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Abstract: Domain-generalized few-shot text classification (DG-FSTC) is a new setting for few-shot
text classification (FSTC). In DG-FSTC, the model is meta-trained on a multi-domain dataset, and
meta-tested on unseen datasets with different domains. However, previous methods mostly construct
semantic representations by learning from words directly, which is limited in domain adaptability. In
this study, we enhance the domain adaptability of the model by utilizing the distributional signa-
tures of texts that indicate domain-related features in specific domains. We propose a Multi-level
Distributional Signatures based model, namely MultiDS. Firstly, inspired by pretrained language
models, we compute distributional signatures from an extra large news corpus, and we denote these
as domain-agnostic features. Then we calculate the distributional signatures from texts in the same
domain and texts from the same class, respectively. These two kinds of information are regarded as
domain-specific and class-specific features, respectively. After that, we fuse and translate these three
distributional signatures into word-level attention values, which enables the model to capture infor-
mative features as domain changes. In addition, we utilize domain-specific distributional signatures
for the calibration of feature representations in specific domains. The calibration vectors produced by
the domain-specific distributional signatures and word embeddings help the model adapt to various
domains. Extensive experiments are performed on four benchmarks. The results demonstrate that
our proposed method beats the state-of-the-art method with an average improvement of 1.41% on
four datasets. Compared with five competitive baselines, our method achieves the best average
performance. The ablation studies prove the effectiveness of each proposed module.

Keywords: domain-generalized few-shot learning; text classification; distributional signature;
meta-learning

1. Introduction

Text classification [1,2] is a fundamental and crucial part of the NLP community. With
the growth of deep neural networks, researchers have begun to focus on how to extend
good classification performance to scenarios with only a small amount of labeled data.

Inspired by the advances of few-shot learning in CV [3,4], many studies [5,6] have
leveraged the meta-learning based framework to tackle few-shot text classification (FSTC).
Ohashi et al. [7] proposed a self-attention based encoder and a mutual information based
loss function to obtain high-quality prototype representation. Sun et al. [8] proposed a
data augmentation algorithm, which randomly generates instances within the smallest
enclosing ball, to promote meta-learning methods. Unlike methods that learn directly from
words, Bao et al. [9] proposed DS-FSL, which learns word importance via distributional
signatures of texts. Distributional signatures mean characteristics of text distribution. A
well-known instance of using these signatures is TF-IDF, which models the weights of words
by their frequencies—a kind of explicit distributional signatures. These characteristics of
text distribution imply underlying semantic knowledge, and their behaviors are consistent
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across classes. Bao et al. [9] suggest that learning from distributional signature is much
more effective to generalize across different classes than directly learning from words.

However, the above approaches follow the in-domain setting. This setting assumes
that the meta-training and meta-testing data are in the same data distribution, which is not
feasible in real-world applications. Consequently, some researchers have begun to extend
FSTC to a cross-domain setting. Zhang et al. [10] presented cross-domain few-shot text
classification (CD-FSTC). In CD-FSTC, meta-training is conducted on one dataset in a single
domain, and meta-testing on another in a different domain. Wang et al. [11] supposed that
a meta-training dataset with only a single domain in CD-FSTC limits the generalization
ability of the model, and proposed domain-generalized few-shot text classification (DG-
FSTC). DG-FSTC replaces the single-domain dataset with a multi-domain dataset as the
base dataset for meta-training. The meta-learning framework enables models to learn
how to learn across different domains. Compared with conventional FSTC and CD-FSTC,
DG-FSTC effectively improves the domain adaptability of the model, and is much closer to
real application scenarios.

Currently, the DG-FSTC problem is still challenging for previous FSTC methods. Di-
rectly applying the FSTC methods to DG-FSTC will inevitably suffer from performance
degradation. This is because the feature distribution changes significantly as the domain
varies. The distribution variation makes those methods that learn directly from words
struggle to capture discriminative features in specific domains under a domain shift. There-
fore, we attempt to enhance the domain adaptability of the model by utilizing features that
reflect specific domain information, such as distributional signatures. We find that in multi-
domain data, the distributional signatures of different domains are highly domain-related.
As shown in Figure 1, we utilize word frequency, an explicit distributional signature, to es-
timate word importance. The results show that, in a specific domain, the most informative
words are highly domain-related. For instance, in travel domain, ‘flight’ and ‘translate’ are
two of the most informative words. In a nutshell, the distributional signatures of texts are
solid and annotation-free to reflect the word importance in specific domains.
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Figure 1. Word importance estimation on multi-domain data (Clinc150 [12]) using word frequency [13].
We list the top two words for each domain. The darker the color, the more important the word.

Consequently, this study introduces the distributional signature to solve DG-FSTC
problem and propose a model based on Multi-level Distributional Signatures, namely
MultiDS. MultiDS utilizes hierarchical distributional signatures to generate knowledge from
three aspects, which are domain-agnostic, domain-specific, and class-specific, to improve
the classification performance of the model under domain shift. Firstly, we argue that even
textual representations of different domains have a kind of general and domain-agnostic
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features. Inspired by pretrained language models, we compute distributional signatures
on a large news dataset containing information from multiple domains. The computed
distributional signatures are used as the domain-agnostic features. Secondly, since the
distributional signatures of different domains indicate specific domain information, we
compute distributional signatures from texts of the same domain in each episode. These
distributional signatures are treated as the domain-specific features. Thirdly, distributional
signatures of different categories also show class-level differences, which can be used
to model class-level word importance. In each episode, we calculate the distributional
signatures of each class as class-specific features. After obtaining multi-level distributional
signatures, we apply neural networks to translate them into word-level attention weights,
which is able to help the model focus on informative features in different domains. In
addition to utilizing distributional signatures to generate word importance, information
indicated by distributional signatures are also beneficial in correcting feature distributions
of different domains. Concretely, we think that domain-specific distributional signatures
are also beneficial for neural networks to fit the feature distribution of specific domains.
Therefore, we fuse domain-specific distributional signatures and word embeddings to
generate instance-level calibration vectors. These calibration vectors effectively enable the
model to adapt to different feature distributions. MultiDS thus obtains strong domain
adaptability based on multi-level distributional signatures.

In summary, the main contributions of this study are as follows:

• We propose a simple yet powerful method based on multi-level distributional sig-
natures to produce high-quality word-level attention values under domain shift. A
large news corpus is firstly used to calculate domain-agnostic distributional signatures.
Secondly, we compute domain-specific and class-specific distributional signatures
from texts of the same domain and category, respectively. As a result, domain-adaptive
word-level attentions are derived by translating multi-level distributional signatures
using deep neural networks;

• We propose a domain calibration method based on domain-specific distributional
signatures. By modeling the domain information indicated by domain-specific distri-
butional signatures, the calibration method generates instance-level calibration vectors
that are used to help the model fit the feature distributions of specific domains;

• We conduct extensive experiments on four datasets. The experimental results illus-
trate that our method outperforms the state-of-the-art method in DG-FSTC by 1.41%
on average. Our method achieves the best average performance compared to five
competitive baseline methods. Compared with DS-FSL [9], our method achieves an
average improvement of 4.79%.

2. Preliminaries
2.1. Meta-Learning for Few-Shot Learning

In order to learn how to learn in the absence of a large number of annotated samples,
some studies have introduced meta-learning framework to deal with the few-shot problem.
The meta-learning framework simulates few-shot scenarios using a small amount of data,
also referred to as an N-way-K-shot task. An N-way-K-shot task consists of N randomly
selected classes, with each class containing K + Q samples randomly sampled. It is called
a labeled support set for the N × K samples, and an unlabeled query set for the N × Q
samples. For each N-way-K-shot task, which is also called an episode, the model is trained
with the annotated support set and tested on the query set. Using a number of episodes
for meta-training, the model can learn how to learn in the low-resource scenario. When
the meta-training is complete, a large number of N-way-K-shot tasks are sampled during
meta-testing to evaluate the model performance.

2.2. Related Work

In this subsection, we introduce few-shot text classification, cross-domain few-shot text
classification, domain-generalized few-shot text classification as well their recent trends.
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2.2.1. Traditional Few-Shot Text Classification

Meta-learning based FSTC adopts the in-domain setting, which means that, in FSTC,
the models are meta-trained and meta-tested on the data from the same distribution. FSTC
ignores the distribution differences between meta-training and meta-validation data. This
limits the application of FSTC to scenarios where new domain data emerges.

Two types of methods are always adopted to solve FSTC. The first one is transfer learning
based methods [14–16]. These methods utilize specific algorithms to finetune pretrained lan-
guage models to adapt to target data with few labeled samples. Wang et al. [17] leveraged two
prompt encoders to learn task-agnostic and task-related features. They then design a task-level
debiasing algorithm to alleviate task-level overfitting. Zhang et al. [18] proposed a contrastive
pretraining algorithm, which reduces the distance between similar samples and enlarges the
distance between samples from different classes simultaneously. Zhang et al. [19] suppose that
a small set of annotated intent data makes a strong intent classification model. They pretrain
their model on two intent datasets in a supervised manner, and further enhance the model via
masked language modeling loss on target data.

The second type of methods is based on meta-learning framework. In this frame-
work, models gradually learn to tackle few-shot problems through various N-way-K-shot
classification tasks. Chen et al. [20] introduced the self-supervised objective function to
learn discriminative semantic representation. Besides, they designed an unsupervised
contrastive regularization to prevent overfitting at both task-level and instance-level. Luo
et al. [21] suggested that the rich semantic information of labels helps meta-learners extract
discriminative features. They simply augment feature representation by concatenating
sentences with their corresponding labels.

2.2.2. Cross-Domain and Domain-Generalized Few-Shot Text Classification

In order to apply FSTC to real scenarios, Zhang et al. [10] proposed cross-domain
few-shot text classification. CD-FSTC emphasizes the domain differences between meta-
training and meta-testing data. It means that models are meta-trained and meta-tested on
datasets in different domains. To solve CD-FSTC, they present a baseline method, which
firstly conducts supervised pretraining for the model on the base dataset and then induces
the classifier with few labeled samples.

Although CD-FSTC recognizes the importance of distribution differences between
meta-training and meta-testing data, the way CD-FSTC models are trained on a single-
domain dataset limits the generalization ability of the model. On the basis of CD-FSTC,
Wang et al. [11] proposed a more promising setting, domain-generalized few-shot text
classification. In addition to requiring different distributions between training and testing
data, DG-FSTC uses a multi-domain dataset for meta-training. The combination of a
meta-learning framework and a multi-domain dataset enables DG-FSTC models to learn
better domain-agnostic meta-knowledge. Wang et al. [11] also designed a simple model
that leverages two N-way-K-shot tasks in each episode to learn an enhanced domain
knowledge generator.

3. Problem Definition

In this work, we focus on the DG-FSTC setting to solve few-shot problems. In DG-
FSTC, models are meta-trained on a multi-domain dataset Dtrain = {di}A

i=1. A is the
numbers of domains. In each episode during meta-training, an N-way-K-shot task is sam-
pled from a random domain. Each sampled task t = {ts, tq} = {(xs

n, ys
n)

N×K
n=1 , (xq

m, yq
m)

N×Q
m=1 }

contains data from N classes and each class contains K + Q sentences, Then t is divided
into support set ts = {(xs

n, ys
n)

N×K
n=1 } and query set tq = {(xq

m, yq
m)

N×Q
m=1 }. The goal in each

episode is to classify the unlabeled query set using the labeled support set. The model is
updated by minimizing the following objective, as shown in Equation (1),

Lce = − log(p(yq|xq; ts, θ)), (1)
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where θ is the parameter of the model; p(yq|xq; ts, θ) denotes the probability of query set
sample xq belonging to label yq and Lce is the cross entropy loss. After meta-training,
models are meta-tested on the dataset Dtest with single or multiple domains. DG-FSTC
expects that the models can learn transferable meta-knowledge on multi-domain datasets,
then generalize to emerging classes from unseen domains. The notations in this study are
listed in Table 1.

Table 1. Notations and explanations.

Notation Explanation
N Number of class in an N-way-K-shot task
K Number of instance for each class in support set
Q Number of instance for each class in query set
t An N-way-K-shot task
ts Support set
tq Query set
x Instance
y Label
θ Model parameter

Dtrain Dataset for meta-training
Dtest Dataset for meta-testing

w Word sequence
e BERT embedding

s(·) General word importance matrix
d(·) Preliminary word weight matrix
g(·) Hidden state

att(·) Attention matrix
W Weight
z Bias
I Identity matrix
ŷ One-hot label
η Hyperparameter

α, β, µ, φ, ε Learnable parameter
r Sentence representation

d f Domain feature
cal Calibration vector

4. MultiDS Model

The main idea of this study is to empower DG-FSTC by introducing multi-level
distributional signatures, which indicate rich and hierarchical information. To take full
advantage of the power of distributional signatures, in our method, we mainly propose the
following two modules.

• Hierarchical attention generator via multi-level distributional signatures (Section 4.2):
We utilize three levels of distributional signatures, which are domain-agnostic, domain-
specific, and class-specific, to approximate hierarchical word importance. To denoise
distributional signatures and get more accurate attentions, this generator is devised to
translate different levels of distributional signatures into word-level attention weights;

• Domain calibrator via domain-specific information (Section 4.3): In addition to access-
ing word importance, a domain calibrator is applied to calibrate sentence-level feature
representations. By generating calibration vectors using domain-related information,
this calibrator guides the model to adapt to specific domain distributions.

Overview: As illustrated in Figure 2, our method is divided into following steps: (1) we
construct word embeddings by pretrained language model, BERT, in Section 4.1; (2) we calculate
multi-level distributional signatures, and convert them to word-level attentions by hierarchical
attention generator in Section 4.2; (3) we calibrate the feature representations by generating
calibration vectors from domain-specific distributional signatures in Section 4.3; (4) we apply a
ridge regressor as the classifier to categorize query samples in Section 4.4.
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Figure 2. (a) The workflow of MultiDS model. (b) Hierarchical attention generator. (c) Domain calibrator.

4.1. Text Encoder

In our work, we choose BERT [22] as the text encoder for its formidable semantic
representation. Due to pre-training on massive data, BERT excels at expressing and under-
standing textual information. Given an input sequence w = {w1, w2, · · · , wl}, the word
embedding is derived according to Equation (2),

e = BERT(w), e ∈ Rl×h1 , (2)

where l denotes the length of the sequence and h1 is the dimension of BERT embedding.

4.2. Hierarchical Attention Generator via Multi-Level Distributional Signatures

In order to facilitate model’s adaptation to various domains, we propose to utilize
multi-level distributional signatures to generate hierarchical and domain-adaptive atten-
tions. We find that different levels of distributional signatures exhibit hierarchical char-
acteristics. A well-known point in recent years is that there are some general semantic
features that can also be used to process other data, such as applying a pretrained model
to downstream tasks. Consequently, we propose domain-agnostic attention, which can
be transferred to various domains. Besides, distributional signatures in the same domain
or category also contain rich semantic information. A good example is the phenomenon
that the word frequency of data in the same domain shows unique characteristics that
are relevant to that domain information. Similarly, data from the same category shows
characteristics specific to that category. Based on the above phenomenons, we propose
domain-specific attention and class-specific attention to help the model understand discrim-
inative information at the domain- and class-level. In addition, to fuse three different levels
of attentions and reduce informative redundancy, an attention fusion module is devised.

4.2.1. Domain-Agnostic Attention

Inspired by the paradigm of applying pre-trained models to downstream tasks, we
believe that distributional signatures computed from large amounts of data can also be
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transferred to specific domains as domain-independent features. Specifically, we use a
document-level news dataset, 20 Newsgroups [23], to calculate domain-agnostic distri-
butional signatures. As shown in Table 2, 20 Newsgroups contains news articles from 6
domains, roughly including computers, recreation, science, politics, religion, and for-sale.
This multi-domain document-level dataset enables the model to obtain general distribu-
tional signatures without domain bias.

Table 2. Statistics of 20 Newsgroups.

Example Token/Example Vocab Domain Example/Domain Class

18,828 340 32,137 6 3138 20

Here, we leverage explicit distributional signatures, which mean word frequency, to infer
word weights. The frequency of words appearing in documents is a kind of natural and
annotation-free feature that effectively implies words importance in low-resource scenarios.
For instance, frequently used words such as ’the’, ’a’, etc., are often considered less important,
while those that rarely appear often contain more discriminative information.

Firstly, given a word sequence wnews in 20 Newsgroups, our approach is to utilize an
existing method [13] to make a rough estimate of word weights via word frequency in
Equation (3),

sa(wnews
i ) =

η

p(wnews
i ) + η

, (3)

where p(wnews
i ) is the unigram likelihood of the i-th word over the dataset; η is a hyperpa-

rameter; sa(wnews
i ) represents the noisy weight of the i-th word. sa(·) represents a mapping

from words (within vocabulary) to their corresponding weights. According to the above
hypothesis, the sa(·) computed from a large document-level dataset contains generalized
semantic knowledge that can be applied to the processing of other texts.

As the second step, we devise an attention translator that translates coarse word
weights into fine-grained word-level attentions. Our attention translator consists of two
components, a multi-layer perceptron (MLP) and a bidirectional LSTM (BiLSTM). Given an
input sequence wa, the MLP projects coarse word weights into a higher-dimensional space
in Equation (4). Weights with higher dimensions contain richer semantic information.

da(wa) = Wattsa(wa) + zatt, (4)

where Watt, zatt are weight and bias of the MLP; da(wa) =
{

da(wa
1), · · · , da(wa

i ), · · · , da(wa
l )
}

are higher-dimensional word weights, and da(wa
i ) means weight of the i-th word wa

i . Since
each word weight is contextually affected, we employ a BiLSTM, which is adept at processing
sequence information, to further encode these weights in Equations (5)–(7), so that each word
weight implies the correlation between contextual information.

→
ga(wa) =

→
LSTM

({
da(wa

1), da(wa
2), · · · , da(wa

l )
})

(5)

←
ga(wa) =

←
LSTM

({
da(wa

1), da(wa
2), · · · , da(wa

l )
})

(6)

atta(wa) = ga(wa) = [
→

ga(wa);
←

ga(wa)] (7)

The bidirectional hidden states
→

ga(wa) and
←

ga(wa) are calculated by Equations (5) and (6)
using coarse word weights, respectively. Equation (7) concatenates two hidden states to get
domain-agnostic attentions.
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4.2.2. Domain-Specific Attention

In addition to domain-agnostic features, we are convinced that domain-related in-
formation is essential to guide the model in adapting to different domains. Since each
N-way-K-shot task in DG-FSTC comes from a random domain, we propose to utilize the
distributional signatures of each task to calculate domain-related information. However,
each N-way-K-shot task contains only a small amount of data, and it is highly inaccurate to
derive domain-related information using the word frequency of each small task. Conse-
quently, we utilize a new policy to learn from distributional signatures. On the one hand, to
capture more discriminative features with limited data, ridge regression is introduced, as
shown in Equations (8) and (9), which admits a closed-form solution. On the other hand, we
choose implicit distributional signatures, word embeddings, to infer word weights, which
is more robust than explicit distributional signatures in low-resource scenarios. Given word
sequences for an N-way-K-shot task wb as well their BERT embeddings eb ∈ RN(K+Q)×l×h1 ,
we derive the noisy attentions, which indicate domain information, below.

Wb
rr(w

b) = ebT
(ebebT

+ εI)
−1

ŷb, (8)

sb(wb) = max
(∣∣ebWb

rr(w
b)
∣∣), (9)

where ε is a hyperparameter; I denotes the identity matrix; ŷb means the one-hot labels of wb.
In Equation (8), domain-specific features are extracted from texts of the same domain using
ridge regression. Equation (9) derives noisy attentions by performing the multiplication of
word embeddings with the weight matrix and calculating the most significant features in
the product.

After that, we utilize our attention translator to produce accurate domain-specific
attentions in Equations (10) and (11). According to Equation (10), the MLP is employed to
project noisy attentions sb(wb) into higher-dimensional space.

db(wb) = Wattsb(wb) + zatt, (10)

where db(wb) =
{

db(wb
1), db(wb

2), · · · , db(wb
l )
}

denote word weights with higher-dimension.
According to Equation (11), we derive the domain-specific attentions after encoded by BiLSTM.

attb(wb) =
[ →
LSTM

(
db(wb)

)
;
←

LSTM
(

db(wb)
)]

(11)

4.2.3. Class-Specific Attention

Apart from general semantic information and domain-specific information, class-
specific information can also enhance the classification performance of models on multi-
domain data. Unlike the way domain-specific information is processed, we calculate
class-specific information using the support set in an N-way-K-shot task. It is considered
that class-specific features extracted from the support set are applicable to the query set of
the same task.

Given the support set in an N-way-K-shot task wc and its BERT embeddings ec ∈
RNK×l×h1 , the class-specific features are derived utilizing the ridge regression in Equation (12).
The coarse attentions are obtained in Equation (13) by computing the most significant informa-
tion in the product of class-specific features and word embeddings.

Wc
rr(w

c) = ecT(ececT + µI)
−1

ŷc, (12)

sc(wc) = max
(∣∣ecWc

rr(w
c)
∣∣), (13)

where µ is a trainable parameter and ŷc denotes the one-hot labels of wc.
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Similarly, we use an MLP to project coarse attentions into higher-dimensional space and

get word weights dc(wc) =
{

dc(wc
1), dc(wc

2), · · · , dc(wc
l )
}

in Equation (14). In Equation (15),
a BiLSTM is utilized to encode word weights into class-specific attentions.

dc(wc) = Wattsc(wc) + zatt (14)

attc(wc) =
[ →
LSTM(dc(wc));

←
LSTM(dc(wc))

]
(15)

4.2.4. Attention Fusion

After obtaining hierarchical attention weights, we design a neural module to fuse
different levels of attentions. Due to the informative redundancy between different levels
of attentions, simply concatenating them will harm the effect of hierarchical attentions. To
alleviate the informative redundancy between different levels of attentions, consequently,
an MLP is firstly employed to extract discriminative features from the concatenated multi-
level attentions in Equation (16).

˜att = W f u[attb; attb; attc] + z f u, (16)

where W f u and z f u mean the weight and bias of the MLP.
We then use softmax function to convert attention features into word-level attention

scores in Equation (17).

att = softmax( ˜att) (17)

Given a word sequence in an N-way-K-shot task w as well its word embeddings e ∈ Rl×h1 ,
we construct the sentence representation via word-level attentions in Equation (18).

r =
l

∑
i=1

att(wi) · ei (18)

4.3. Domain Calibrator via Domain-Specific Information

In addition to deriving word importance from distributional signatures, we also
focus on applying domain-specific distributional signatures to help the models adapt to
specific feature distributions. In DG-FSTC, as each task comes from a different feature
distribution, it is imperative for models to adapt effectively to various distributions. We
propose to leverage features that indicate domain information, which are domain-specific
distributional signatures and word embeddings, to calibrate feature distribution. Domain-
specific attentions are regarded as features calculated from domain-specific distributional
signatures. Besides, given a sequence in an N-way-K-shot task w and the embeddings e,
we extract deep domain features from word embeddings of the same task by a BiLSTM in
Equation (19).

d f =
[ →
LSTM(e));

←
LSTM(e))

]
(19)

An MLP is then employed to fuse these two types of domain information, the domain
features and domain-specific attentions, in Equation (20). We choose the most significant
features from the fused results as the sentence-level calibration vectors.

cal = max(Wcal [d f ; attb] + zcal), (20)

where Wcal and zcal are the weight and bias of the MLP.
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Finally, we enhance the sentence representation via the calibration vectors and derive
the final representation in Equation (21).

r̃ = r · cal (21)

4.4. Ridge Regression Classifier

Here, we also use ridge regression [24] as a classification function due to its superiority
in preventing overfitting. We let the final representation of the support set and query
set be s ∈ RNK×h1 and q ∈ RNQ×h1 , which are processed by hierarchical attentions and
calibration vectors.

Firstly, we train the ridge regression with the annotated support set in Equation (22).

Wrr = sT(ssT + φI)
−1

ŷs, (22)

where φ is a trainable parameter, and ŷs represents the one-hot label of the support set.
Secondly, as shown in Equation (23), the classifier is optimized by the following

regularized squared loss.

Lrr = ‖Wrrs− ŷs‖2
F + φ‖Wrr‖2

F, (23)

where ‖ · ‖F denotes Frobenius norm.
Thirdly, the well-trained classifier is applied to categorize the query set samples. The

classification loss based on cross entropy is derived in Equation (24).

Lcls = CE(α ·Wrrq + β, yq), (24)

where CE(·) represents the cross entropy function; α and β are trainable parameters; yq

means the true label of the query set.
The training procedure of MultiDS is concluded in Algorithm 1.

Algorithm 1 The training procedure of MultiDS

Require: Model parameter θ; Meta-training episode epi; Dataset for meta-training Dtrain;
Number of class N; Number of instance for each class in support set K; Number
of instance for each class in query set Q; An N-way-K-shot task t = {ts, tq} =

{(xs
n, ys

n)
N×K
n=1 , (xq

m, yq
m)

N×Q
m=1 }; Precomputed general word importance matrix sa(·);

Ensure: Trained model parameter θ;
1: Randomly initialize model parameter θ;
2: for each i ∈ [1, epi] do
3: Randomly sample an N-way-K-shot task t = {ts, tq} from Dtrain;
4: Compute BERT embeddings of t by Equation (2);
5: Compute domain-agnostic attentions via general word importance matrix sa(·) in

Equations (4)–(7);
6: Compute domain-specific attentions by Equations (8)–(11);
7: Compute class-specific attentions by Equations (12)–(15);
8: Fuse three kinds of attentions and derive hierarchical attentions by Equa-

tions (16) and (17);
9: Construct domain calibration vector via word embeddings and domain-specific

attentions by Equations (19) and (20);
10: Train the classifier with support set ts = {(xs

n, ys
n)

N×K
n=1 }, and classify query set

instance tq = {(xq
m, yq

m)
N×Q
m=1 } by Equations (22)–(24);

11: Update θ by minimizing classification loss in Equation (24);
12: end for

5. Experiments

In this section, we evaluate the effectiveness of our proposed method through compre-
hensive experiments. In Section 5.1, we firstly detail the setup of the experiments, including
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the datasets we choose, the baselines for comparison, and the details of the implementation.
Secondly, we present the results of our method compared to multiple baselines on several
datasets, and draw conclusions based on the experimental results in Section 5.2. Thirdly,
ablation studies are conducted to explore the effectiveness and importance of key modules
in our model in Section 5.3. Fourthly, we verify the stability of our method in more N-way-
K-shot settings in Section 5.4. Finally, we present the computational overhead analysis for
all methods in Section 5.5.

5.1. Experimental Setup
5.1.1. Datasets

We select the following five public datasets for the experiments.

• Clinc150 [12] is a multi-domain dataset for intent detection. It contains a total of 22,500
sentences from 10 domains. Each domain contains 150 classes;

• Banking77 [25] is a single-domain dataset with 77 fine-grained categories. These
categories all belong to the banking domain;

• Huffpost [26] contains news headlines published on HuffPost from the year 2012 to
2018. These headlines cover a wide range of news varieties;

• Hwu64 [27] is also a multi-domain dataset, which contains fine-grained intents from
21 domains;

• Liu57 [27] contains 54 imbalanced categories. It brings challenges for models to reduce
overfitting on major categories.

Details of the above datasets are shown in Table 3.
In DG-FSTC, we use a multi-domain dataset, Clinc150, for meta-training. The other differ-

ent types of datasets are used to evaluate model performance. For instance, Clinc→Huffpost
denotes meta-training on Clinc150 and meta-testing on Huffpost.

Table 3. Dataset statistics. unk denotes unknown.

Dataset Domain Class Example Token/Example

Dataset for meta-training Clinc150 10 150 22,500 150 (±0)

Dataset for meta-testing

Banking77 1 77 13,083 170 (±31)
Huffpost unk 41 36,900 900 (±0)
Hwu64 21 64 11,036 172 (±40)
Liu57 unk 54 25,478 472 (±823)

5.1.2. Baselines

In order to demonstrate the effectiveness of MultiDS, we select five competitive
approaches as baselines to compare with the proposed method.

• ProtoNet [4]: This algorithm is a strong baseline for meta-learning based methods. Pro-
toNet proposes to average samples of the same class to obtain class center. It classifies
samples based on distances between each class center and samples in feature space;

• HATT [28]: This model improves ProtoNet by a two-step attention mechanism, which
is composed by feature-level and instance-level attentions. Feature-level attention fo-
cuses on more informative features. Instance-level attention assigns different weights
to instances according to their significance;

• DS-FSL [9]: This approach firstly introduces distributional signatures into few-shot
learning. It proposes to utilize precomputed distributional signatures as word weights
and constantly update them to fit different data;

• MLADA [29]: This method combines adversarial learning with few-shot learning to
solve the cross-domain problem in few-shot learning. The core idea is to produce
knowledge by a generator to enhance the domain adaptability;
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• DualAN [11]: This method is an improved version of MLADA. It enhances adversarial
learning by introducing high-quality and stable data. These data come from two
N-way-K-shot tasks from different domains.

5.1.3. Implementation Details

Parameter settings for model training and network architecture are given in Table 4. We
choose the BERT-base-uncased version released by Hugging Face (https://huggingface.co/
accessed on 27 December 2017) as the BERT encoder. We replace word embeddings of all
baselines with BERT embedding for fair comparison. For the implementation of ProtoNet,
we employ a CNN with a global max-pooling after the BERT encoder.

Table 4. Parameter settings for model training and network architecture.

Parameter Value

Meta-training episode 5000
Meta-validation episode 100

Meta-testing episode 1000
Learning rate 5 × 10−3

Hyperparameter η 1 × 10−5

Hidden size of MLP in attention translator 50
Hidden size of BiLSTM in attention translator 50

Hidden size of MLP in attention fusion 1
Hidden size of BiLSTM in domain calibrator 50

Hidden size of MLP in domain calibrator 768

For the meta-learning setup, we sample 5000, 1000 random tasks for meta-training
and meta-testing. During meta-training, we meta-validate the model every 100 episodes
with 100 tasks randomly sampled. We implement early stopping when the accuracy of 20
consecutive meta-validations do not improve. We select Adam [30] as the optimizer. The
experiments are conducted on a single Geforce RTX 3090 GPU.

5.2. Experimental Results and Analysis

The experimental results of all methods on four dataset are shown in Table 5. Based
on the above results, we get the following four observations.

Table 5. Experimental results of all methods on Clinc→Banking, Clinc→Huffpost, Clinc→Hwu and
Clinc→Liu, respectively. The best and second best results are emphasized using bold fonts and
underlines, respectively.

Model
Clinc→Banking Clinc→Huffpost Clinc→Hwu Clinc→Liu Average

10-Way-1-
Shot

10-Way-5-
Shot

10-Way-1-
Shot

10-Way-5-
Shot

10-Way-1-
Shot

10-Way-5-
Shot

10-Way-1-
Shot

10-Way-5-
Shot

10-Way-1-
Shot

10-Way-5-
Shot

ProtoNet 55.92 78.47 23.41 41.04 64.55 85.15 58.72 76.35 50.65 70.24
HATT 53.13 76.69 24.01 40.06 63.57 83.51 57.77 74.61 49.62 68.72

DS-FSL 53.85 82.13 29.10 46.61 62.70 86.45 57.45 82.17 50.78 74.34
MLADA 60.23 81.02 27.37 39.13 64.38 86.29 61.63 83.43 53.40 72.47
DualAN 63.98 85.61 28.88 45.15 66.45 86.43 63.65 82.90 55.74 75.02
MultiDS 63.84 86.29 29.71 48.20 67.72 87.69 65.09 84.99 56.59 76.79

Model
Clinc→Banking Clinc→Huffpost Clinc→Hwu Clinc→Liu Average

15-way-1-
shot

15-way-5-
shot

15-way-1-
shot

15-way-5-
shot

15-way-1-
shot

15-way-5-
shot

15-way-1-
shot

15-way-5-
shot

15-way-1-
shot

15-way-5-
shot

ProtoNet 49.61 73.91 17.60 33.78 58.16 81.10 52.65 69.64 44.51 64.61
HATT 47.60 72.95 18.50 33.20 57.00 79.59 51.28 68.01 43.60 63.44

DS-FSL 44.68 77.04 21.99 36.82 54.61 82.44 51.39 78.94 43.17 68.81
MLADA 54.62 76.79 20.82 32.97 57.47 81.36 54.85 78.44 46.94 67.39
DualAN 58.58 80.87 22.83 35.15 60.98 83.03 58.15 79.77 50.14 69.71
MultiDS 58.37 81.75 23.53 40.97 62.07 84.28 59.38 81.11 50.84 72.03

Our propose method exceeds all baseline methods in most datasets and settings.
Compared to the second best methods, MultiDS achieves an average improvement of

https://huggingface.co/
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2.69%. Compared to the five baseline methods, MultiDS outperforms them by 11.03% in
Clinc→Banking, 4.38% in Clinc→Huffpost, 4.38% in Clinc→Hwu and 6.19% in Clinc→Liu
on average. These above results illustrate the effectiveness and superiority of MultiDS.

Our proposed approach is able to surpass DS-FSL in all datasets and settings, im-
proving by an average of 4.79%. This indicates that, compared to DS-FSL, the hierarchical
attention generator we propose has better domain generalization and adaptability. The
main reason is that MultiDS uses higher quality domain-agnostic attention and domain-
specific attention that can constantly adapt to new domains.

Our proposed method outperforms adversarial learning based methods (MLADA,
DualAN) in most cases, with an average lead of 2.71%. The main reason is that, in the
few-shot scenario, it may be more accurate to directly use distributional signatures (such
as word frequency) to derive word weights than adversarial training. A small amount of
labeled data limits the effectiveness of adversarial training.

The average performance of adversarial learning based approaches (MLADA, Du-
alAN) is superior to that of prototypical network based approaches (ProtoNet, HATT).
Adversarial learning based methods are able to learn domain adaptability through adver-
sarial training. However, when processing multi-domain data, the prototypical network
based method lacks the ability to adapt to different domains, resulting in the generation of
poor-quality class centers, which ultimately leads to the degradation of model performance.

5.3. Ablation Study

Here, to verify the effectiveness of each key module, we present the following variants
of MultiDS.

• −Att: MultiDS without hierarchical attention;
• −Attda: MultiDS without domain-agnostic attention in hierarchical attention generator;
• −Attds: MultiDS without domain-specific attention in hierarchical attention generator;
• −Attcs: MultiDS without class-specific attention in hierarchical attention generator.
• −Cal: MultiDS without domain calibration vector;
• −Cald f : MultiDS without domain features in domain calibrator;
• −Calds: MultiDS without domain-specific attention in domain calibrator.

The experimental results are shown in Table 6. Based on the above results, we come
to the following conclusions. (1) The effect of hierarchical attention is significant. When
it is removed, model performance decreases by an average of 12.27%. This proves the
effectiveness of hierarchical attention. (2) By removing domain-agnostic attention, model
performance decreases by an average of 3.01%. We believe the reason is that the distri-
butional signatures calculated from 20 Newsgroups contain high-quality knowledge of
general semantics. This knowledge covers multiple domains with small domain biases and
is therefore beneficial for processing information in different domains. (3) Domain-specific
attention and class-specific attention also improve model performance. Besides, due to the
relatively small number of domain information and class information in few-shot scenarios,
the power of distributional signatures is limited. (4) Domain calibration vector is beneficial
to model performance, and the average improvements is 0.35%. It proves that domain
calibrator can extract informative features from domain information and domain-specific
attention to calibrate domain distributions.
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Table 6. Ablation studies on Clinc→Huffpost, Clinc→Hwu and Clinc→Liu. The best results are
emphasized using bold fonts.

Model
Clinc→Huffpost Clinc→Hwu Clinc→Liu

10-Way-1-Shot 10-Way-1-Shot 10-Way-1-Shot

MultiDS 29.71 67.72 65.09
−Att 22.86 54.40 48.45
−Attda 27.47 64.82 61.19
−Attds 29.29 67.61 64.82
−Attcs 29.40 67.33 64.83
−Cal 29.59 67.27 64.61
−Cald f 29.42 67.49 64.76
−Calds 29.59 67.58 64.92

5.4. Model Stability Verification in More Scenarios

Here we conduct extensive experiments to explore the performance and stability of
models in more scenarios. The experimental results shown in Tables 7 and 8 illustrate the
stability of our proposed model, which outperforms DS-FSL and DualAN in most cases.
In addition, we have two more discoveries. (1) When K is fixed and N increases, more
categories will increase the difficulty of classification. This requires the model to extract
class-specific features to distinguish them from other categories. MultiDS outperforms other
methods in most cases, indicating that MultiDS has better feature extraction capabilities.
(2) When N is fixed and K increases, the challenge for the models is to focus effectively
on crucial category information. Our model, which learns attention from distributional
signatures, is better able to generalize in the classification task than those learning from
words. MultiDS outperforms other methods in all scenarios, which proves the effectiveness
of our hierarchical attention.

5.5. Computational Overhead Analysis

In addition to model performance, we also focus on the computational overhead of
models. As shown in Table 9, we compare the computational time, including the time for
meta-training and meta-testing, of all the methods. The results show that the total time of
our method is less than that of four baseline methods, and is just a little longer than the
total time of DS-FSL. Compared with DS-FSL, our method is able to significantly improve
model performance with only a small increase in computational cost. This proves that our
model design is reasonable and effective. Besides, our method shows a short inference
time, which makes MultiDS valuable in real-world application scenarios.

Table 7. Model stability verification on Clinc→Liu. The best results are emphasized using bold fonts.

Model
N-Way-5-Shot on Clinc→Liu

N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

DS-FSL 88.34 86.78 85.98 85.08 84.12 82.17
DualAN 90.08 88.64 85.95 86.07 85.16 82.90
MultiDS 90.34 89.08 87.16 86.51 85.69 84.99

Model 10-way-K-shot on Clinc→Liu

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

DS-FSL 57.45 70.90 77.24 80.90 83.43 84.55
DualAN 63.65 74.65 79.67 82.20 82.90 81.48
MultiDS 65.09 75.55 80.37 83.28 84.99 86.03
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Table 8. Model stability verification on Clinc→Huffpost. The best results are emphasized using bold fonts.

Model
N-Way-5-Shot on Clinc→Huffpost

N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

DS-FSL 61.22 57.03 54.70 50.80 48.83 46.61
DualAN 58.45 55.21 52.36 45.97 43.90 45.15
MultiDS 62.12 58.16 53.15 52.64 50.51 48.20

Model 10-way-K-shot on Clinc→Huffpost

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

DS-FSL 29.10 36.43 41.06 44.85 46.61 49.62
DualAN 28.88 35.86 40.11 43.19 45.15 46.45
MultiDS 29.71 37.31 41.78 45.71 48.20 50.10

Table 9. Comparison of the computational time on Clinc→Banking under 10-way-1-shot. The best
and second best results are emphasized using bold fonts and underlines, respectively.

Model Total Time Time for
Meta-Training

Time for
Meta-Testing

ProtoNet 1530 s 1209 s 321 s
HATT 1753 s 1448 s 305 s

DS-FSL 896 s 772 s 124 s
MLADA 1458 s 1219 s 239 s
DualAN 1651 s 1381 s 270 s
MultiDS 1051 s 938 s 113 s

6. Discussion

Here we discuss the potential application scenarios of our proposed method. MultiDS
mainly utilizes distributional signatures of multi-domain data to empower few-shot model
under domain shift. Consequently, MultiDS can be used in scenarios where data come from
multiple domains and is few-labeled, such as fake news detection. Fake news detection
involves information from multiple domains. At the same time, in real-world applications,
fake news often breaks out from some novel domains with few annotations. To solve this
problem, we take the existing fake news detection dataset as the meta-training dataset,
and train our MultiDS model according to Algorithm 1. After meta-training, we use the
emerging news to be detected as the meta-testing dataset and sample a large number of
N-way-K-shot tasks from it. Well-trained MultiDS model can identify fake news from
multiple domains using only a small amount of labeled data.

7. Conclusions

In this study, we propose a multi-level distributional signatures based model, Mul-
tiDS, to solve DG-FSTC problem. Firstly, we propose a hierarchical attention generator to
translate multi-level distributional signatures into high-quality word-level attentions. We
utilize a large news corpus to derive domain-agnostic attention. We extract domain-specific
attention and class-specific attention from domain-related and class-related information
using ridge regression and attention translator. Secondly, we propose a domain calibrator
that uses domain features and domain-specific attention to generate domain calibration
vectors. Experimental results show that our method achieves the best average performance
on four testing datasets. The effectiveness of each module is verified by ablation experi-
ments. In model stability validation, our model can exceed the baseline method in most
cases. In the future, we will try to design better ways to use distributional signatures, not
just word frequency.
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