band of interest the ideal trends. It is evident that the result
comes from the combination of several components and, in fact, at frequency multiples
of fMAX, small irregularities are found; however, the overall trend is consistent with the
ideal reference, and this denotes that there is a correct combination of all the necessary
components. The only aspect that merits some further investigation concerns the peak
found at the minimum frequency fMIN .

The corresponding result obtained in the time domain is very interesting. For ease of reading,
in each of Figures 11a, 12a and 13a are reported the reference trend of each of the three functions
h1(t), h2(t), and h3(t) considered, respectively, shown as compared with those obtained by the
identification Procedures 1, 2, and 3, plotted in Figures 11b–d, 12b–d and 13b–d, respectively.
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Figure 11. Function h1(t): Comparison of (a) the reference trend with those obtained by (b) iden-
tification Procedure 1 (swept-sine range from fMIN to fMAX and matched filter range from fMIN

to fMAX); (c) identification Procedure 2 (swept-sine range from fMIN to fMAX and matched filter
range from fMIN to OrdMax ∗ fMAX); (d) identification Procedure 3 (swept-sine range from fMIN to
OrdMax ∗ fMAX and matched filter range from fMIN to OrdMax ∗ fMAX).
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Figure 12. Function h2(t): Comparison of (a) the reference trend with those obtained by (b) iden-
tification Procedure 1 (swept-sine range from fMIN to fMAX and matched filter range from fMIN

to fMAX); (c) identification Procedure 2 (swept-sine range from fMIN to fMAX and matched filter
range from fMIN to OrdMax ∗ fMAX); (d) identification Procedure 3 (swept-sine range from fMIN to
OrdMax ∗ fMAX and matched filter range from fMIN to OrdMax ∗ fMAX).
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Figure 13. Function h3(t): Comparison of (a) the reference trend with those obtained by (b) iden-
tification Procedure 1 (swept-sine range from fMIN to fMAX and matched filter range from fMIN

to fMAX); (c) identification Procedure 2 (swept-sine range from fMIN to fMAX and matched filter
range from fMIN to OrdMax ∗ fMAX); (d) identification Procedure 3 (swept-sine range from fMIN to
OrdMax ∗ fMAX and matched filter range from fMIN to OrdMax ∗ fMAX).

The considerations can be made cumulatively with reference to the three figures
considered. Identification Procedure 1, which involves a significant limitation in the
bandwidth of the identified function and an abrupt jump in the amplitude response at
fMAX , leads, in all cases considered, to an increase in the duration of the initial peak and to
a strongly oscillating trend in the response over time.

In the case of identification Procedure 2, it is not so much the band limitation that
makes its effects on the time course, but the irregularities, which are observed in the ampli-
tude response, are reflected in irregularities in the time course and, again, in oscillations in
the response.

Only identification Procedure 3, in all the cases considered, provides an adequate
ability to regain the time course of the functions considered, and thus, a correct identification
of the Hammerstein model in both the time and frequency domains. It can be added that
the trends of functions h4(t) and h5(t) lead to essentially equivalent considerations to those
of the three functions h1(t), h2(t), and h3(t) shown in Figures 11–13, respectively.

4. Discussion

The present work addressed the problem of the quality of the estimation of kernels
characterizing the different branches of a Hammerstein model of a nonlinear system, in the
case in which such a model is identified through the PuC technique. First, the work was
concerned with verifying the real existence of the problem and, in particular, the presence
of spurious oscillations at transitions in the time response of the system. To do this, and to
verify that this problem is present in real physical devices, an attempt was made to verify
the existence of the problem through a laboratory experiment. The experiment involved
an ultrasonic system with probes designed to operate in air. An analysis of the results
obtained by modeling the real physical system through a Hammerstein model showed that
the impulsive responses of the various filters entering into the model’s characterization
do indeed exhibit precursors, in the form of oscillations that anticipate the theoretically
calculated instant of attack. It was hypothesized that the presence of such oscillations was
associated with the Gibbs phenomenon, which motivated us to analyze possible limitations
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of the frequency band covered by the characterization of the different impulse responses
of the filters that constitute the kernels of the Hammerstein model. This analysis of the
frequency bands was carried out by rewriting the PuC procedure in the frequency domain
and observing how the final result, i.e., the Hk(ω) functions, were obtained by linearly
combining the Gi(ω) functions, which, in turn, were obtained through the convolution
between the response of the nonlinear system to an exponential swept-sine signal and the
filter matched to that signal.

Because of the way the matched filter was defined in the present case (optimized for
additive white Gaussian noise), the convolution with the matched filter was equivalent to
the correlation function of the response of the nonlinear system with the signal at its input.

If the signal at the input and the matched filter both had infinite bands, the correlation
would extend over the entire frequency range; since the bands are limited, the frequency
band in which the correlating signals overlap, i.e., the band in which the procedure al-
lows the definition of the Gi(ω) functions, depends on the frequency bands in which the
input signal and the matched filter are defined. In addition, it can be observed that the
combination of Gi(ω) functions occurs through matrices whose upper triangular structure
means that the Hk(ω) functions of low K index, which are in most cases energetically more
significant, are obtained by combining more Gi(ω) functions than for the Hk(ω) functions
of high K index. This implies that if Gi(ω) functions are defined in frequency bands that
are inconsistent with each other, the Hk(ω) functions that will be most affected will be
those that are energetically more significant. Figures 6–8 graphically represent the effect
of frequency band limitations in the estimation of Gi(ω) functions. An analysis of the
schematizations shown in these figures shows that in order for the Gi(ω) functions to
ensure that the frequency band covered by the correlation, for all K indices, is the necessary
one, both the exponential swept-sine signal as input and the matched filter must be defined
in the frequency band from fMIN to OrdMax∗ fMAX .

To verify that the analysis performed was correct, a specific experiment was designed.
The experiment had to be able to compare the result obtained through PuC identification
with the ideal result. To have such an ideal reference available, we chose to adopt a simu-
lated experiment in which the nonlinear system was realized according to the Hammerstein
model scheme. In this way, what kernel trends are expected to be estimated by the PuC
identification system were known. The Results section describes the nonlinear system simu-
lator and the results of the identification by means of the PuC procedure. The simulator was
realized using a fifth-order Hammerstein system, placing on the five branches in parallel,
linear filters whose parameters are given in Table 1, and whose amplitude and impulse
responses are shown in Figure 9. Figure 10 shows, in terms of the amplitude responses
of the five filters, the comparison between the ideal trends and the trends obtained by
adopting the PuC procedure with three different choices of the frequency bands of the
input signal and the matched filter. The reported result highlights the correctness of the as-
sumptions made about the necessary bands. Only in the case in which both the exponential
swept-sine signal at the input and the corresponding matched filter have frequency band
ranging from fMIN to OrdMax∗ fMAX , are all five amplitude response trends obtained by
PuC identification reasonable estimates of the ideal trends across the whole useful band.

Figures 11–13 show similar results in the time domain, comparing, in each figure,
the ideal impulse responses and those obtained with the three choices of the frequency
bands of the input signal and of the corresponding impulse response of the matched filter.
Figures 11–13 show the comparison of the results over time for the impulse responses h1(t),
h2(t), and h3(t), respectively. The time-domain analysis also confirms all the assumptions
made. The best approximation always occurs when the chosen frequency bands range from
fMIN to OrdMax∗ fMAX and, in the case of different choices for frequency bands, the trends
of the lowest index hk(t) functions are most strongly affected by this frequency limitation.
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5. Conclusions

The present work focused on the quality of Hammerstein model identification, espe-
cially in the case in which high quality identification in the time domain is of interest. In
this paper, we focused on an aspect observed in experiments, but on which the technical
literature had not dwelt, i.e., the frequency band of the impulsive signals that are estimated
through the PuC procedure as kernels that characterize the Hammerstein model. The
analysis performed showed that the frequency band of the estimated signals was directly
related to the frequency band of the exponential swept-sine test signal placed as input
in the identification phase and to the band of the impulse response of the matched filter
corresponding to that input signal. In the real case, both the test signal placed as input and
the filter matched to that input signal are characterized by limited frequency bandwidths.
This limitation is reflected in limitations that may not be homogeneous in the frequency
bands of the impulsive signals being estimated.

The results obtained confirmed all the assumptions made in the paper. It is intended
to continue research in this area to clarify the reason for the peak found at the minimum
frequency, fMIN , of the estimated kernels. In addition, we paln to extend this research
activity along two lines: The first extension is to apply this criterion for choosing signal
bands to some of the applications already addressed with Hammerstein models identified
through the PuC technique. The second line of evolution of the research activity will
be to test the possibility of defining procedures to improve the kernel estimation where,
for practical reasons, it is not possible to extend the bandwidth of the input signal or of
the matched filter to the optimal limit, and therefore, to prevent the effects of bandwidth
limitations from being uncontrolled, and to test whether it is possible to limit negative
effects on model identification.
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