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Abstract: Extending the maximum driving distance of an electric vehicle would be beneficial given
these vehicles’ long charging time and limited battery capacity and to improve electricity consumption.
Research on the optimal development of the powertrain is essential because the efficiency of an electric
motor varies according to the operating point. In this study, we developed a simulation analysis
model with a continuously variable transmission. based on the commercial electric vehicle (Company
B) model and using actual vehicle driving data supplied by the Argonne National Laboratory. The
shift pattern of the continuously variable transmission was then optimized by considering the change
in the operating point, constant motor output area, and transmission response speed. In addition, a
performance comparison was made using the model with a single reducer. The results obtained by
this study showed that electronic economy improved by approximately 5% when the continuously
variable transmission was applied through the combined driving simulation. Furthermore, the
time taken to accelerate 0–100 km/h and 80–120 km/h reduced by 15% and 6%, respectively. The
maximum driving distance on a single charge improved by 7 km. It was confirmed that the driving
performance of an EV with continuously variable transmission could be improved by downsizing
the electric motor to reduce manufacturing costs.

Keywords: electric vehicle (EV); continuously variable transmission (CVT); transmission ratio;
driving distance per charge; electric economy

1. Introduction

Recently, renewable energy has been considered a key solution to the problems of air
pollution, global warming, and oil price instability. Transportation, as the main consumer of
fuel, is facing a new paradigm in electricity generation. Electric vehicles (EVs) are equipped
with a rechargeable secondary battery and use electricity as a power source. They do not
emit exhaust gas while being driven and produce less noise and vibration than an internal
combustion engine (ICE). Compared with an ICE, the EV has excellent efficiency in urban
areas, where processes, such as idle acceleration, change rapidly owing to the narrow
high-efficiency section in the power operating range. EVs in urban traffic, urban-only EVs,
benefit greatly from regenerative braking.

The disadvantages of EVs include their high price and the short distance travelled on
a single charge. For long-distance travel, the efficiency of EVs decreases as the benefit of
braking is less and the need for more battery energy storage increases [1]. To deal with
these problems, most countries have established an EV subsidy system. Since 2014, this
policy system has reduced the cost of EVs through different subsidy calculations based on
battery efficiency, and this has encouraged the development of more competitive EVs.
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In particular, EV efficiency is expected to be prioritized to reduce carbon emissions
through life cycle assessments. Cheong [2] conducted a comparison of performance, cost,
and emissions of EVs and ICEs in long-distance driving. As a result of the study, it was
confirmed that the greenhouse gas emissions of vehicle manufacturing are similar for EVs
and ICEs, but ICE emissions are about 4.5 times higher than EVs when driving. In addition,
when considering maintenance and energy costs, EVs become cheaper than ICEs when
used for 10.5 years or more. However, it is expected that the cost reduction of EVs will rise
significantly along with the technological development of batteries and electrification.

Therefore, it is necessary to develop and apply various technologies to increase the
efficiency of EVs [3,4]. Compared to EVs, ICEs have a narrow engine operating range,
complex transmissions and couplings with various gear ratios. Therefore, for this reason,
power loss occurs due to the gear ratio in the energy transfer step. In contrast, since the
motors in EVs have wide operating range and high initial torque, it is possible to drive
them with only a simple reducer (transmission). Due to the high initial torque, transients
can be overcome quickly. Currently, most EVs have a fixed single ratio because they operate
more widely than ICEs and can utilize the maximum torque at lower rotational speeds.
Research on the applications of EV transmission is being actively conducted for various
purposes. The transmission in a vehicle gradually expands the driving range of the driving
source and moves the operating point of the driving source to the high-efficiency section,
especially at low speeds, to increase the torque and maximum speed. In the past, the
transmission was an essential component of vehicles with an ICE. However, in the case of
EVs, the operation range is wider than that of an ICE, and the efficiency is generally high
in the entire range; hence, only a single reducer is applied. However, owing to the recent
expansion of the EV market, manufacturers, such as Porsche (Taikan) and Bosch (CVT4EV),
have increased their research on EV transmission to remain competitive.

Automotive transmissions are divided into manual and automatic transmissions.
These include clutch-type manual transmission (MT), torque converter automatic transmis-
sion, automatic manual transmission, dual-clutch transmission, and continuously variable
transmission. Unlike other transmissions, the CVT does not require multiple gears to
implement each shift stage; hence, it has a small volume and does not lose power with
changes in the gear ratio. These factors ensure smooth acceleration, which is an advantage
of EVs.

CVTs are divided into push-type CVTs that use belts, pull-type CVTs that use chains,
and friction-type, tidal type, and E-CVTs that use planetary gears. According to the
operating principle of the belt-type CVT, the belt connects the driving pulley and passive
pulley, and each pulley is a basic component. Cone-shaped disks are arranged facing
each other to change the rotation diameter of the belt between the pulley through tension–
compression to realize the shift ratio. Although the belt-type CVT has the advantage of
reduced noise, power loss occurs owing to slip between the pulley and the belt. On the
other hand, the chain-type CVT has increased power transmission efficiency because slip is
reduced by replacing the belt with a chain, and it also responds to a relatively high torque.
Its disadvantage is the noise generated by the friction between the pulley and the chain.

In the study by Park [5], a model of a synchronizer-type two-speed transmission was
designed using MATLAB/Simulink. The acceleration performance, maximum speed, and
efficiency were determined to obtain shift pattern and improve electronic fuel economy by
up to 4%, compared with a Nissan Leaf.

Ren et al. [6] studied the electronic fuel economy of each driving mode by applying a
CVT’s 1st, 2nd, 3rd, and 4th transmissions to 40 kW motorized EV analysis models. For the
4th transmission model, 4.5% FTP-75 to 8.0% CVT and 5.3% FTP-75 to 10.9% improvements
in the New European Driving Cycle were obtained.

Kwon et al. [7] developed shift control, state of charge (SOC), drive resistance calcula-
tion, and vehicle dynamics models using MATLAB/Simulink to select shift pattern at the
point with lowest SOC consumption after driving in test mode.
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Kim et al. [8] developed an EV analysis model using AVL CRUISE software and a
two-speed transmission. The comparison of efficiency between a single-reducer electric
model with an 80 kW motor and a second-speed transmission EV with a 60 kW motor
confirmed the possibility of reducing motor capacity through transmission.

Shin and Bang [9] developed a regenerative braking system for an EV that combined a
conical cone with a roller and flywheel. A prototype was manufactured, which confirmed
increase in energy storage and regenerative braking efficiency.

Hofman et al. [10] developed an analysis model for Volkswagen’s Lupo 3 L and
compared the application of an MT and CVT. They confirmed that the CVT provided
energy savings of 7% compared with the MT when the final driving ratio was reduced.

Ahsan et al. [11] applied a multistage transmission to an EV. They confirmed an up to
90% improvement in maximum speed, 19.4% acceleration performance, and 11.3% energy
savings when a four-speed transmission system was applied to an electric bus.

Francesca et al. [12] developed vehicle performance and energy efficiency calculation
functions using MATLAB/Simulink. They confirmed that the multistage transmission
application model could reduce energy consumption by 29% compared with the single
transmission application model.

Considering the above previous studies, it is important to improve the efficiency of
an electric motor by moving the operating point to reflect the actual motor efficiency map
in an analysis model. That is, the operating point of the motor changes according to the
change in vehicle speed. If the operating point of the motor changes, it is highly likely that
the efficiency of the motor does not operate at the optimal point. Therefore, if the CVT is
used, we can set it to operate in the section where the operating efficiency of the motor is
maximized. Of course, all transmissions generate a delay according to operation, and how
quickly they respond to it is a factor that has a major impact on fuel economy. When the
motor passes through a certain torque range and proceeds at high RPM, a certain output
range proceeds, which shows a tendency for efficiency to decrease as the motor goes to
high RPM due to the characteristics of the motor. Therefore, in order to maximize the
efficiency of the motor, to prevent the RPM from rising above a certain output range, and
to compensate for this, the maximum operating RPM of the motor is limited to a specific
RPM using the transmission ratio of the CVT.

However, previous studies have been insufficient in this regard, which has resulted
in large differences between the analysis model data and the actual vehicle data and CVT
shift range. In other words, the approximate electronic fuel efficiency increase or decrease
can be identified but the reliability is limited.

In this study, a simulation analysis model was developed using a CVT based on a
commercial EV (Company B) model and actual driving data from the Argonne National
Laboratory (ANL). ANL is the largest renewable clean energy/nuclear physics research
institute in the United States. Then, the shift pattern of the CVT was optimized by consider-
ing the operating point change, constant output area, and transmission response speed. In
addition, a performance comparison was made by applying a single reducer to the analytic
model.

2. Research Methods
2.1. Research Procedure

Figure 1 shows the full process of this study. First, an EV analysis model was developed
using the CRUISE software (AVL, Graz, Austria), based on actual difference data on
Company B’s EV to ensure reliability. The CRUISE program is a vehicle driving simulation
software that achieves the best balance of efficiency, exhaust gas, and vehicle performance
when driving. It also has the advantage of a high calculation speed. The actual efficiency
map of the drive motor was derived and reflected in the analysis model using the FluxMotor
software (Altair, Troy, MI, USA), which has a simple layout and fast operation. Its reliability
was verified by comparison with actual vehicle driving data from the ANL. Based on
this, a CVT-applied EV analysis model was developed. Then, a shift pattern design



Appl. Sci. 2023, 13, 1190 4 of 17

strategy was established to design the optimized shift pattern for improved efficiency.
The electronic fuel efficiency, according to the transmission response speed, electronic fuel
economy, acceleration performance, and climbing performance of the CVT-applied EV were
compared and analyzed. In this study, the 1st/top 6 was a common value. In some models,
the 1st/top expanded to 7.5 by combining two-speed transmissions. However, because the
lowest and highest ends could not be changed continuously, the 1st/top 6 was selected in
this study. The single cycle test (SCT) method was applied to calculate the EV distance. The
SCT method calculates the composite electronic fuel economy of driving in the FTP-75 and
HWFET modes to achieve an SOC of 0% on the chassis dynamometer. This refers to the
relational equation applied to urban driving and highway driving energy consumption
efficiencies verified with the FTP-75, C-FTP75, HWFET, SC-03, and US-06 (Five-cycle),
similar to the overall electronic fuel economy measured in the FTP-75 and HWFET modes.
In the case of an EV, the correction coefficient of 0.7 in the FTP-75 and HWFET modes
should be multiplied to reflect the actual driving conditions. The reason for this is because
the distance per charge could significantly vary depending on the temperature of the
environment, battery status, and driving conditions.
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Figure 1. Research process of this study.

The combined electronic fuel economy based on the five-cycle correction formula was
calculated with the following contents:

Composite maximum single-charge distance (km) = 0.55 × city driving single-charge distance + 0.45 × highway driving
single-charge distance

(1)

Charging distance on urban driving = Single-charge distance obtained while continuously driving in accordance with the
Urban Dynamometer Driving Test Plan (UDDS) in the 0.7 × FTP-75 mode

(2)

Charging distance on the highway = Single-charge distance obtained by continuously driving in the 0.7 × HWFET mode (3)
Combined electronic fuel economy (km/kWh) = 1/(A + B) (4)
A = 0.55/Electronic fuel consumption rate according to repeated UDDS driving in FTP-75
B = 0.45/Electronic fuel consumption rate according to repeated HWFET driving
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2.2. Analytic Modeling
Basic Model for EV

To ensure the reliability of the research results, an analysis model was developed that
reflects the actual vehicle specifications to enable the comparison between the analysis
model and actual data. To determine the efficiency improvement by changing the operating
point, an efficiency map was derived using the FluxMotor (Altair) software based on the
specifications of the driving motor installed in Company B’s vehicle. An analysis model
was developed based on the efficiency map and specifications.

Figure 2 shows the layout of the EV analysis model in the AVL CRUISE software based
on the specifications of EV listed in Table 1. Table 2 shows the EV model parameters used
in the AVL CRUISE program.
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Frontal area m2 2.38
Wheelbase m 2570

Curb weight kg 1297
Single gear ratio - 9.7
Drag Coefficient - 0.29
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Appl. Sci. 2023, 13, 1190 6 of 17

Table 2. EV model parameters used in AVL CRUISE program.

Main Factor Input Variable Data
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2.3. Analysis of EV Model with CVT
CVT-Applied EV Modeling

Figure 6 shows the CVT-applied EV analysis model. The model was developed by
installing a CVT and CVT control in the EV analysis model, which was manufactured based
on Company B’s EV. Since the CVT typically has a shift range of 0.5:1 to 3:1, the CVT shift
module was implemented by applying a single reducer to the rear of the CVT to enable its
use within the appropriate range for vehicle operation.

The CVT was characterized such that, as the transmission ratio increased. according
to the operating method, additional power was required to compress the pulley, resulting
in power loss. Therefore, although there was a difference in the transmission efficiency of
the CVT, depending on the driving speed and torque, only the efficiency according to the
transmission ratio was reflected, as shown in Figure 7. The CVT efficiency curves of related
studies were referred to in consideration of the user environment of the analysis model,
and the CVT efficiency applied was applied to the Cruise software analysis model.
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3. Results and Discussion
3.1. Comparison with ANL Experimental Data

To verify the reliability of the analytical model, we compared the actual vehicle data
on Company B’s EV, provided by the ANL, with the SOC reduction and voltage–current
increase and decrease in the test-driving mode.

As the initial SOC in the actual experiment was 91.8%, the initial SOC in the analysis
model was also set as 91.8%. Figure 8 shows that the changes in the SOC, voltage, and
current while driving were consistent with the actual vehicle data on the amount of current;
therefore, the reliability of the model was confirmed. Table 4 lists the performance values
obtained from the analysis model. The relevant experiment and analysis assumed a room
temperature condition; hence, there was a slight numerical difference in the authorized
electronic fuel economy combining low- and high-temperature electricity.

Table 4. EV performance obtained by analysis.

Item Unit Data

Electronic economy km/kWh 5.474
Driving Distance per charge km 139.07

0–100 km/h arrival time s 6.98
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3.2. CVT-Applied Analysis Model Result

Based on the SCT method proposed by the Ministry of Environment of Korea, this
study measured the ratio of the FTP-75 cycle in the city driving mode and HWFET cycle
in the highway driving mode. The combined electronic fuel economy was calculated
by reflecting 55% and 45% of the EV electronic fuel economy measurement correction
coefficient, 0.7 to derive the final composite electronic fuel economy and total mileage.
Figures 9 and 10 show the speed profiles of each mode.
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3.2.1. Optimization of Shift Pattern by Considering the Motor Operating Point Change

Figure 11 shows how to change the operating point. The analysis of the operating
point of the EV analysis model with a 9.7:1 single reducer showed that, to increase the
torque, the operating point had to be changed by reducing the operating RPM of the motor
owing to the low driving torque at 2200 rpm or higher.
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Table 5 lists the shift range according to the deceleration factor variable for the [A–A′]
movement and the deceleration ratio of the single reducer for its implementation. Based on
the deceleration ratio (9.7:1), the lowest shift ratios of the CVT were 1/1, 5, 1/2, 5, 1/3, and
1/4. The highest shift ratio of the CVT was derived by multiplying the CVT span by 6.

Table 5. Comparison of CVT shift range and single-reducer ratio according to deceleration ratio.

Reduction Ratio

n = 1.5 n = 2 n = 2.5 n = 3 n = 3.5 n = 4

Min. ratio 6.5:1 4.85:1 3.85:1 3.25:1 2.75:1 2.45:1
Max. ratio 39:1 29.1:1 23.1:1 19.5:1 16.5:1 14.7:1

Single reducer ratio 13:1 9.7:1 7.7:1 6.5:1 5.5:1 4.9:1

At 2200 rpm or less, the operating point must be changed to reduce the torque by
increasing the RPM through a high deceleration ratio. Therefore, the minimum motor
rotational speed was limited to 1600 rpm, based on the efficiency map of the motor for the
[B–B′] movement. However, when n = 3, 3.5, and 4, because the minimum motor rotational
speed at 10 km/h was 1600 rpm or less, the minimum motor rotational speed at 10 km/h
was restricted to 1200 rpm.

Figure 12 shows the composite electronic fuel economy values measured by applying
a single deceleration ratio, according to the deceleration magnification based on Table 5.
The FTP-75 and HWFET modes were measured by the SCT method, similar to the method
for calculating the electronic fuel economy and maximum driving distance of the analysis
model. The correction factor was multiplied by 0.7. According to the electronic fuel
economy measurements, the maximum value was n = 3.5. Therefore, this study was
conducted based on the value in which the magnification of the single reducer was set to
5.5.
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In summary, a CVT-applied model was developed by applying a CVT, based on the
EV analytic model, to verify the reliability. The operating point of the electric motor was
expected to change due to the combination of the CVT and single-reducer shift ratio; hence,
the RPM was increased using a high shift ratio in the high-torque low-RPM section, and the
torque was increased using a low shift ratio in the low-torque high-RPM section. Starting
from 1/1.5, the existing deceleration ratio of 9.7 was linearly divided by the 1/4 ratio, and
the maximum shift ratio was derived by multiplying the CVT span by 6. The change in the
operating point of the motor was optimized when n = 3.5.

3.2.2. Comparison of Electric Economy According to Response of CVT

One of the main performance criteria of the transmission is the time required for
transmission. To maintain the shift pattern at the optimum efficiency point, the transmission
should be implemented as quickly as possible, depending on the driver’s needs and
the vehicle’s driving state. Figure 13 shows the change in the electronic fuel economy
depending on the response speed of the transmission. It was confirmed that, as the
response time increased, the electronic fuel economy decreased.

3.2.3. Result of Electric Economy

Table 6 shows the comparison of the results of the preparation for the without CVT
model and the CVT-applied model. Each measurement method had an initial SOC of 91.8%
while driving in the FTP-75 and HWFET modes, until an SOC of 0% was obtained when
multiplying this by the correction factor of 0.7. For the analysis model, the composite
electronic fuel economy was calculated by considering the FTP-75 55% and HWFET 45% in
the same manner as that in the composite electronic fuel economy measurement method.
In a single calculation, the rate of increase of the electronic fuel economy in the FTP-75 and
HWFET modes improved by 2.02% and 9.44%, respectively. The combined electronic fuel
economy improved by 5.11%. Despite no significant increase in rate in the urban driving
mode, it was confirmed that the application of the CVT significantly increased the rate in
the highway driving mode.
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Table 6. Comparison of electric economy between driving cycles.

Electronic Economy (km/kWh)

Without CVT With CVT Improving Rate (%)

FTP-75 5.90 6.02 2.02
HWFET 4.97 5.44 9.44

Composite 5.48 5.76 5.11

3.2.4. Result of EV Acceleration

Table 7 presents the comparison of the CVT-applied EV and single-reducer analysis
model by measuring the arrival time for two speed ranges: 0–100 km/h and 80–120 km/h.
When the CVT was used, the acceleration at low speed was significantly better than that of
the single reducer. However, at the normal driving speed of 80–120 km/h, the degree of
improvement in acceleration was not evident, as both the CVT-applied model and single-
reducer model shifted in a certain output area. Therefore, it was confirmed that the CVT
application significantly affected the improvements in driving performance and electronic
fuel economy.

Table 7. Comparison of EV acceleration.

Acceleration Time (s)

Single Reducer CVT-Applied Reduction Ratio (%)

0–100 km/h 12.56 10.85 15.76
80–120 km/h 4.09 3.83 6.36

3.2.5. Result of Climbing Performance

Table 8 compares the acceleration at 0–100 km/h, when the slope was 10–20%, and the
reduction in the arrival time. It was confirmed that the degree of reduction in the arrival
time of the CVT-applied model was greater than that on flat land.
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Table 8. Comparison of reduction degree according to speed section when slope is applied.

Time-Concentration (s)

One Speed Reducer CVT Applied Reduction Ratio
(%)

10% 8.58 7.42 15.52
20% 12.48 10.85 13.06

4. Conclusions

This study examined the application of a powertrain, i.e., CVT, to improve the driving
distance on a single charge of an EV. The vehicle model of Company B’s EV was imple-
mented using the CRUISE and FluxMotor software. Then, the CVT was applied to the
validated model to compare the driving distance per charge, composite electric economy,
and acceleration/climbing performance in the HWFET and FTP-75 driving cycle modes.
The following conclusions were drawn in this study:

(1) Based on the experimental data provided by the ANL, the reliability of the EV model
developed in this study was verified by comparing changes in the SOC, voltage, and
current during vehicle driving. A CVT-applied model was developed by applying a
CVT based on the EV analytic model to verify the reliability.

(2) In the analysis of the shift pattern, based on CVT of the electric vehicle, the operating
point of the electric motor was expected to change by the combination of the CVT and
single-reducer shift ratio and was optimized when n = 3.5.

(3) The energy efficiency of the electric vehicle with CVT improved by approximately
5.11% when continuously variable transmission was applied through the combined
driving simulation. The improvement was greater in highway driving than in the
urban driving modes.

(4) When the CVT was applied, the maximum driving distance on a single electric charge
increased by approximately 7 km. Thus, it was expected that the driving performance
of an EV with continuously variable transmission could be improved by downsizing
the electric motor to reduce manufacturing costs. We will continue to conduct research
on this matter in the future.
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