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Abstract: The equilibrium state of a dynamical system can be divided into the equilibrium point 
and limit cycle. In this paper, the stability analysis of the equilibrium point and limit cycle of dy-
namical systems are presented through different and all possible approaches, and those approaches 
are compared as well. In particular, the author presented the stability analysis of the equilibrium 
point through phase plane approach, Lyapunov–LaSalle energy-based approach, and linearization 
approach, respectively, for two-dimensional nonlinear system, while the stability analysis of the 
limit cycle is analyzed by using the LaSalle local invariant set theorem and Poincaré–Bendixson 
theorem, which is only valid in two-dimensional systems. Different case studies are used to demon-
strate the stability analysis of equilibrium point and limit cycle.  
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1. Introduction 
The Lyapunov theorem can be categorized into local theorem and global theorem. 

The local theorem can be used to prove whether an equilibrium point is stable or asymp-
totically stable [1–6], whereas the global theorem can be used to prove if an equilibrium 
point is globally asymptotically stable and if it has been used in several applications [7–
17]. The LaSalle theorem can also be categorized into a local version and a global version, 
and they are collectively called invariant set theorem [18,19]. The purpose of using the 
LaSalle global invariant set theorem is to further prove that an equilibrium point is glob-
ally asymptotically stable, given the fact that the Lyapunov theorem is limited somehow 
to proving the global stability of an equilibrium point [20–23]. For example, for the mass–
spring–damper system, we usually choose the total energy (i.e., the kinetic and potential 
energy together) of the system as our Lyapunov candidate function, and it is known that 
if the total energy keeps dissipating, the system will approach an equilibrium point and 
stop there [24]. So, by looking at the time derivative of the chosen Lyapunov function, we 
can judge if the energy increases or decreases as time goes on. In order to have a stable 
equilibrium point, we want to make sure that the time derivative of the chosen Lyapunov 
function at is least negative semi-definite so that the energy decreases as time goes on. If 
we use the Lyapunov theorem, it can only prove that the mass–spring–damper system 
has a stable equilibrium point because the time derivative of the Lyapunov function is 
negative semi-definite but not negative definite. However, the fact of the matter is that 
the mass–spring–damper system not only has a stable equilibrium point, but also that 
equilibrium point is asymptotically stable [25]. By further using the LaSalle global invar-
iant set theorem, we can then prove that the equilibrium point is asymptotically stable. 
The LaSalle local invariant set theorem is usually used to prove whether the limit cycle of 
a dynamical system is stable or not, assuming that there exists a limit cycle. 
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The Lyapunov and LaSalle theorems are not the only way to prove stability of an 
equilibrium point [26–29] and are not the best approaches to use in some cases [30–33] in 
order to prove stability of an equilibrium point, given the amount of calculations required 
and the method not being as intuitive compared to the graphical phase plane method [34–
37]. The graphical phase plane method is somehow straightforward as this is a picture-
based method and it has been used in many applications [38–48]. By looking at the vector 
field of the state, we can determine how the state evolves as time goes on, i.e., if the vector 
field goes towards the origin (suppose the equilibrium point is at the origin), then the 
equilibrium point is asymptotically stable, and otherwise it is not stable. However, the 
downside of the graphical phase plane method is that it can only be applied to the auton-
omous system, and it does not apply for non-autonomous systems, as we cannot draw the 
arrows of the vector field precisely if the system is also a function of time. In the following 
sections, the author will use two-dimensional system as a demonstration to show how to 
use the graphical phase plane method to determine the stability of an equilibrium point.  

Yet another method to determine if an equilibrium point of a nonlinear dynamical 
system is stable or not is to linearize around the equilibrium point by using the Taylor 
formula and to subsequently look at the Jacobian matrix from the linearization and its 
corresponding eigenvalues, trace and determinant to see if an equilibrium point is stable 
or not and whether it has been used in different applications [49–60]. This type of analyt-
ical method has limitations, as it can only truly show that the equilibrium point of the real 
nonlinear system is stable when the equilibrium point is a saddle, node, or spiral. For 
example, if the equilibrium point is a centre, degenerated node, star, or non-isolated, then 
the linearized result cannot truly tell you if the equilibrium point is stable or not [61]. In 
the following sections, the author will use a two-dimensional system as a demonstration 
to show how to use the linearization method to determine the stability of an equilibrium 
point in detail. 

A limit cycle is a closed trajectory in which the adjacent trajectories spiral toward or 
away from the limit cycle as time goes on [61]. Regarding the stability of the limit-cycle of 
a nonlinear dynamical system, we can use either LaSalle’s local invariant set theorem to 
see if the limit cycle is stable or not [21], or we can use the Poincaré–Bendixson theorem 
to determine if there exist a stable limit cycle [62]. It is noted that the Poincaré–Bendixson 
theorem is only valid in two-dimensional systems.  

The one-dimensional dynamical system is obviously very easy for all audiences to 
understand, so this study focuses on two-dimensional nonlinear dynamical systems, and 
the stabilities of the equilibrium point and limit cycle are analyzed. The stability of two-
dimensional nonlinear dynamical systems contains both the stability of the equilibrium 
point and the stability of the limit cycle, whereas the stability of one-dimensional nonlin-
ear dynamical systems contains only the stability of the equilibrium point. Furthermore, 
the two-dimensional nonlinear dynamical systems can have very interesting behaviors, 
for example, they can have the periodical oscillations, damped oscillations or limit cycle 
behaviors, where the one-dimensional systems do not have such functions. Also, when 
we analyze the two-dimensional nonlinear dynamical systems by using the phase plane 
method, we have two variables to be analyzed as opposed to one variable. In terms of the 
three and more-than-three dimensional systems, they will lead to chaos and belong to the 
complex systems [63]. The author will not present this topic, particularly in this paper.  

This paper is organized in the following order. In Section 2, the stability analysis of 
the equilibrium points of two-dimensional nonlinear dynamical systems are presented by 
using the Lyapunov–LaSalle energy-based approach, graphical phase plane approach, 
and linearizing-around-an-equilibrium-point approach, respectively. Different examples 
are given. In Section 3, the stability analyses of the limit cycle of two-dimensional nonlin-
ear dynamical systems are presented by using LaSalle local invariant set theorem and the 
Poincaré–Bendixson theorem, respectively. Comparisons among different approaches are 
presented in Section 4, and finally Section 5 gives the conclusion.  
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2. Stability of the Equilibrium Point  
2.1. Stability Analysis by Lyapunov–LaSalle Energy-Based Approach  

Before getting into demonstrating how to use the Lyapunov theorem to prove the 
stability of an equilibrium point of a two-dimensional nonlinear dynamical system, it is 
necessary to reiterate the Lyapunov theorem here [64,65].  

For the Lyapunov local theorem, it states as follows: “for a chosen Lyapunov candi-

date function ( )V x
−

, if ( )V x
−

 is positive definite and ( )V x
−


 is negative semi definite, the 

equilibrium point being analyzed is stable. Furthermore, if the ( )V x
−


 is negative definite, 

the equilibrium point is asymptotically stable”. It is noted that the underscore represents 
a vector.  

For the Lyapunov global theorem, it states as follows: “for a chosen Lyapunov can-

didate function ( )V x
−

, if ( )V x
−

 is positive definite, and ( )V x
−


 is negative definite, and 

( )V x
−

 tends to infinity as the state tends to infinity, the equilibrium point being analyzed 

is globally asymptotically stable”.  
Consider the pendulum in Figure 1, and the dynamical equation of the pendulum is 

written below:  

2 sin 0ml b mglθ θ θ+ + =
 

 (1) 

 
Figure 1. Pendulum. 

In order to show the stability of the equilibrium point 
0
0

θ
θ

θ−

   
= =   
    
 , a Lyapunov 

function is chosen as below: 2 21( ) ( sin )
2

V x ml mg l lθ θ
−

= + −


. It can be shown that the 

Lyapunov function is positive definite as ( ) 0V x
−

>  except (0) 0V
− −

= . Additionally, 

2

( )V x bθ
−

= −
 

 is negative semi-definite because it does not contain any angular position 

θ  information. Based on the Lyapunov local theorem, it is concluded that the equilibrium 
point is stable. It is noted that here we can only use the local version, not the global version 

of the Lyapunov theorem, as 
2

( )V x bθ
−

= −
 

 is not negative definite.  

The fact of the matter is that the equilibrium point 
0
0

θ
θ

θ−

   
= =   
    
  is actually glob-

ally asymptotically stable, which can be determined just by observing how the pendulum 
behaves as time goes on [66,67]. As we can imagine, the pendulum will eventually come 
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back to the equilibrium point, that is to say, the equilibrium point is at least asymptotically 
stable. However, by using the Lyapunov local theorem, we cannot prove this, which is 
why the LaSalle theorem comes in.  

The LaSalle global invariant set theorem states that: “for a chosen Lyapunov candi-

date function ( )V x
−

, if ( ) 0V x
−

≤


 always, and ( )V x
−

 tends to infinity as the state x
−

 

goes to infinity, then all trajectories tend to the largest invariant set { }, ( ) 0x V x
− −

=


 and 

stay within this set for all future times”.  
Now let us use the LaSalle global invariant set theorem to prove that the equilibrium 

point 
0
0

θ
θ

θ−

   
= =   
    
  of the previous pendulum case is globally asymptotically stable. 

As same before, we choose the Lyapunov function as 2 21( ) ( sin )
2

V x ml mg l lθ θ
−

= + −


, and after calculation of the time derivative of ( )V x
−

, we know that 
2

( )V x bθ
−

= −
 

, which 

is always negative or zero, i.e., ( ) 0V x
−

≤


. It is also true that the function ( )V x
−

 will go 

to infinity when the state 
θ

θ
θ−

 
=  
  
  goes to infinity and therefore, the LaSalle global in-

variant set theorem conditions are satisfied, which indicates that ( ) 0V x
−

=


. If we just 

stop here, we cannot prove the equilibrium point is globally asymptotically stable, we 

need to further look at the fact that when ( ) 0V x
−

=


, this indicates that 0θ =


, which fur-

ther indicates that singθ θ= −


. In order to prove that the equilibrium point 

0
0

θ
θ

θ−

   
= =   
    
  is globally asymptotically stable, we need to have the small-angle as-

sumption [68], i.e., sinθ θ≈  when θ  is very small, in this way, gθ θ= − ⋅


, which 
means the angular acceleration is not zero, except when we reach the equilibrium point at 

0θ = . Therefore, the pendulum always has an acceleration, except when it reaches to the 

equilibrium point and stops there [69]. Hence, the equilibrium point 
0
0

θ
θ

θ−

   
= =   
    
  is 

globally asymptotically stable.  
As one can see from the above analysis because we made the small-angle assumption, 

we proved that equilibrium point is globally asymptotically stable. If, however, we do not 
make this assumption, i.e., sinθ θ≠ , then we cannot prove that the equilibrium point is 
globally asymptotically stable by using the LaSalle global invariant set theorem. The rea-

son is that when sin 0gθ θ= − ⋅ =


, this indicates kθ π=  instead of zero. This is the 
flaw in the LaSalle global invariant set theorem.  

In the subsequent section, we will show that by, using the graphical phase plane 
method, we do not have to make this small-angle assumption in order to prove that the 
equilibrium point is globally asymptotically stable. In the meantime, the graphical phase 
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plane method is also able to demonstrate how the pendulum behaves when there is a very 
large angle [61], which cannot be demonstrated by using the analytical Lyapunov–LaSalle 
approach. 

The LaSalle local invariant set theorem states that: “for a chosen Lyapunov candidate 

function ( )V x
−

, if ( ) 0V x
−

≤


 always, and there exist a value h  where ( )V x
−

 is in a 

bounded region defined by ( )V x h
−

< , then all trajectories tend to the largest invariant 

set { }, ( ) 0x V x
− −

=


 and stay within this set for all future times”.  

Typically, the LaSalle local invariant set theorem is used to prove whether a limit 
cycle is stable or not. Consider the following two different examples.  

Case 1: consider the following dynamical system, and the dynamical equation is 
given as follows:  

2 2
1 2 1 1 2

2 2
2 1 2 1 2

( 1)

( 1)

x x x x x

x x x x x

 = + + −

 = − + + −




 (2) 

where the state is 1

2

x
x

x−

 
=  
 

, and we want to find the equilibrium state (equilibrium point 

and/or limit cycle if there exists one) of this dynamical system. First of all, we can choose 
the Lyapunov candidate function of 2 2 2

1 2( ) ( 1)V x x x
−

= + − , and by looking at the time 

derivative of the ( )V x
−

, we can determine how ( )V x
−

 changes as time goes on.  

2 2
1 21 2 1 2

2 2 2 2 2 2
1 2 1 2 1 1 2 2 1 2 1 2
2 2 2 2 2

1 2 1 2

( ) 2( 1)(2 2 )

2( 1)(2 ( ( 1)) 2 ( (
4( )( 1) 0

V x x x x x x x

x x x x x x x x x x x x
x x x x

−
= + − +

= + − + + − + − + +

= + + − >

  

(3) 

As ( ) 0V x
−

>


, it means ( )V x
−

 increases as time goes on. At this point, we could not 

use the LaSalle local invariant set theorem as the conditions of the LaSalle local invariant 
set theorem are not satisfied, and it might also mean that the limit cycle or the equilibrium 
point is unstable. In order to determine exactly whether the equilibrium point or limit 
cycle is stable or not, we will need to choose a different Lyapunov function as follows, 

2 2
1 2( )V x x x

−
= + . If we look at the time derivative of the ( )V x

−
, which is

2 2 2 2
1 2 1 2( ) 2( )( 1)V x x x x x

−
= + + −


, when 2 2

1 2 1x x+ < , geometrically it indicates loca-

tion inside of the circle with a radius 1, then ( ) 0V x
−

<


. Based on the LaSalle global invar-

iant set theorem, we can conclude that ( ) 0V x
−

=


 as time goes on, which further indicates 

that 1

2

0
0

x
x

= 
 = 

 or 2 2
1 2 1x x+ =  as time goes on. From here, we can immediately see that 

the given dynamical system has an equilibrium point 1

2

0
0

x
x

= 
 = 

 and a limit cycle 
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2 2
1 2 1x x+ = . Also, based on the LaSalle global invariant set theorem, we can conclude 

that the trajectories either tend to the equilibrium point at 1

2

0
0

x
x

x−

   
= =   

  
 or the limit 

cycle 2 2
1 2 1x x+ = . However, it is not possible to tend to the limit cycle 2 2

1 1 1x x+ = , as 

we had the previous assumption that 2 2
1 2 1x x+ <  and therefore, all the trajectories tend 

to the equilibrium point at 1

2

0
0

x
x

x−

   
= =   

  
, that is to say the equilibrium 

1

2

0
0

x
x

x−

   
= =   

  
 is asymptotically stable. In terms of the limit cycle, based on the LaSalle 

local invariant set theorem and the Lyapunov candidate function we chose 
2 2 2

1 2( ) ( 1)V x x x
−

= + − , even though we could not use the LaSalle local invariant set the-

orem to conclude the result as the conditions of the LaSalle local invariant set theorem are 

not satisfied. However, we can still use the one of the conditions ( )V x
−


 to see how ( )V x

−
 

changes as time goes on. Because ( ) 0V x
−

>


, it means ( )V x
−

 increases, which indicates 

that the limit cycle is unstable.  
We can also use the computer simulation to verify the result. Now, if we plot the 

Lyapunov candidate function 2 2 2
1 2( ) ( 1)V x x x

−
= + −  as a function of the state 1

2

x
x

x−

 
=  
 

, as shown in Figure 2, we can see that all the trajectories start nearby the limit cycle will 

move away from the limit cycle because ( ) 0V x
−

>


, as shown in Figure 2c. Please note 

that the author used the blue arrows in Figure 2c below to indicate how ( )V x
−

 changes 

as time goes on. The valley in Figure 2a is the limit cycle, and it can be seen from the top 
view, as indicated in the Figure 2b. Again, according to Figure 2, the equilibrium point is 
stable, as we can see from Figure 2c by the fact that the trajectories (the blue arrows) are 
approaching the equilibrium point, not moving away from it. The limit cycle is, however, 
unstable. As we can see from Figure 2c, the trajectories (the blue arrows) are moving away 
from the limit cycle, not approaching it. 

   
(a) (b) (c) 

Figure 2. Plot of the Lyapunov candidate function of case 1. 

Case 2: consider the following dynamical system as an example, and the dynamical 
equation is given as follows:  
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2 2 2
1 1 2 1 1 2

3 2 2
2 1 2 1 2

4 ( 2 9)

2 ( 2 9)

x x x x x x

x x x x x

 = − + −

 = − − + −




 (4) 

where the state is 1

2

x
x

x−

 
=  
 

, and we want to find the equilibrium state (equilibrium point 

and/or limit cycle if there exists one) of this dynamical system. First of all, we can choose 
the Lyapunov candidate function as 2 2 2

1 2( ) ( 2 9)V x x x
−

= + − , and by looking at the time 

derivative of ( )V x
−

, we can determine how ( )V x
−

 changes as time goes on. After calcu-

lation, we have below:  

2 2 2 2 2
1 2 1 2( ) 4( 2 )( 2 9) 0V x x x x x

−
= − + + − <


 (5) 

Based on the LaSalle global invariant set theorem, we can conclude that ( ) 0V x
−

=


 

as time goes on, which further indicates that 1

2

0
0

x
x

= 
 = 

 or 2 2
1 22 9x x+ =  as time goes 

on. This means, starting from anywhere, the trajectories will tend to 1

2

0
0

x
x

= 
 = 

 or 

2 2
1 22 9x x+ = . Also, from here, we can see that the given dynamical system has an equi-

librium point 1

2

0
0

x
x

= 
 = 

 and a limit cycle 2 2
1 22 9x x+ = . However, the question is that 

which one of the above (i.e. the equilibrium point or the limit cycle) the trajectories will 
go to. Just based on the LaSalle global theorem, we cannot further give conclusions. By 
further using the LaSalle local theorem, we can then conclude that all trajectories will tend 
to the limit cycle unless the trajectory starts exactly from the equilibrium point at 

1

2

0
0

x
x

= 
 = 

, which indicates that the equilibrium point at origin is unstable whereas the 

limit cycle is stable.  

The proof is as follows: as ( ) 0V x
−

<


, this indicates that ( )V x
−

 decreases as time goes 

on. So, starting from the nearby limit cycle, all trajectories will come back to the limit cycle. 
Additionally, starting from nearby origin, all trajectories will move away from the origin. 
We can also use the computer simulation to verify the result. The plot of the Lyapunov 
candidate function 2 2 2

1 2( ) ( 2 9)V x x x
−

= + −  is illustrated as below in Figure 3. We can 

see that all the trajectories starting nearby the limit cycle will come back to the limit cycle 

because ( ) 0V x
−

<


, as shown in Figure 3c. The valley in Figure 3a is the limit cycle, and it 

can be seen from the top view, as indicated in the Figure 3b.  
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(a) (b) (c) 

Figure 3. Plot of the Lyapunov candidate function of case 2. 

We can also extend the above method to other dynamical systems. First of all we will 

need to choose a Lyapunov energy like function ( )V x
−

 and look at the ( )V x
−


 and then 

subsequently make a conclusion about the stability of an equilibrium point.  

2.2. Stability Analysis by Graphical Phase Plane Approach  
Another way to demonstrate the stability of an equilibrium point and a limit cycle is 

to use the graphical phase plane approach. Here, the graphical phase plane approach will 
be used to address the same pendulum case as we discussed in the previous section, and 
the advantages of using such a graphical approach will be shown.  

As shown before, we know that the dynamical equation for the pendulum in the pre-

vious section is given as 2 sin 0ml b mglθ θ θ+ + =
 

. To generalize the dynamical equa-
tion and for the ease of analysis, let us replace θ  with x  and assume that the length of 

the pendulum is 1, so the equation of motion is reduced to sin 0m x b x mg x+ + =
 

. Let 

x y=


, so sinb gy x x x
m m

= = − −
  

. The equivalent model for the dynamical equation 

can be written as below:  

sin

x y
by y g x
m

 =


= − −




  (6) 

Now the state or the input is 
x
y
 
 
 

, and the output is 
x

y

 
 
 
 




. We will first draw the 

vector field for the case when 0x =


, and then plot the case when 0x = , and finally we 

will combine the above two cases to get the entire vector field. So, when 0x =


, 

siny g x= −


, the vector field is plotted as follows, as shown in Figure 4. 
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Figure 4. Vector field when 0x =


. 

We then draw the vector field for the case when 0x = . When 0x = , 
by x
m

= −
 

. 

Let us first draw the case when the damping coefficient b  is zero, as shown in Figure 5, 
then we can easily plot the case when b  is not zero.  

 
Figure 5. Vector field when 0x = . 

If we combine the above two plots together, we have the following vector field, as 
shown in Figure 6, and immediately we can sense the direction of the whole vector field.  

 

Figure 6. Entire vector field when damping coefficient b  is zero. 

The above vector field is for the case when the damping coefficient b  is zero, as we 
can see that the vectors form an infinite number of closed orbits, and each of those closed 
orbits represents how the pendulum behaves as time goes on. Additionally, it can be seen 
that the trajectories will not move back to the origin but also not move away from the 

origin, which indicates that the equilibrium point 
0
0

x

x

   
=   

    
  is stable but not asymptot-

ically stable. Now when the damping coefficient b  is not zero, in this case, all the arrows 
on the y-axis that are above the origin will point downwards and all the arrows on the y-
axis that are below the origin will point upwards, as shown in Figure 7, and the slope of 
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the downwards and upwards arrows depends on the damping coefficient b . The larger 
the value of b , the larger the slope will be, and vice versa. In this case, as one can see that 
when the damping coefficient b  is not zero, the trajectories will tend towards the origin 

as time goes on, which indicates that the equilibrium point 
0
0

x

x

   
=   

    
  is asymptotically 

stable. On the contrary, if the damping coefficient b  is not just nonzero, but also nega-
tive, in this case the trajectories will move away from the origin, which means the equilib-

rium point 
0
0

x

x

   
=   

    
  will become unstable.  

 
Figure 7. Entire vector field when damping coefficient b  is not zero. 

2.3. Stability Analysis by Linearizing around an Equilibrium Point  
The third approach to determine the stability of an equilibrium point is to linearize 

around the equilibrium point to see how its neighbours behave as time goes on [70,71]. 
Here, we will use the previous pendulum case as an example, and we will show the case 
with damping and the case without damping. This method needs to be used with care as 
only the following cases can the linearization give qualitatively correct dynamics near the 
equilibrium point: a saddle, node, and spiral or sometimes referring as focus [61], whereas 
if the equilibrium point is a centre, star, or non-isolated point, then the linearized result 
cannot tell you if the equilibrium point is truly stable or not, which is the potential prob-
lem of using the linearizing-around-an equilibrium-point method to determine the stabil-
ity of an equilibrium point.  

With damping present, we know that the dynamical equation is 
2 sin 0ml x b x mgl x+ + =
 

. In order to linearize around the equilibrium point 

0
0

x
x

x−

   
= =   
    
  using the Taylor formula, we will first need to convert the above equation 

into the following equivalent and assume the length 1l =  for the ease of calculation:  

sin

x y
by y g x
m

 =


= − −




  (7) 

Considering a small deviation from the equilibrium point 
0
0

x
x

x−

   
= =   
    
  as fol-

lows:  
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( ) ( ) 0u t x t= −  (8) 

( ) ( ) 0v t y t= −  (9) 

In order to look at how the small deviation changes as time goes on, we need to look 
at the time derivative of ( )u t  and ( )v t  as follows:  

( ) ( )u t x t y= =
 

 (10) 

( ) ( ) sinbv t y t y g x
m

= = − −
 

 (11) 

By using the Taylor expansion formula, we can linearize the above equations, which 
leads to the following:  

(0,0) (0,0)(0,0) | |x xu f u v
x y

∂ ∂= + +
∂ ∂

 


 (12) 

(0,0) (0,0)(0,0) | |y yv f u v
x y

∂ ∂= + +
∂ ∂

 


 (13) 

We noticed that the higher-order terms are neglected here as they are extremely small 
compared to the first few terms. By further converting the above equations into a matrix 
format, we have the following:  

|(0,0)

x x
u u ux y

J
v vv y y

x y

 ∂ ∂    ∂ ∂       = =           ∂ ∂   ∂ ∂ 

 



  
 (14) 

where J  is the Jacobian matrix. As we can see, whether the equilibrium point is stable 
or not depends on the Jacobian matrix, and particularly depends on the eigenvalues of the 
Jacobian matrix. If all eigenvalues are negative, that indicates the small deviation will de-
crease as time goes on, which further indicates that the equilibrium point is stable. To 
further generalize the whole scenarios including, when eigenvalues are not negative, we 
can use the trace and determinant of the Jacobian matrix to determine if the equilibrium 
point is stable or not.  

By looking at the Jacobian matrix that evaluated at the equilibrium point, i.e., at 

0
0

x
x

x−

   
= =   
    
 , the Jacobian matrix is 

|(0,0)

0 1 0 1

cos
J b bg x g

m m

   
   = =
   − − − −
   

. As we 

can see that when 0b = , i.e., no damping, the Jacobian matrix is 
0 1

0
J

g
 

=  − 
, and the 

trace of the Jacobian matrix is 0 and the determinant of the Jacobian matrix is g , which 
is larger than 0. This indicates that we have a linear centre, and this linear centre indicates 
that the original nonlinear system is indeed also a centre because when 0b =  the mass–
spring system is a conservative system, i.e., there is no energy being dissipated. The fol-
lowing vector field is plot as shown in Figure 8 to demonstrate the centre. The origin rep-
resents the angular position and angular velocity of the pendulum both equal to 0. The 
next circle that surrounds the origin represents the small-angle swing, and the one after 
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the next circle represents the swing with a large angle, and so on and so forth, and this 
makes sense because there is no damping.  

 
Figure 8. Centre point. 

With damping present, i.e., 0b ≠ , the Jacobian matrix has become the following: 
0 1

J bg
m

 
 =
 − −
 

, and the trace of the Jacobian matrix is 
b
m

−  and the determinant of the 

Jacobian matrix is g , which is greater than 0. Based on the trace and the determinant 
information, we can conclude that the equilibrium point is stable.  

From above analysis, we can see that after linearizing around the equilibrium point, 
and based on the linearized result, we can conclude whether the equilibrium point of the 
original nonlinear system is stable or not. The linearization method works for the above 
case because the equilibrium point of the pendulum with damping is a spiral and without 
the damping case it is centre but the energy of the system is conserved. However, the 
linearization method does not work for the cases where the equilibrium point is centre, 
degenerated node, star, or non-isolated.  

3. Stability of Limit Cycle  
The stability of the limit cycle of dynamical systems can be analyzed by using the 

invariant set theorem and Poincaré–Bendixson theorem. The former is mainly used to 
prove the stability of a limit cycle and the latter is mainly used to see if there exists a limit 
cycle.  

3.1. Stability of Limit Cycle by Invariant Set Theorem  
Sometimes the equilibrium state of a dynamical system only has an equilibrium 

point, and sometimes the equilibrium state of a dynamical system contains both the equi-
librium point and the limit cycle [72]. In the previous Section 2.1, we touched upon the 
limit cycle’s stability when we analyzed the stability of an equilibrium point. We looked 
at two different cases, i.e., stable limit cycle and unstable limit cycle. Here we will use a 
different case, i.e., a semi-stable limit cycle, to demonstrate how to use the invariant set 
theorem to determine the stability of the limit cycle.  

Consider the following dynamical system:  

2 2 2
1 2 1 1 2

2 2 2
2 1 2 1 2

( 1)

( 1)

x x x x x

x x x x x

 = − + −

 = − − + −




 (15) 
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where the state is 1

2

x
x

x−

 
=  
 

. In order to see the entire equilibrium state of this system, we 

can use the global invariant set theorem. First of all, we can choose the Lyapunov function 
as follows:  

2 2 2
1 2( ) ( 1)V x x x

−
= + −  (16) 

and  

2 2
1 21 2 1 2

2 2 2 2 3
1 2 1 2

( ) 2( 1)(2 2 )

4( )( 1)

V x x x x x x x

x x x x
−

= + − +

= − + + −

  

 (17) 

If 2 2
1 2 1x x+ > , geometrically, it means that, if we are outside of the cycle 

2 2
1 2 1x x+ = , then ( ) 0V x

−
<


. Based on the global invariant set theorem, we can conclude 

that ( ) 0V x
−

=


 as time goes on, which indicates that 2 2
1 2 1x x+ =  or 1 0x = , 2 0x = . 

This means that, starting from outside of the cycle 2 2
1 2 1x x+ = , all trajectories tend to-

wards the cycle or the origin.  
If, however, 2 2

1 2 1x x+ < , geometrically, it means that, if we are inside of the cycle 

2 2
1 2 1x x+ = , then ( ) 0V x

−
>


, which indicates that ( )V x

−
 increases as time goes on. If 

we plot the Lyapunov function as a function of the state, as shown in Figure 9, we can see 
that inside of the cycle, the trajectories tend to the origin if there is a small perturbation. 
Conversely, outside of the cycle, all trajectories tend to the limit cycle, as shown in Figure 
9c. The valley in Figure 9a is the limit cycle, and it can be seen from the top view as indi-
cated in the Figure 9b and therefore, the limit cycle is semi-stable or half stable. Again, 
from Figure 9c, we can see that the blue arrows are approaching the equilibrium point 
from two sides, and so the origin is stable; whereas one set of blue arrows are approaching 
to the limit cycle and the other set of the blue arrows are getting away from the limit cycle, 
so the limit cycle is semi-stable.  

 
(a) (b) (c) 

Figure 9. Plot of the Lyapunov candidate function that shows the limit cycle. 

Now, if we choose the below Lyapunov candidate function, as shown in Equation 
(18), it will not be able to capture the right dynamics of the system and it will not be able 
to demonstrate the existence of the limit cycle.  
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2 2
1 2( )V x x x

−
= +  (18) 

And  

1 21 2

2 2 2 2 2
1 2 1 2

( ) 2 2

2( )( 1)

V x x x x x

x x x x
−

= +

= − + + −

  

 (19) 

The ( )V x
−


 is always negative. Based on the LaSalle global invariant set theorem, we 

can conclude that ( ) 0V x
−

=


 as time goes on, which indicates that 2 2
1 2 1x x+ = , 1 0x =

, 2 0x =  as time goes on. However, when we plot the Lyapunov candidate function 

( )V x
−

, there is no existence of the limit cycle, as shown in the Figure 10. The dashed line 

is the limit cycle. The plot shows the 3D view, the side view and the top view. The trajec-
tories are supposed to converge to the limit cycle from outside of the cycle 2 2

1 2 1x x+ = . 
However, because of the way we chose the Lyapunov function, which does not capture 
the limit cycle and therefore, the trajectories do not converge to the limit cycle. So, choos-
ing the right Lyapunov candidate function is critical when we use the Lyapunov–LaSalle 
energy-based approach.  

  
(a) (b) 

 
(c) 

Figure 10. Plot of the Lyapunov candidate function that does not show the limit cycle. 
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3.2. Stability of Limit Cycle by Poincaré–Bendixson (PB) Theorem 
It is noted that the PB theorem is mainly used to prove whether there exists a limit 

cycle instead of proving the stability of the limit cycle, and that the PB theorem is only 
valid in two-dimensional systems. By using the PB theorem, we are able to determine 
whether there exists a limit cycle [73], and once there exists a limit cycle, we then need to 
go back to use the invariant set theorem to show if the limit cycle is stable or not. The 
Poincaré–Bendixson theorem is described as follows [61]:  

“If we have the following conditions satisfied: (1) if we can find a closed and 
bounded region, (2) and there is no equilibrium point in the region, (3) and there 
exists a trapped trajectory that lies in the region from the beginning and stays in 
the region for all future times, then the trajectory is either a closed trajectory 
itself or it spirals toward a closed trajectory as time goes on”.  
The standard way to find this region is to find a closed region so that the vector field 

points into the region on its boundary [61,74–76]. Consider the following system as an 
example:  

2

1 3
1

0.05 0.6

x y
x

y x y y

 = + − +
 = − − +




 (20) 

The question is that can we find a region such that there exists a limit cycle in this 

region. We can plot the system when 0x =


 and 0y =


, as shown in Figure 11a. The red 
and black lines divide the entire region into four different small regions, as shown in Fig-

ure 11b. In region 1, we know that 0x >


 and 0y <


, which indicates that x  increases 
and y  decreases, so the vector field in the region 1 points toward the southeast. In region 

2, 0x <


 and 0y <


, which indicates that x  decreases and y  decreases as well, so the 

vector field in region 2 points southwest. In region 3, 0x <


 and 0y >


, which indicates 
that x  decreases and y  increases, so the vector field in region 3 point towards north-

west. In region 4, 0x >


 and 0y >


, which indicates that x  increases and y  increases 
as well, so the vector field in region 4 points towards northeast. So, overall the vector field 
in the entire field is in a clockwise direction. By observing the vector field in the entire 
region, we know that there might be a limit cycle as the vector field forms a cycle. To 
further verify if indeed there exists a limit cycle, we can construct a closed region, i.e., the 
region between the right trapezoid and the small circle, as shown in Figure 11b. In order 
to see if there exists a limit cycle in that region, we need to look at the vector field, and as 
we already knew that the vector field indeed points into the right trapezoid region on its 
boundary, all we know to see next is whether the cycle is a repelling cycle or not, i.e., if 
the vector field in the cycle points into the right trapezoid region or not. We can calculate 
the Jacobian matrix at the equilibrium point, i.e., the interaction point between and the 
red line and black line, as follows:  

2

2

1 1
( 1)

2 0.05
xJ
xy x

 − +=  
− − −  

 (21) 
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At the equilibrium point 
0.45
2.31

x
y
   

=   
   

, the trace of the Jacobian matrix is smaller 

than 0, which indicates that the equilibrium point is a saddle point. This means that the 
vector field surrounding the circle does not point into the right trapezoid region and there-
fore, based on the PB theorem, we cannot conclude that there exists a limit cycle.  

  
(a) (b) 

Figure 11. Plot of the system when 0x =


 and 0y =


. 

4. Comparison among Different Approaches 
Comparisons among the approaches to analyze the stability of the equilibrium point 

of two-dimensional nonlinear dynamical systems, i.e., Lyapunov–LaSalle energy-based 
approach, graphical phase plane approach, and linearizing-around-an-equilibrium-point 
approach, are presented in the Table 1. The advantages and disadvantages of each method 
are illustrated. Similarly, the comparisons among the approaches to analyze the stability 
of the limit cycle of two-dimensional nonlinear dynamical system, i.e., Poincaré–Ben-
dixson theorem and LaSalle local invariant set theorem, are also presented in Table 1.  

Table 1. Comparison among different approaches for stability analysis of an equilibrium point and 
limit cycle. 

Approaches for Sta-
bility Analysis of an 
Equilibrium Point 

Advantages Disadvantages 

Lyapunov–LaSalle 
energy-based ap-

proach 

1. This analytical method can give quantita-
tive result based on the Lyapunov and 
LaSalle theorems;  
2. The Lyapunov–LaSalle energy-based ap-
proach is applicable to all dynamical sys-
tems  

1. It is difficult to choose the right Lyapunov candi-
date function, if one did not manage finding one, it 
does not mean the equilibrium point being ana-
lyzed is unstable, it could be stable or it could be 
unstable;  
2. It involves with large calculations when we cal-
culate the time derivative of the chosen Lyapunov 
function  

Graphical phase 
plane approach 

1. It is a visualization method, which can 
give the conclusion without being getting 
into calculation;  

1. This method most of the time is limited to the 
two-dimensional systems; 
2. As it is visualization method, it cannot give us 
the quantitative result, only the qualitative result; 
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2. This method is faster than the Lyapunov 
method when determining the stability of an 
equilibrium point 

3. This method can only be applied to autonomous 
systems, not non-autonomous systems  

Linearizing-around-
an-equilibrium-point 

approach  

1. It involves with very simple calculation as 
the nonlinear system has been linearized; 
2. this analytical method can give us the 
qualitatively correct dynamics information 
fast near the equilibrium point 

1. This method has limitations, it is not applicable 
to all dynamical systems. It can only give us the 
correct dynamics information fast near the equilib-
rium point when the equilibrium point is saddle, 
node, or focus/spiral. It could give us the false in-
formation when the equilibrium point is other than 
saddle, node, or focus.  

Approaches for sta-
bility analysis of a 

limit cycle 

 
 

Poincaré–Bendixson 
theorem 

1. The theorem is intuitive, and it is one of 
the few theorems that can prove whether 
there exists a limit cycle  

1. In order to use this theorem we need to construct 
a closed region, and it is difficult to construct a 
closed region that there exists a limit cycle in the re-
gion;  
2. It is only valid for two-dimensional systems 

LaSalle Local Invari-
ant Set theorem 

1. It is obvious and easy to determine if 
there exist a limit cycle once we determined 
the time derivative of the chosen Lyapunov 
function  

1. It is difficult to choose the right Lyapunov candi-
date function. 

From the above comparison, we can see that the Lyapunov–LaSalle energy-based an-
alytical method can give quantitative result about the stability of an equilibrium point, 
and the Lyapunov–LaSalle energy-based approach is applicable to all dynamical systems 
[77–82]. However, in order to use this method, we need to choose the right Lyapunov 
function, and usually it is difficult to choose the right Lyapunov candidate function. If one 
did not manage finding one, it does not mean the equilibrium point being analyzed is 
unstable, it could be stable or it could be unstable. Meanwhile, this method involves with 
large calculations when we calculate the time derivative of the Lyapunov candidate func-
tion [83–89]. The graphical phase plane approach is a better choice to analyze the stability 
of an equilibrium point if quantitative result is not needed [90–92], and this approach is a 
visualization-based method, which can give the conclusion without being getting into cal-
culation, and it is faster than the Lyapunov method when determining the stability of an 
equilibrium point. However, this method most of the time is limited to the two-dimen-
sional systems and can only be applied to autonomous systems, not non-autonomous sys-
tems. Regarding the linearizing-around-an equilibrium-point approach, this involves a 
very simple calculation because the nonlinear system has been linearized, and this method 
can give us the qualitatively correct dynamics information quickly near the equilibrium 
point. Use with care is needed when using this method, as it is not applicable to all dy-
namical systems. It can only give us the correct dynamics information quickly near the 
equilibrium point when the equilibrium point is saddle, node, or focus/spiral.  

Regarding the comparison among different approaches for stability analysis of a limit 
cycle, it shows that LaSalle local invariant set theorem is an obvious and easy method to 
determine if there exists a limit cycle once we determined the time derivative of the Lya-
punov candidate function. However, it is difficult to choose the right Lyapunov candidate 
function. Some literature is available for finding the Lyapunov function [93–95]. Whereas 
the Poincaré-Bendixson theorem is intuitive, and it is one of the few theorems [96] that 
can prove whether there exists a limit cycle, in order to use this theorem we need to con-
struct a closed region, and it is difficult to construct a closed region where there exists a 
limit cycle in the region, and the method is only valid for two-dimensional systems.  
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5. Conclusions 
In this paper, the stability analysis of equilibrium point and limit cycle of two-dimen-

sional nonlinear dynamical systems are presented. The author summarized that there are 
three major approaches to analyzing the stability of an equilibrium point, i.e., Lyaponov–
LaSalle energy-based approach, graphical phase plane approach, and linearizing-around-
an-equilibrium-point approach. The author also compared among them and presented 
the advantages and disadvantages of each approach, using several examples to demon-
strate each method. In the meantime, the author looked at the stability of a limit cycle by 
using two different approaches, i.e., LaSalle local invariant set theorem and Poincaré–Ben-
dixson theorem. The advantages and disadvantages of each method are also presented, 
and different examples are used to demonstrate each method. The author believes that 
this paper can provide a systematic guideline and overall framework to study the stability 
of equilibrium points and limit cycles of nonlinear dynamical systems.  

As we can see, each method has its drawbacks and limitations. Therefore, for future 
work, it is interesting to look at the stability analysis of equilibrium points and limit cycles 
of two-dimensional nonlinear dynamical systems by proposing and using a common ap-
proach or framework, for example, how to use phase plane approach to handle the non-
autonomous systems.  
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