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Featured Application: The purpose of this study was to determine the efficacy of highly accurate
ML classification algorithms trained on prostate image data from one institution and tested on
image data from another institution.

Abstract: (1) Background: Recent studies report high accuracies when using machine learning (ML)
algorithms to classify prostate cancer lesions on publicly available datasets. However, it is unknown
if these trained models generalize well to data from different institutions. (2) Methods: This was
a retrospective study using multi-parametric Magnetic Resonance Imaging (mpMRI) data from
our institution (63 mpMRI lesions) and the ProstateX-2 challenge, a publicly available annotated
image set (112 mpMRI lesions). Residual Neural Network (ResNet) algorithms were trained to
classify lesions as high-risk (hrPCA) or low-risk/benign. Models were trained on (a) ProstateX-2
data, (b) local institutional data, and (c) combined ProstateX-2 and local data. The models were then
tested on (a) ProstateX-2, (b) local and (c) combined ProstateX-2 and local data. (3) Results: Models
trained on either local or ProstateX-2 image data had high Area Under the ROC Curve (AUC)s
(0.82–0.98) in the classification of hrPCA when tested on their own respective populations. AUCs
decreased significantly (0.23–0.50, p < 0.01) when models were tested on image data from the other
institution. Models trained on image data from both institutions re-achieved high AUCs (0.83–0.99).
(4) Conclusions: Accurate prostate cancer classification models trained on single-institutional image
data performed poorly when tested on outside-institutional image data. Heterogeneous multi-
institutional training image data will likely be required to achieve broadly applicable mpMRI models.

Keywords: machine learning; prostate cancer; magnetic resonance imaging; artificial intelligence

1. Introduction

Over the last decade, there have been significant advancements in multi-parametric
prostate MRI (mpMRI) [1,2] and machine learning (ML) applications in mpMRI [3–5].
While mpMRI has high sensitivity and specificity for the detection of prostate cancer,
accurate discrimination between high-risk prostate cancer (hrPCA, defined as Gleason
grade ≥4 + 3 in this study and others [6,7]) and low-grade/benign prostate lesions remains
challenging and is paramount for clinical management [8,9]. Methods to distinguish hrPCA
from low-grade/benign PCA are important as low-grade/benign prostate lesions can be
managed with active surveillance instead of invasive treatment. Many recent publications
report highly accurate machine learning algorithms for the classification of prostate lesions
on MRI that appear to successfully address this diagnostic obstacle, with areas under the
receiver operating characteristic curve (AUCs) of 80–98% [10].

Appl. Sci. 2023, 13, 1088. https://doi.org/10.3390/app13021088 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13021088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7470-4604
https://orcid.org/0000-0002-0116-9460
https://orcid.org/0000-0002-9938-2197
https://orcid.org/0000-0002-6236-4956
https://doi.org/10.3390/app13021088
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13021088?type=check_update&version=1


Appl. Sci. 2023, 13, 1088 2 of 14

Recently, a consortium of the American Association of Physicists in Medicine (AAPM),
the SPIE (the International Society for Optics and Photonics), and the National Cancer
Institute (NCI) conducted ProstateX and ProstateX-2 Challenges [11]. They published
publicly available image datasets of annotated mpMRI lesions (as identified by radiologist)
and their subsequent MRI-guided biopsy results [12], asking challenge participants to
classify lesions as hrPCA or “benign” and to predict the lesion Gleason grade. Top-trained
algorithms (models) developed using the challenge image data also reached accuracies of
>90% in the classification of hrPCA versus “benign” lesions [11,13,14].

While ProstateX and other mpMRI ML results appear promising, caution is warranted
as the majority of these studies are single-institutional studies, often using a single MRI
scanner manufacturer [15–17]. A systematic review of ML algorithms in mpMRI noted the
paucity of multi-institutional studies [18]. The need for multi-institutionally trained models
using heterogeneous image data is being recognized [19,20], spurring the development
of the field of federated learning [21]. The purpose of this study was to determine the
efficacy of highly accurate ML classification models trained on prostate image data from
one institution and tested on image data from another institution. The highly accurate
model used was a subset of a machine learning algorithm called a convolutional neural
network: the Residual Neural Network (ResNet). The broader impact of single- and
multi-institutional training data on model performance was also assessed.

This study tested the effects of single- and multi-institutional studies by training a se-
ries of models to classify high risk Prostate Cancer (hrPCA) on the open-source ProstateX-2
dataset, local institutional dataset, and combined dataset including data from both. Models
were then tested on corresponding data from each of the three subsets and compared to one
another through statistical testing. Sub-analysis was performed on the PZ and TZ regions
of the prostate. Finally, the results were analyzed and discussed in the broader context of
the need for heterogeneous datasets.

The results of this study serve to identify the need for heterogeneous or multi-
institutional training datasets for broadly applicable clinical models. Additionally, this
study draws attention to an important concern, which is the potential lack of generalizabil-
ity of models trained on single-institutional or homogeneous datasets.

2. Materials and Methods
2.1. ProstateX-2 Patient Population

The ProstateX-2 Challenge was a subset of the ProstateX challenge [22], conducted by
the American Association of Physicists in Medicine (AAPM), the SPIE (the International
Society for Optics and Photonics), and the National Cancer Institute (NCI), to develop
machine learning algorithms that could predict the Gleason Grade (GG) of prostate lesions
identified by radiologists on multi-parametric Magnetic Resonance Imaging (mpMRI)
exams. The patient cohort originated from a single institution (Radboud University Medical
Centre (Nijmegen, The Netherlands)) in 2012. The magnetic resonance images (MRIs)
were read or supervised by a radiologist with 20 years of experience using the Prostate
Imaging Reporting and Data System (PIRADS) version 1. Lesions with a PIRADS score ≥3
underwent MRI-guided biopsy, yielding 112 MRI lesions for this study. The Gleason grade
of these lesions and zonal distribution are summarized in Table 1. The ProstateX-2 subset of
patients was used from the ProstateX dataset due to the availability of their Gleason grade.

2.2. ProstateX-2 MR Imaging and Image Data

The ProstateX-2 data was obtained from the Cancer Imaging Archive (TCIA) [22,23],
and included MR images, lesion centroid coordinates, and MR-guided biopsy Gleason
scores (GS). The PIRADS scores of these lesions were not included in the dataset. MRI exams
were performed on two Siemens 3T MR scanners (Magnetom Trio and Skyra, Siemens,
Munich, Germany) without an endorectal coil. Image data included: (a) small field-of-
view (FOV) axial T2 (Transverse Relaxation Time) turbo spin-echo sequence with 0.5 mm
resolution and 3.6 mm slice thickness; and (b) single-shot echo-planar diffusion-weighted
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imaging (DWI) with 2 × 2 × 3.6 mm resolution, and b-values of 50, 400, 800 s/mm2;
the Apparent Diffusion Coefficient (ADC) map was calculated by the scanner software.
Additional multiplanar T2 and dynamic contrast-enhanced sequences were included in the
dataset but were not used in this study. The three-dimensional centroid Digital Imaging and
Communications in Medicine (DICOM) coordinates of the prostate lesions were provided
for lesion localization. The axial T2 and ADC map image containing the centroid of the
lesion were utilized in this study.

Table 1. Summary of patient demographics, MRI PIRADS scores, lesion Gleason grades, and lesion
zonal distribution within the ProstateX-2 and local institutional datasets.

ProstateX-2 Local Institution

Patients

Mean age 66.0 63.6
Range 48–83 47–74

Race NA 51% white, 44%
AA, 5% Other

MRI exams

Total n = 112 n = 63
PIRADS 5 NA 25
PIRADS 4 NA 14
PIRADS 3 NA 2
PIRADS 2 0 22

Lesion pathology

hrPCA Total n = 35 (31%) n = 28 (44%)
GG5 7 9
GG4 8 4

GG3 (4 + 3) 20 15
“Benign” Total n = 77 (69%) n = 35 (56%)

GG2 (3 + 4) 41 11
GG1 36 2

<GG1 - 22 *

Lesion zonal
distribution

hrPCA PZ 15 22
TZ 20 6

“Benign” PZ 35 23
TZ 42 12

AA: African American, GG: Gleason grade, PZ: peripheral zone, TZ: transitional zone. * These were PIRADS 2
“pseudo-lesions” that were included to augment the benign subset of patients in the prostatectomy cohort from
our institution. Biopsies were not performed, and these were presumed to be <GG1 based on stability of greater
than two years in follow-up.

2.3. Local Institutional Patient Population

This was a HIPAA-compliant, IRB-approved retrospective study. The electronic med-
ical records (EMR) were used to identify patients with prostatectomy and pre-operative
prostate MR imaging between 2016–2020; 153 such patients were identified. These patients
had MRIs that were interpreted by one of two abdominal radiologists (with 4 and 7 years
of experience) using PIRADS version 2 criteria at the time of acquisition; PIRADS scores
from the original MRI report were used in this study.

Since whole-mount pathology–radiology correlation was unavailable at our institution,
MRI exams, pre-surgical MR–US fusion-guided biopsy results, and final prostatectomy
surgical pathology results were retrospectively reviewed by a single radiologist (SHM) to
determine if the index cancer (defined as the dominant cancerous lesion with the highest
GS in the gland) from the pathology report could be clearly localized and correlated with
a reported MRI lesion. MRI lesions were only enrolled into the study if: (a) pre-surgical
targeted MR–US fusion-guided biopsy of the lesion confirmed the lesion as the index



Appl. Sci. 2023, 13, 1088 4 of 14

cancer in the gland with lower GS and/or benign pathology in the rest of the targeted and
systematic biopsies; and (b) surgical pathology report noted the index cancer to be within
1 GS of the targeted biopsy (to allow for minor up- and down-grading) and within the
same side and relative location of the gland (anterior, posterior, lateral, base, mid, apex).
Patients were excluded if: (a) MR–US fusion-guided biopsy demonstrated (i) >1 targeted
lesion with the index cancer GS, or (ii) the presence of the index cancer GS in the systematic
biopsy in areas non-adjacent to the MRI lesion; or (b) surgical pathology reported multi-
focal or bilateral areas of prostate cancer with the index cancer GS. Only one MRI lesion
correlating with the gland’s index cancer was enrolled from each prostate gland. These
criteria lead to the identification of patients with a single or dominant ipsilateral lesion on
MRI, with both biopsy and surgical pathology confirming the lesion and area as containing
the index cancer, and the absence of other ipsilateral or contralateral lesions/areas with
similar GS as the index cancer. Based on these stringent criteria, the index cancer of 41 of
the 153 prostatectomy patients was confidently correlated with surgical pathology results
and entered into this study. Tumor volume for the local dataset ranged from 0.00–82.90 cc
(Mean 10.63 ± 15.31). The patient demographics and tumor GG and zonal distribution are
summarized in Table 1.

The Gleason score and location of the index cancer, defined as the dominant cancerous
lesion with the highest GS in the gland, was obtained from the surgical pathology report.

Given the low number of low-risk/benign MRI lesions in our prostatectomy cohort,
additional “benign” lesions were sought to augment the image dataset. The EMR was
used to identify patients with two PIRADS 2 MRI exams at least 2 years apart, to confirm
benignity of the initial PIRADS 2 MRI. Three or four lesions were traced within each gland,
on different sides, several slices from one another, in areas of low to intermediate T2 signal
and minimal to no restricted diffusion. This produced 22 additional lesions (from seven
patients with a mean interval of 2.9 years between the first and second PIRADS 2 MRI
exams) to serve as “benign” pathology within our local institutional image dataset. There
were 25 PIRADS 5, 14 PIRADS 4, 2 PIRADS 3, and 22 PIRADS 2 lesions in the final local
institutional cohort.

2.4. Local Institutional MR Imaging and Image Data

The mpMRI performed at our institution was performed on a single 3T scanner
(Siemens Skyra) without an endorectal coil. Our institutional protocol included (a) small
FOV axial T2 turbo spin-echo sequence with 0.3 mm resolution and 3.0 mm slice thickness,
and (b) single-shot echo-planar diffusion-weighted imaging (DWI) with 1.7 mm resolution
and 3 mm slice thickness, and b-values of 50, 800 and 1400 s/mm2; the ADC map was
calculated by the scanner software. Additional multiplanar T2 and dynamic contrast-
enhanced sequences were performed but not used in this study. The axial T2 and ADC
map images containing the largest cross-sectional area of the lesion were exported from
the picture archiving and communication system (PACS) system in a 2-Dimensional (2D)
lossless imaging format (.tiff). The perimeter of the index cancer of the 41 enrolled lesions
was traced in the Picture Archiving and Communication System (PACS) on the axial T2
sequence by a single body-fellowship trained radiologist (SHM) with 7 years of prostate
MRI experience; this data was also exported. The overview of this process is detailed in
Figure S1.

2.5. Image Preparation and Lesion Segmentation

The axial T2 and ADC map DICOM and corresponding .bmp images (from the
ProstateX-2 dataset) and .tiff images (from our institution) were loaded into 512× 512 Python
pixel matrices. The default matrix size (512 × 512) for DICOM images that can be fed
into the algorithm within TensorFlow was used to reduce the need to use resizing algo-
rithms. The centroid of our institution’s lesions was calculated using the segmented T2
images in Python. The coordinates of the centroids of all lesions provided in the ProstateX
metadata was used to identify the location of lesions in Python. Centroid identification of
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ProstateX lesions was confirmed prior to data processing through custom Python script
and manual verification.

2.6. Convolutional Neural Network Training and Testing

A residual neural network (ResNet), a type of convolutional neural network (CNN),
was used in this study. The ResNet model was selected after training and testing several
other common ML frameworks due to its increased performance and speed. ResNets utilize
“skip connections” between the blocks of convolutional, max-pooling, and fully connected
layers that function to mute upstream layers within the neural network framework and
amplify the subsequent downstream layers [24]. This functions to reduce the occurrence
of vanishing gradients and accuracy saturation, and allow for faster, deeper models to be
created with lower training error [24]. ResNet50 architecture from the TensorFlow Python
package was used to implement the ResNet model [25]. A transfer learning process, which
allows for a pretrained network with weights from another dataset to quickly and more ac-
curately build new models, was used with initial weights created from the 14-million-image
“ImageNet” dataset [26]. The top layer of the ImageNet model network was removed,
and additional dense and dropout layers were added to yield a total of 269,224,449 train-
able parameters out of 292,812,161 parameters. Model layers were activated using the
Rectified Linear Unit (ReLU) activation function. A learning rate, which controls how
much each model weight can be changed during each training epoch, of 2 × 10−5 was
applied. The algorithm was trained for 50 epochs (one epoch is one pass through all of the
data.) The ResNet algorithm architecture and parameters are summarized in Figure 1 and
Tables S1 and S2. All equations used for training and validation are detailed in Table S3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 15 
 

 
Figure 1. Algorithm generation depicting data and model preparation, and ResNet model training 
and architecture used to develop the final models. Image A depicts T2W sequence with dot labeling 
the centroid of a Gleason 4 + 4 lesion. ReLU: Rectified linear unit activation function; LR: learning 
rate; Algo: algorithm. 

Algorithms were trained and tested first for 50 epochs to find the frameworks that 
best fit the data. Each trained model was then validated using 5-fold cross-validation, 
where an 80% sample of the data was used to train the model and the remaining 20% was 
used to test the model across 5 different folds. The algorithms were trained to classify 
prostate MRI lesions as hrPCA or low-risk/benign. hrPCA was defined as a Gleason score 
of greater than or equal to 4 + 3 (Gleason Grade 3). Algorithms were trained on: (a) Pros-
tateX-2 image data alone; (b) local institutional image data alone; and (c) combined Pros-
tateX-2 and local institutional image data using (i) T2, (ii) ADC map, and (iii) combined 
T2 and ADC map images. This process yielded nine trained models: modelPX2T2, mod-
elPX2ADC, modelT2 + ADC, modelLocalT2, modelLocalADC, modelLocalT2 + ADC and modelPXLT2, mod-
elPXLADC, and modelPXLT2 + ADC. The nine trained models were then tested on (a) ProstateX-2; 
(b) local institutional; and (c) combined ProstateX-2 and local institutional image data us-
ing (i) T2, (ii) ADC, and (iii) combined T2 and ADC map images. The combination of al-
gorithm training and testing sets are summarized in Figure 2. The total numbers of pa-
tients included in each model are listed in Table 2. Mean accuracy and areas under the 
receiver operating characteristic curve (AUCs) were calculated across five (cross-vali-
dated) runs. Algorithm parameters and performance are reported in accordance with the 
CLAIM checklist criteria [27]. 

Figure 1. Algorithm generation depicting data and model preparation, and ResNet model training
and architecture used to develop the final models. Image A depicts T2W sequence with dot labeling
the centroid of a Gleason 4 + 4 lesion. ReLU: Rectified linear unit activation function; LR: learning
rate; Algo: algorithm.

Algorithms were trained and tested first for 50 epochs to find the frameworks that
best fit the data. Each trained model was then validated using 5-fold cross-validation,
where an 80% sample of the data was used to train the model and the remaining 20%
was used to test the model across 5 different folds. The algorithms were trained to
classify prostate MRI lesions as hrPCA or low-risk/benign. hrPCA was defined as a
Gleason score of greater than or equal to 4 + 3 (Gleason Grade 3). Algorithms were
trained on: (a) ProstateX-2 image data alone; (b) local institutional image data alone; and
(c) combined ProstateX-2 and local institutional image data using (i) T2, (ii) ADC map,
and (iii) combined T2 and ADC map images. This process yielded nine trained models:
modelPX2T2, modelPX2ADC, modelT2+ADC, modelLocalT2, modelLocalADC, modelLocalT2+ADC

and modelPXLT2, modelPXLADC, and modelPXLT2+ADC. The nine trained models were then
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tested on (a) ProstateX-2; (b) local institutional; and (c) combined ProstateX-2 and local
institutional image data using (i) T2, (ii) ADC, and (iii) combined T2 and ADC map images.
The combination of algorithm training and testing sets are summarized in Figure 2. The
total numbers of patients included in each model are listed in Table 2. Mean accuracy and
areas under the receiver operating characteristic curve (AUCs) were calculated across five
(cross-validated) runs. Algorithm parameters and performance are reported in accordance
with the CLAIM checklist criteria [27].
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Figure 2. Schematic summarizing image datasets, algorithm training and testing.

Table 2. Total patients included in each of the initial datasets trained and tested. The total included
images for each imaging type (T2, ADC, or T2 + ADC) where the same imaging types were used for
each training/testing combination for the model.

ResNet Algorithm Training Image Source Testing Image Source Total Training Images Total Testing Images

PX2 89 (80%) 23 (20%)
ModelPX2 PX2 Local 89 (80%) 13 (20% of 63 initial)

PXL 89 (80%) 36 (20%)

Local 50 (80%) 13 (20%)
ModelLoc Local PX2 50 (80%) 23 (20%)

PXL 50 (80%) 36 (20%)

PXL 139 (80%) 36 (20%)
ModelPXL PXL PX2 139 (80%) 23 (20%)

Local 139 (80%) 13 (20%)

The statistical significance of the results of the trained models were also evaluated.
“Randomization” or “shuffle” testing was performed, where the labels on the training
data are shuffled and passed through the modeling process 100 times to determine if any
randomly shuffled dataset could achieve the same results as the final model. A p < 0.01
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was considered significant, indicating that no shuffled runs achieved the same accuracy
and AUC as the final reported result.

The statistical significance of the differences in the performance of the models was
also tested using a 2-tailed t-test. The AUCs and accuracies of models trained and tested on
image data from the same institution(s) were compared to those trained at one institution(s)
and tested on image data from different institution(s), e.g., modelPX2T2 trained and tested
on ProstateX image data was compared to modelPX2T2 trained on ProstateX image data
and tested on combined ProstateX and local institutional image data. p-values < 0.01 were
deemed significant.

Sub-analysis of model performance was also tested as above using lesions from only
the peripheral (PZ) or transitional zones (TZ) across institutions, with similar statistical
t-testing for differences in performance of the trained models.

3. Results
3.1. Model Results for Classification of hrPCA on PX2, Local, and PXL Data

Initial randomization testing of all nine models confirmed that model AUC and
accuracy results were not the product of chance (p < 0.01). Using T2 image data alone,
modelPX2T2 had an AUC of 0.93 when tested on ProstateX-2 image data; its AUC dropped
significantly to 0.49 when tested on the local institutional image data (p < 0.01). Similarly,
modelLocalT2 had an AUC of 0.96 when trained and tested on local T2 image data; its AUC
dropped to 0.50 when tested on ProstateX-2 T2 image data (p < 0.01). These results and
corresponding model accuracies are summarized in Table 3. Standard deviations for each
cross-validated model run are available in Supplementary Table S4.

Table 3. Accuracy and area under the receiver operating characteristic curve for models trained
on and tested with the entire ProstateX-2, local institutional, and combined ProstateX-2 and local
institutional image data using 5-fold cross-validation. t-tests compared the AUC and accuracies
of models trained and tested using the same image data source (labeled *) to those using different
training and testing sources (labeled †). Statistically significant differences (p < 0.01) shown by
2-tailed t-test are underlined. PX2: ProstateX-2 data, Local: local institutional data, PXL: combined
prostateX-2 and local institutional data.

ResNet
Model

Training
Image
Source

Testing
Image
Source

Training & Testing Image Sequence

T2 ADC T2 & ADC

AUC Accuracy AUC Accuracy AUC Accuracy

PX2 * 0.93 0.91 0.91 0.88 0.95 0.90
ModelPX2 PX2 (89) Local † 0.49 0.53 0.23 0.48 0.46 0.55

PXL † 0.87 0.79 0.80 0.78 0.78 0.80

Local * 0.96 0.89 0.82 0.82 0.98 0.92
ModelLoc Local PX2 † 0.50 0.54 0.49 0.49 0.41 0.51

PXL † 0.77 0.71 0.84 0.84 0.94 0.87

PXL * 0.83 0.89 0.98 0.92 0.96 0.93
ModelPXL PXL PX2 † 0.92 0.92 0.85 0.91 0.85 0.93

Local † 0.96 0.86 0.88 0.92 0.99 0.92

Using ADC map image data alone, modelPX2ADC and modelLocalADC had AUCs of
0.91 and 0.82, respectively, when tested on image data from their respective institutions.
Their AUCs decreased (0.23–0.49) significantly when tested on the other institution’s image
data (p < 0.01). Using both T2 and ADC map image data, modelPX2T2+ADC and modelLocal

T2 + ADC had AUCs of 0.95 and 0.98, respectively, when tested on image data from their
respective institutions. Their AUCs also decreased (0.41–0.46) significantly when tested on
the other institution’s image data (p < 0.01).
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ModelPXLT2, representing the multi-institutionally trained model, had an AUC of 0.83
when tested on T2 image data from both institutions, and higher AUCs (0.92–0.96) when
tested on single-institution image data (p < 0.01). ModelPXLADC and modelPXLT2 + ADC had
even higher AUCs (0.96–0.98) when tested on multi-institutional image data using ADC
and combined T2 and ADC sequences; their performance slightly decreased (0.85–0.99)
when tested on single-institution image data.

The single-institutionally trained and tested models (modelPX2 and modelLocal) tended
to have higher AUCs when using T2 images compared with ADC map images; the use of
combined T2 and ADC map images did not improve the performance of these models. The
multi-institutionally trained model (modelPXL) had a higher AUC using ADC map images
compared with T2 (0.98 vs. 0.83) when testing on multi-institutional image data; the use of
combined T2 and ADC map images did not improve its performance.

3.2. Sub-Analysis Results on PZ or TZ Lesions

Further sub-analysis of model AUCs was performed using lesions from only the PZ or
TZ, with a similar pattern of results as above. ModelPX2 and modelLocal had high AUCs
(0.81–0.99) when tested on image data from their respective institutions using only PZ or
TZ lesions; their AUCs decreased when tested on data from the other institution (0.23–0.61).
ModelPXL had comparable AUCs when tested on multi- or single-institutional image data
using only PZ or TZ lesions; nonetheless, some small but statistically significant differences
were noted. These results are summarized in Table 4. Standard deviations for each cross-
validated model run are available in Supplementary Table S5. Assessment of differences in
model performance based on lesion zonal was deferred given the purpose of this study.

Table 4. Sub-analysis of accuracy and area under the receiver operating characteristic curve for
models trained and tested on ProstateX-2, local institutional, and combined ProstateX-2 and local
institutional image data using lesions from either the peripheral or transitional zones only, with 5-fold
cross-validation. t-tests compared the AUC and accuracies of models trained and tested using the
same image data source (labeled *) with those using different training and testing sources (labeled †);
statistically significant differences are underlined (p < 0.01). PX2: ProstateX-2 data, Local: local
institutional data, PXL: combined prostateX-2 and local institutional data.

ResNet
Algo-
rithm

Training
Image
Source

Testing
Image
Source

Training & Testing Image Sequence

T2 ADC T2 & ADC

AUC Accuracy AUC Accuracy AUC Accuracy

PZ TZ PZ TZ PZ TZ PZ TZ PZ TZ PZ TZ

PX2 * 0.92 0.93 0.91 0.90 0.91 0.91 0.88 0.88 0.94 0.95 0.91 0.90
ModelPX2 PX2 Local † 0.44 0.61 0.53 0.55 0.23 0.25 0.48 0.48 0.45 0.31 0.44 0.44

PXL † 0.88 0.87 0.8 0.77 0.80 0.81 0.77 0.80 0.77 0.79 0.80 0.80

Local * 0.88 0.99 0.86 0.89 0.82 0.81 0.84 0.80 0.95 0.96 0.90 0.94
ModelLoc Local PX2 † 0.48 0.52 0.53 0.55 0.54 0.45 0.49 0.48 0.55 0.29 0.57 0.46

PXL † 0.79 0.69 0.79 0.70 0.94 0.72 0.84 0.80 0.89 0.94 0.83 0.88

PXL * 0.83 0.92 0.89 0.90 0.98 0.99 0.92 0.93 0.96 0.90 0.91 0.98
ModelPXL PXL PX2 † 0.93 0.92 0.92 0.92 0.88 0.85 0.92 0.90 0.85 0.86 0.93 0.92

Local † 0.96 0.95 0.94 0.78 0.90 0.88 0.92 0.91 0.99 0.97 0.92 0.92

4. Discussion

ModelPX2 had high accuracies and AUCs (88–91% and 0.91–0.95) when trained and
tested on image data from the ProstateX-2 Challenge, similar to published results in the
challenge (AUCs of 0.81–0.84) [28–31]) and in a subsequent study (AUC of 0.91) [18]).
ModelLocal, which was trained on image data from our institution, had similarly high
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AUCs (0.82–0.98) when tested on local image data. While these results appear very promis-
ing and highly diagnostic, they should be regarded with reservation. The AUCs of these
models decreased significantly (0.23–0.50) when trained on image data from one institution
and tested on image data from the other institution. A similar pattern was also demon-
strated when model performance was assessed using lesions only from the peripheral or
transitional zones (PZ: 0.91–0.44, TZ: 0.93–0.61). Homogeneous image data used in the
training of models can result in “overfitting”, where the model is finely customized to the
training data and cannot be generalized to “new” data [32–34].

Homogeneity in training image datasets can be a function of MRI institutional pro-
tocols and parameters. In this study, both institutions used 3T MRI scanners from the
same vendor without an endorectal coil. ProstateX images were obtained on Siemens 3T
Skyra and Trio scanners; images at our institution were obtained on a Siemens 3T Skyra.
There were differences in the image resolution and slice thicknesses (3.6 mm vs. 3 mm)
and in the b-values used in the construction of the ADC map (50/400 vs. 50/800). Buch
et al. demonstrated quantitative variations in texture analysis features based on sequence
parameters in a phantom model [35]. Small differences in sequence parameters, receiver
coils, body habitus, and local magnetic fields, can result in slightly different image quality,
signal, and contrast-to-noise ratios.

MRI signal intensity values also vary within and across institutions l. MR signal
intensity is not correlated with an absolute standard reference, and is dependent on MR
hardware, tissue characteristics, pulse sequence, method of k-space filling, etc. Standard-
ization of MRI signal intensity scales may be able to further minimize multi-scanner and
multi-institutional image differences, but this has been an ongoing challenge [36]. Signal in-
tensity normalization techniques have been shown to impact prostate cancer radiomics [37].
Sunoqrot et al. also reported improved prostate MRI lesion classification (as benign or
malignant) in multi-institutional image data following an automated T2-weighted image
normalization using both fat and muscle [38]. This MR signal-intensity normalization was
not performed in this study given the already high performance of the models.

Many of the published machine learning studies with highly accurate models are
based on single-institution/single-scanner or single-institution/multi-scanner studies. One
systematic review on the performance of machine learning applications in the classification
of hrPCA found that 66% (18/27) of studies were performed at a single institution on a
single scanner [39]. In this same study, 4/27 studies were performed on more than one
scanner from the same vendor, 2/27 were performed on scanners by two vendors, and only
one study used multi-institutional image data. Another meta-analysis of 12 studies using
machine learning for the identification of hrPCA similarly showed that all studies originated
from a single institution or image data repository (the Cancer Imaging Archive) [40]. The
large majority of the machine learning prostate MRI papers cited in this paper used Siemens
3T scanner systems. Given our results, it is likely that the accuracy of these models would
decrease if tested on image data from a different scanner; further training and testing of
these models on image data from other scanners would likely be required.

Homogeneity in training image datasets will also be a function of patient population
cohorts, including race, gender, and disease prevalence. It is well-recognized that the
performance of a medical diagnostic test can vary in a subgroup of patients according
to the severity and clinical presentation of the disease (spectrum effect) [41,42]. As such,
homogeneous patient racial, gender, socioeconomic status (which are known to impact
disease prevalence) within training sets will also impact the broader performance of these
models. The local institutional patient population consisted of approximately 40% African
Americans; African Americans have a higher incidence of prostate cancer and present
with more advanced disease [43]. While the ProstateX dataset did not include patient
racial demographics, it is unlikely that the Dutch medical center had such a patient cohort.
Racial bias within medical models is recognized [44], with various medicolegal avenues for
mitigation [45].
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All these factors have led to the development of the field of federated machine learn-
ing, which provides the computing architecture for the construction of multi-institutional
models using de-centralized and de-identified patient data [46]. Federated learning in med-
ical algorithms is in its early stages and requires additional inter-institutional computing
infrastructure or use of commercial platforms [47–49]. Despite the multitude of differences
between the two institutional image datasets in our study, the multi-institutionally trained
modelPXL regained high AUCs (0.83–0.96) when it was trained and tested on image datasets
from both institutions. In effect, the algorithm was able to “learn” around the differences
between the two image datasets and classify lesions with high accuracy.

The multi-institutionally trained models (modelPXL) maintained relatively high AUCs
(0.85–0.99) when tested on single-institutional image data, although there were statistically
significant differences in performance between multi- and single-institutional testing sets
(p < 0.01). ModelPXLT2 had higher AUCs when tested on single-institution image data
compared to multi-institutional data (0.92–0.83). ModelPXLADC had higher AUCs when
tested on multi-institutional image data compared with single-institutional data (0.98–0.85).
Additionally, it is important to note these increases in performance occurred with only
a small amount of additional data (50 Local lesions added to the 89 PX2 lesions), which
showcases that even a small proportion of heterogeneous training data serves to make a
model more generalizable. These findings also have important implications for federated
learning: it suggests that training on heterogeneous multi-institutional image data may
have associated cost or benefits for model performance when tested on single-institution
image data. A few published studies using algorithms with federated learning models
have outperformed local institutional algorithms in prostate segmentation [21,50]. These
results do not aim to limit the development of models on one or two datasets; however,
they hope to encourage consideration for the heterogeneity and patient population when
applying clinical models.

Additionally, the models had high predictive accuracy when using a single sequence,
regardless of whether it was the T2 or ADC map alone. The single-institutionally trained
models’ AUCs were slightly higher when using the T2 sequence compared with the ADC
map, which could be a function of its higher resolution (0.93–0.96 vs. 0.91–0.82). There were
minimal to no gains in performance when both sequences were used and integrated by the
algorithm, suggesting that a single sequence may be sufficient. While most prostate ML
studies have used both T2 and ADC images in some manner, their optimized independent
or integrated utilization in prostate ML has yet to be determined. The mpMRI consists of
multiple sequences in multiple planes; there would be significant time and cost savings if
MR exams could be shortened to fewer sequences with such models.

There are several limitations to this study given some differences between the datasets
obtained from the two institutions. The Gleason score of the ProstateX-2 lesions came from
MRI-guided in-bore biopsy, while the local institutional GS came from surgical pathology
of prostatectomy specimens. MRI-guided biopsy was unavailable at our institution, and
lesions initially underwent MR–US fusion-guided biopsy. Given the risk of tumor under-
sampling and Gleason under-scoring with US-fusion biopsies, we used prostatectomy
specimens to obtain the “ground truth.” While a MRI-guided in-bore biopsy overcomes
many of the shortcomings of a MR–US fusion-guided biopsy and is recognized as being
superior to US-guided-MRI fusion biopsy [51], it nevertheless has the potential risk of
under-sampling.

Another limitation is that the sample size of both the original publicly available
dataset and our local dataset are small. Ideally, thousands of scans, if not every scan
potentially available at the time, would be used to train the model. However, due to
practical limitations, the cohort was limited by the scan availability of each institution.

The Gleason score of the prostatic lesions were also assigned by different pathologists
at different institutions. While each Gleason score has defined features, some inter-observer
variability and subjectivity is recognized in the pathology literature [52]. This study defined
hrPCA as GS ≥ 4 + 3, similar to other major studies [6,7], in order to identify patients who
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would definitively benefit from treatment; however, other studies have defined clinically
significant prostate cancer as GS ≥ 3 + 4 [53].

By using prostatectomy patients, the local institutional cohort had a higher initial
incidence of hrPCA and likely had more skew towards higher PIRADS lesions; the PX2
dataset consisted of lesions ≥ PIRADS 3, but lesion-specific PIRADS scores were not
included in the dataset. PIRADS 2 pseudo-lesions were introduced into the local cohort
to augment the low-risk/benign subset of lesions in this group. Such truly benign lesions
were unlikely to be within the ProstateX-2 image dataset and modelPX2 was not trained on
them, which also likely impacted modelPX2′s performance on local institutional image data
(T2 AUC 0.44). ProstateX-2 lesions were identified by a radiologist using PIRADS version
1, while local institutional lesions were identified using PIRADS version 2.0. ProstateX-2
lesions consisted of 3.6 mm thick T2 sequences, while the local institutional exams had 3
mm thick T2 slices. The ratio of peripheral to transitional zone tumors at the two institutions
could not be balanced, although sub-analysis was performed and demonstrated similar
results when compared to the full cohort analysis.

While these differences between the two institutional groups also likely had an impact
on the results, these differences will also be encountered by other single-institutionally
trained models in the future should they be applied to multi-institutional image data.
PIRADS scoring criteria should be revised and models trained on PIRADS versions 2 and
2.1 may be applied to image data interpreted using the future version 3. The distribution of
PIRADS lesions differs across radiologists [54] and the positive predictive value of PIRADS
scores vary across institutions [55]. The incidence of hrPCA also differs geographically
across different populations [56,57].

These results are not only important for the classification of hrPCA but also for the
broader context of machine learning for clinical medicine. Machine learning has been
applied to many other problems in medicine [58,59]. The use of heterogeneous training
data is important to improve the generalizability and utility for these clinical models.

5. Conclusions

Accurate prostate cancer classification algorithms that were trained on single-institutional
image data performed poorly when tested on outside-institutional image data; they re-
quired training on both image datasets to re-achieve high accuracy. While recent publi-
cations have reported high-performing ML models for the classification of hrPCA, most
utilize models trained on “homogeneous” single-institution-trained image data. This study
has demonstrated that generalizable models require heterogeneous and ideally multi-
institutional datasets. Heterogeneous multi-institutional training image data, perhaps
through a federated learning system, will likely be required to achieve broadly applicable
models. Future work for the classification of hrPCA from prostate MRIs should focus on
the use of heterogeneous training data to create and validate new models.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app13021088/s1, Figure S1: Overview of prostate cancer screening
and Radiologist evaluation methodology on the local dataset; Table S1: Overview of total parameters
and description of model layers for the model developed on ProstateX-2 using transfer learning on
the ResNet model with Imagenet weights from the TensorFlow applications package. The ReLU
activation function was used for each layer with a binary cross-entropy loss function. The “optimizers
RMSprop” optimizer was used with a learning rate of 2 × 10−5; Table S2: Overview of code used
to create algorithms for each training set; Table S3: Overview of equations used within the ResNet
model and validation tests; Table S4: Table 3 including Standard Deviations; Table S5: Standard
Deviations for Table 4.
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