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Abstract: In this work, we study the diffusion characteristics and structure of the molten salt FLiNaK
with dissolved CeF3 in the operating temperature range of the molten-salt reactor. The temperature
dependence of the self-diffusion coefficients of the ions that make up the salt mixture is represented
with good accuracy as a linear dependence, except for the case of self-diffusion of Ce ions. As a rule,
Li and F ions are more mobile than Na and K ions and significantly more so than slow Ce ions. The
coordination numbers and their increase upon dissolution of CeF3 in FLiNaK were determined based
on the calculation of partial radial distribution functions. The detailed structure of the melt is studied
based on the construction of Voronoi polyhedra. The obtained topological characteristics indicate
a predominantly tetrahedral type of distribution of Ce ions over the bulk of the system. Rotational
symmetry of the 5th order prevails in the structure of the Li and F subsystems, and symmetries of the
3rd and 4th orders prevail in the Na and K subsystems, respectively. The simulation results can be
used to search for actinide, which can be replaced by cerium in real experiments.

Keywords: diffusion; ions molecular dynamics; molten salt FLiNaK+CeF3; structure; Voronoi
polyhedra

1. Introduction

Currently, two types of molten fluoride salt can be used as fuel solvent and coolant in a
Molten Salt Reactor (MSR). These salts are FLiBe and FLiNaK. MSR refers to nuclear reactors
of the IV generation, in which liquid fuel is used instead of solid fuel. The preparation
of fuel for MSR involves the dissolving of fissile materials (235U, 233U, 239Pu) in molten
salt, which must meet certain requirements, i.e., have the necessary physical and chemical
properties. MSRs developed to date can use U, Pu, Th as fuel, and salt compositions for
them can be chlorides, fluorides, or nitrides [1].

A fast-spectrum breeder reactor (MSFR) has the possibility for actinide burning.
Thanks to this reactor, the reduction of the reprocessing requirements and a better breeding
ratio becomes possible [2]. The inclusion of MSFR in the nuclear power system for burning
transuranium elements from spent nuclear fuel will solve the problem of closing the nuclear
fuel cycle. It is known [3,4] that CeF3 and NdF3 are chemically similar analogues of PuF3
and AmF3, respectively. It is more efficient to carry out experimental studies with safe
analogues (Ce and Nd), rather than with the radioactive elements themselves (Pu and Am).

It was found that molten fluoride mixtures FLiBe and FLiNaK form strong and rel-
atively weak associates, respectively [5,6]. On the basis of molecular dynamics (MD)
calculations, it was shown that the value of the diffusion activation energy in the LiF-KF
salt melt is commensurate with the strength of the anion–cation interaction in molten
fluoride salts [7]. A stronger effect of temperature than the effect of the composition of the
molten salt on the self-diffusion of anions and cations has been established. The thermoki-
netic properties (density, bulk modulus, thermal expansion coefficient, and self-diffusion
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coefficient) of FLiBe and FLiNaK, including those with dissolved Cr, were calculated at
a high temperature using ab initio MD [8]. The behavior of Mo solvated in the molten
FLiNaK salt was studied by the method of molecular dynamics [9]. The dependence of
the nature of complex formation of Mo on the degree of its oxidation is shown. With the
use of molecular dynamics modeling, it becomes possible to create a scientific prediction
of the behavior of solutes in molten salts and to predict the effect of their presence on the
properties of the salt [10].

The purpose of this work is to study the temperature dependence of ion diffusion in
the molten FLiNaK salt with CeF3 salt dissolved in it and to study in detail the structure of
this melt under conditions close to those for an operating molten salt reactor. The study of
the behavior of lanthanide (cerium) in the molten salt FLiNaK is important from the point
of view of its use in the laboratory tests as a substitute for radioactive actinide, the specific
type of which can be determined in future studies.

2. Materials and Methods

A co-melt of FLiNaK and CeF3 was obtained by melting four fcc crystals: LiF (9300 ions),
NaF (2300 ions), KF (8400 ions), and CeF3 (750 ions) at 3000 K for 1 million time steps
(∆t = 0.1 fs). A system of this composition corresponded to the FLiNaK eutectic:
LiF—46.5 mol.%, NaF—11.5 mol.%, and KF—42.0 mol.%, in which CeF3 (15 mol.%) is
dissolved. Complete mixing of the melt was achieved after holding at the same tempera-
ture for another 2 million ∆t. All these calculations were performed in the NVT ensemble.
At the next stage of the calculation in the NPT ensemble, molten salt from FLiNaK and
CeF3 was brought to the experimental density corresponding to a temperature of 800 K and
kept at this temperature. The duration of this stage was 3 million ∆t. The Nose–Hoover
thermostat and barostat were used for keeping the simulated temperature and pressure
constant [11,12]. The thermostat relaxation time was τT = 400 ∆t, and the barostat relaxation
time was τP = 1000 ∆t. Exactly the same values of the parameters τT and τP were used
in [13]. Subsequent calculations were carried out in the NVE ensemble by sequentially
increasing the temperature by a certain value ∆T, keeping the system at a new temperature,
and then calculating the physical properties. Each calculation at the new temperature took
2 million ∆t. In all cases, periodic boundary conditions acting in each of the three directions
were used. Long-range interactions were taken into account on the basis of Particle–Particle
Particle–Mesh (PPPM) summing [14]. The Poisson equations were solved using the fast
Fourier transform.

The interaction of singly charged ions that make up FLiNaK was described by the
rigid-ion potential of Born-Mayer-Huggins-Tosi-Fumi (BMHFT) [15]

φ = ZiZj
e2

4πε0εr
+ Bij exp

[
−

r− σij

ρij

]
−

Cij

r6 −
Dij

r8 , (1)

where i and j can represent positive or negative ion, Zi and Zj characterize ion charges; the
last two terms in expression (1) reflect the dipole–dipole and dipole–quadrupole interaction;
and ε0 and ε are the permittivity of the free space and relative permeability of the studied
environment, respectively. The parameters for the potential for FLiNaK represented by
expression (1) are given in [16].

The QUANTUM ESPRESSO program [17,18] was used to calculate the parameters of
the Ce–Ce and Ce–X interaction potential, where X is F, Li, Na, K. Projector-augmented
wave GGA-PBE scalar relativistic pseudopotentials [19,20] were used. Moreover, the kinetic
energy cutoff for wave functions and charge density corresponded to 100 and 400 Ry,
respectively. The interaction of the Ce ion with other ions was created by the Coulomb and
non-Coulomb contributions. When determining the Coulomb contribution, integer values
of electric charges were used: +3 for Ce ion; +1 for Li, Na, and K ions; and−1 for F ions. The
schematic diagrams of the complexes under study are shown in Figure 1. The complexes
were placed in a simple cubic lattice with a large parameter a = 30 Å, so that the interaction
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between periodic cells was practically excluded. In other words, non-periodic isolated
systems were studied. The geometric template for determining the Ce–F interaction was
represented by a planar CeF3 molecule, in which the cerium atom is located at the center of
a regular triangle. The Ce–F distance was varied while maintaining the symmetry of the
system. To determine the Ce–Ce interaction, a 3D complex consisting of two Ce atoms and
six F atoms was considered. All Ce–F distances in this system were assumed to be equal
to the typical distance for melting salts (2.3 Å) while the Ce–Ce distance was varied. The
combination of CeF3 and XF complexes (X = Li, Na, K) served as a geometric template for
determining the interaction between the Ce ion and alkali metal ions. In this 3D complex,
the Ce–F and X–F distances were fixed at 2.3 Å while the Ce–X distances varied. In all cases,
the energy of non-Coulomb interactions was determined as the difference between the
total energy and the energy of Coulomb interactions. The dependence of the non-Coulomb
interaction energy on the distance between the ions was approximated by an exponential
dependence. Grimme’s dispersion corrections D3 [21] were added for accurate accounting
of non-covalent interactions.
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Figure 1. Principal scheme for determining the parameters of the interaction potential between Ce
ions and other ions that form the FLiNaK salt mixture.

The non-Coulomb contribution was determined by the second term in the expression (1),
where the parameters B, ρ, and σ were determined using quantum mechanical DFT calcula-
tions and are presented in Table 1. The behavior of cerium ions with an electric charge of +3
in the FLiNaK salt melt is almost completely determined by the Coulomb interaction. The
absence of explicit contributions describing the weak dipole–dipole and dipole–quadrupole
interactions of cerium with other ions does not significantly change the ion dynamics in the
molten salt. This is confirmed by the results of [22], where a similar form of the interaction
potential was used for all ions present in pure FLiNaK.

Table 1. Parameters for interaction of Ce with other components of molten salt.

Cerium B, eV ρ, Å σ, Å

Ce–Ce 1.357 0.141 2.02
Ce–F 1.618 0.3324 2.34
Ce–Li 0.053 0.137 1.77
Ce–Na 0.092 0.146 2.03
Ce–K 0.078 0.168 2.39

To calculate the self-diffusion coefficient, the Eitstein relation was used:

Dα =
1
6t

lim
t→∞
〈|∆rα(t)|2〉, (2)
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where 〈|∆rα(t)|2〉 is the mean square displacement of the element α and ∆rα is determined
for each particle at various times t and then taking the average.

In [23], based on the hydrodynamic model of a particle surrounded by a solvent,
an analytical correction was obtained to the effect of the system size on the diffusion
coefficient. In this approach, it was assumed that particle diffusion depends not only on
the hydrodynamic interaction with the solvent in the nearest environment, but also on
periodic images of the particle itself and the solvent. An expression was obtained for the
self-diffusion coefficient D∞ of the particle in an infinite system

D∞ = DMD
PBC +

kBTξ

6πηL
, (3)

where DMD
PBC is the self-diffusion coefficient obtained in the MD model with periodic bound-

ary conditions (PBC), kB is the Boltzmann constant, η is the shear viscosity, L is an effective
simulation cell length, constant ξ = 2.837297 [24].

In the case of unequal lengths of edges in an orthogonal cell, we can set L = L, where
L is the average length of an edge of the cell. We used an orthogonal cell with one side
significantly shorter than the other sides for two reasons. First, the initial stacking of the
crystals of the constituent components (LiF, NaF, KF and CeF3) was carried out in pairs
vertically on top of each other. In other words, the larger LiF and KF crystals were placed
together at the bottom of the box while the CeF3 and NaF crystals were located above these
crystals. Second, with such a shape of the cell, it was convenient to visually observe the
mixing of ions in the system.

The radial distribution function between atoms i and j is defined as

gij =
dnij(r)

4πr2drρi
, (4)

where dnij(r) is the number of atoms of sort j in a shell dr at the distance r of the atom of
sort i, partial density of species i: ρi =

V
Ni

= V/(Nxi), xi represents the concentration of
atomic species i.

The first coordination number is defined as [25]

nij = 4πρxj

∫ rmin

0
r2gij(r)dr, (5)

where ρ is the number density, xj is the concentration (Nj/N) of species j, and rmin is the
first minimum of the gij(r) function.

The structure of a salt melt can be studied by the method of statistical geometry based
on the construction of Voronoi polyhedra (VP) [26]. As a rule, VPs are analyzed using
the obtained topological and metric characteristics. Topological characteristics include
the distribution of polyhedra by the number of faces and the distribution of faces by the
number of sides. The first of them shows how the nearest geometric neighbors (NGNs)
are distributed around the centers (ions) of the selected subsystem or the entire system,
and the second gives information about cyclic formations (rings) that are visible from
the centers in the NGN location directions. We also analyze the metric characteristics
represented by the angular distribution of NGN defined for the selected subsystem. The
angular distribution is constructed for the angles θ formed by the pair NGN with the
center VP. The angular distribution shows a statistical picture of the relative angular
placement of NGN in a subsystem. It can be used to determine whether a structure is
regular. Statistical analysis generated by VPs reflecting a three-dimensional structure is
more informative than an analysis performed based on the calculation of a one-dimensional
radial distribution function.

All calculations were performed with the use of the open source program code for
molecular dynamics simulation LAMMPS [27] on a URAN cluster-type hybrid computer
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at the N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS with a peak
performance of 216 Tflop/s and 1864 CPUs.

3. Results
3.1. Density of Molten FLiNaK

Figure 2 shows the configuration of the FLiNaK+CeF3 system obtained at a time of
0.2 ns at a temperature of 1000 K. It can be seen that the system with the dominant number
of F ions has a high degree of mixing of different kinds of ions. This is due to the low
viscosity of this salt melt and the developed diffusion of ions that make up the system. To
more clearly represent the distribution of Ce ions over the volume of the system, Figure 3
shows the configuration formed by only these ions. As can be seen from the figure, the
placement of Ce ions in the MD cell is not ideally uniform, although their presence extends
over the entire available volume.
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To characterize the model used, we calculated the density of pure FLiNaK in the tem-
perature range studied here and compared the calculated density values with the available
corresponding experimental data [28] and data from first-principle calculations [29]. The
temperature dependence of the model and experimental density of FLiNaK melts (without
additives) is shown in Figure 4. Our calculated densities differ from the corresponding
model data of Salanne [29] (obtained with allowance for the polarizing effect) by no more
than 3.4%, and from the experimental data [28] by less than 1.2%. The density of the
“FLiNaK+15 mol.% CeF3” system determined by us at T = 975 K is 2.56091 g/cm3, while
the experimental density at this temperature is 2.56179 g/cm3.
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3.2. Self-Diffusion of Ions

The values of the self-diffusion coefficients of Li, Na, K, F, and Ce ions at different
temperatures are presented in Table 2. In addition to the D values for the FLiNaK+CeF3
system, the values of the D coefficients for pure FLiNaK calculated by us as well as those
obtained from the experiment [30] are also shown here. The experimental values of D
determined at temperatures not exceeding 936 K are presented at two temperatures (800
and 880 K). According to our calculations, both for pure FLiNaK and for the FLiNaK+CeF3
system near the operating temperature (i.e., at T = 950 K) of MSR, F− ions have the highest
values of the coefficient D. The same result was obtained from MD ab initio calculations for
pure FLiNaK in [8].

The temperature dependences of the calculated self-diffusion coefficients and their
linear approximations for the FLiNaK+15 mol.% CeF3 system are shown in Figure 5. For the
ions forming FLiNaK, there is good agreement between the calculated and approximated
dependences D(T). However, in the case of Ce ions, the calculated values of the coefficient
D have a strong scatter relative to the approximating straight line. For pure FLiNaK, the D
values for the F and Li ions are similar over the entire temperature range under study. This
may be due to the pairing of these ions and the joint motion of such pairs. However, when
CeF3 is added to FLiNaK, this effect is not so noticeable due to the attraction of F ions to
the trivalent Ce ions.
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Table 2. Self-diffusion coefficients of ions (in units of 10−5 cm2/s) in FLiNaK and mixture FLiNaK+CeF3

calculated by the Arrhenius relation from data of MD calculation and experiment [28] *.

T (K) System Li Na K F Ce

800
Pure FLiNaK 1.82 1.43 1.45 1.84 -
Exp. FLiNaK 1.43 1.84 1.66 1.72 -
FLiNaK+Ce 1.57 1.25 1.50 1.57 0.113

880
Pure FLiNaK 2.87 2.47 2.19 2.92 -
Exp. FLiNaK 2.39 3.03 2.57 2.62 -
FLiNaK+Ce 2.31 2.10 2.25 2.44 0.402

950
Pure FLiNaK 3.80 3.37 2.84 3.87 -
Exp. FLiNaK (3.47) (4.36) (3.56) (3.57) -
FLiNaK+Ce 2.95 2.85 2.91 3.20 0.656

1020
Pure FLiNaK 4.72 4.27 3.49 4.81 -
Exp. FLiNaK (4.80) (5.48) (4.35) (4.34) -
FLiNaK+Ce 3.60 3.60 3.57 3.97 0.909

* The values in parentheses correspond to the extrapolation to high temperatures of the Arrhenius dependence
D(T) obtained in the experiment [28].
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Approximation dependences D(T) for Li, Na, K, F и Ce ions are represented by an
analytical expression:

D = aT − b (10−5 cm2/s), (6)

whose parameters a and b are listed in Table 3, and temperature T is expressed in K.

Table 3. Parameters a and b for linear Equation (6).

Parameters Li Na K F Ce

a, 10−5 cm2/(s·K) 0.0092 0.0107 0.0094 0.0109 0.00362
b, 10−5 cm2/s 5.783 7.309 6.015 7.147 2.783

When passing from an MD system with PBC to an infinite system, a very slight
increase (<2%) in the self-diffusion coefficients is observed, which are determined from the
approximation dependence D∞(T) (relative to that of D(T)) for Li, Na, K, and F ions. For
Ce ions, which have a much higher atomic weight, the coefficient D can increase up to 5%
going to an infinite system. Here, the increase in the fraction of the correction is due to the
low values of the coefficient D for heavy ions. It follows from [23] that electrostatic effects
in an ionic system should reduce the D coefficient correction value that transforms the MD
system with PBC into an infinite system.

In order to understand the origin of low D values for Ce ions, we performed two series
of calculations in which the dependence of D on the charge and mass of the ion at T = 950 K
was established. In the first series, Ce ions with a charge of +3 were assigned the mass of
Li ions, Na or K. The charges and masses of the remaining ions remained unchanged. In
the second series of calculations, the mass of Ce ions remained the same, but the charge
of Ce ions changed in each of the calculations; these ions were given charge of +1, +2, +3,
and +4. The calculations showed that the mass of the ion has very little effect on the value
of the coefficient D. Thus, the discrepancy between D calculated with the minimum and
maximum masses of the ion was only 37%. Moreover, at the minimum mass of the ion, the
value of D turned out to be lower than at its maximum (i.e., ordinary) mass. At the same
time, it was found that the charge of the ion strongly affects the D value. The lower the
charge of heavy ions, the higher the D value obtained for them. Thus, the value of D at the
charge of ions +1 was higher than the values of D for ions with charges +2, +3, and +4 by
1.6, 3.2, and 6.7 times, respectively.

3.3. Partial Radial Distribution Functions and Coordination Numbers

The average distribution of F ions around Li, Na, K, and Ce ions is characterized
by the functions gij(r), shown in Figure 6. It can be seen that the location of the first
maximum, which reflects the most probable distance from particle i to particles j of the first
coordination sphere, shifts towards larger r as the values of i change from Li to Ce. This is
due to the increase in particle diameter i when moving in this direction. A more clearly
formed second order in the arrangement of F ions around Li ions is due to the greater
abundance of the latter compared to other positive ions, and a similar order around Ce
ions is associated with their large electric charge, due to which the attracted F ions slow
down diffusion.

The cation–cation and anion–anion radial distribution functions for the
FLiNaK+15 mol.% CeF3 system at a temperature of 950 K are shown in Figure 7. As
can be seen from the figure, the maxima of the peaks of the functions corresponding to
different components are localized at different distances, which are determined by both
the size of the ions and the concentration of the components in the melt. The functions
gCe–Ce(r) and gLi–Li(r), have the highest peak intensities, which indicates a more “ordered”
arrangement of like ions (Ce or Li) relative to each other. If in the first case, this can be due
to the large electric charge of Ce atoms and, consequently, their large inertia, created by the
surrounding F ions, then in the second case, this can be explained by the small size and
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mass of Li ions compared to other ions. The small size and mass of Li ions allows them to
mix better and get stuck in the voids formed by larger ions.
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The temperature dependence of the calculated coordination numbers for the molten
salt mixture FLiNaK+0.15 mol.% CeF3 is shown in Figure 8. As can be seen from the figure,
the coordination numbers for cations of the same name, as a rule, slightly decrease with
increasing temperature. Moreover, a more significant decrease in nii occurs for the lightest
cations, i.e. when index i is defined as Li. A decrease in nii with increasing temperature is
practically not observed in the case of cation–anion pairs. Note that the F and Li ions, which
have the highest representation in the molten salt under consideration, have the highest
values of the coordination number nii. Due to the low concentrations of Na and Ce ions in
the system, the coordination numbers nii were calculated in terms of the radial distribution
functions gii(r), where i = Na or Ce, have very low values that do not adequately reflect
the short-range order in the 3D subsystems of Na and Ce ions. The values of nii for Na ions
are also not given in [31,32], where the structure of pure molten FLiNaK was studied.
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Figure 8. Temperature dependence of the first coordination numbers of ions in the molten salt
mixture FLiNaK+15 mol.% CeF3.

The increase in coordination numbers in FLiNaK+15 mol.% CeF3 relative to pure
molten FLiNaK is shown in Figure 9. The addition of CeF3 to FLiNaK primarily increases
the mole fraction of fluorine from 50% to 53.2% in the molten salt. As a result, an increase in
the coordination numbers of the cation–anion (LiF, NaF, and KF) and anion–anion (FF) type
seems quite natural. The smallest Li cation is able to surround itself with the largest number
of Li cations. However, as the temperature increases, this short-range order is destroyed,
which leads to growth retardation of the corresponding coordination number. It should be
noted that not all coordination numbers increase in the molten salt FLiNaK+15 mol.% CeF3.
The exception is the nii numbers for Na, which decrease by 18–23% compared to the nii of
pure FLiNaK.
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3.4. Statistical Geometry Method

The VP distributions calculated at a temperature of 950 K for individual ionic subsys-
tems by the number of faces (n distribution) are shown in Figure 10. Each of the subsystems
has its own distinct form of the others’ n distribution. The most extended is the n distribu-
tion for the F ion subsystem. The maximum of this distribution is not clearly expressed and
falls on nm = 7. This form of this distribution is due to the high mobility of F ions and their
abundance. The subsystem of sodium ions, inferior to all in number, is characterized by
the narrowest n distribution. The maxima of the n distributions for subsystems Na and K
fall on nm = 4, and for the Li ion subsystem nm = 7.
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The distributions of VP faces by the number of sides (m distributions) are charac-
terized by a wider representation of m-edge faces for the faster ion subsystems (F and
Li) (Figure 11). Moreover, in these cases, the maximum m of the distribution falls on
mm = 5. For subsystems with slow diffusion and a small number of ions (K and Na), the
locations of the maxima change to mm = 4 for K+ and to mm = 3 for Na+. The n and m
distributions with n = 4 and m = 3 are seen in about 65% of the cases for the Na subsystem.
This is an indication that for the sodium ion subsystem, in most cases, tetrahedral mutual
arrangement of ions is observed.

In four subsystems of different ions (Li, Na, K, F), the angular distribution of the
nearest geometric neighbors (θ distribution) characteristic only for them (Figure 12) is
found. The angular distribution for the lithium ion subsystem has two weakly resolved
peaks of approximately the same intensity. In the case of subsystems of Na and K ions, the
first peak has a high intensity, and the second peak has a low intensity and resolution. The
difference between them is that in the first case, the global maximum of the spectrum falls
at the angle θ = 45◦, and in the second case, at θ = 60◦. In addition, the θ spectrum for the
Na subsystem is significantly jagged due to the small number of Na ions in the model. For
the F ion subsystem, two peaks of the main part of the θ spectrum have an extremely poor
resolution. Moreover, the intensity of the second peak is slightly higher than the intensity
of the first peak. An important feature of this distribution is the appearance of a peak in the
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vicinity of the angle θ = 0◦, which was not observed in any of the θ spectra obtained for
systems of positive ions.
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The behavior of Ce ions in the molten salt mixture FLiNaK–CeF3 is characterized by
the distributions shown in Figure 13. As can be seen from the figure, 88.5% of all polyhedra
characterizing the subsystem of Ce ions are 4-faced polyhedra. At the same time, it can
be seen from the m distribution (inset) that the number of triangular faces in VPs is 92%.
Therefore, with a high degree of probability, the packing of Ce ions in the considered
subsystem is tetrahedral. The angular distribution of the nearest geometric neighbors



Appl. Sci. 2023, 13, 1085 13 of 16

for this subsystem has two well-resolved peaks with maxima localized at θm = 60◦ and
105◦, respectively.
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4. Discussion

Our calculation of the self-diffusion coefficients of ions in the molten salt mixture
FLiNaK+CeF3 showed that in the entire temperature range under study, the F- and Li+

ions are more mobile than the Na and K ions. Such a ratio between the mobility values is
primarily determined by the composition of the liquid–salt mixture and only then by the
atomic weights of the components. The low self-diffusion coefficient of the Ce ion is mainly
related to its binding by F ions [33]. The slowing down of dynamics by a local charge also
exists in ionic liquids [34].

The partial radial distribution functions gCe–Ce(r) and gLi–Li(r) have the most pro-
nounced first and second peaks, which reflects the greater structural stability in these
subsystems. The subsystems formed by ions, whose representation clearly dominates in
the salt melt, are characterized by the largest coordination number (as is the case with
FF indexing). However, when the concentrations of the components differ slightly, the
size of the ion may be more important. Thus, the coordination number with the KK index
slightly exceeds the corresponding characteristic with the LiLi index, although the molar
concentration of Li ions is slightly higher than that of K ions. The form of the calculated
partial radial distribution function gCe–F(r), which has a high, well-resolved first peak,
indicates the presence of a stable short-range order in the arrangement of F ions around
Ce ions. The value of the coordination number, determined from the cation–anion radial
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distribution function, is mainly determined by the size of the cation. For the molten salt
studied here, the value of this coordination number increases following the sequence LiF,
NaF, KF, CeF.

For almost all ions present in the system, with the exception of K ions, the addition
of CeF3 to the FLiNaK salt melt slows down the movement of these charge carriers and
increases the cation–cation, anion–anion, and cation–anion coordination numbers. The
amount of increase in each coordination number depends on such factors as the size of the
ion, the concentration of the corresponding component in the salt melt, and the temperature
of this melt. The combination of these factors makes the increase in the coordination number
nLi–Li the most noticeable, which, depending on temperature, can vary from 29 to 40%.

Topological characteristics (n, m distributions) point to the irregular nature of the
distribution of particles in the subsystems of F and Li ions and the presence of a more stable
short-range order (with a narrower n, m distribution) for the subsystems of Na and K ions.
In addition, the fifth-order rotational symmetry inherent in a simple liquid dominates in the
representation of the structure of subsystems with fluorine and lithium ions. At the same
time, when describing the structure of subsystems of Na and K ions, the most important is
the third and fourth-order rotational symmetry more inherent in the periodic crystal [35].

The breakdown of the system into subsystems of the same type of ions showed that the
structures of these subsystems differ significantly. In particular, the shapes of the angular
distributions of the nearest geometric neighbors for the subsystems of Li, Na, K, F, and Ce
ions differ dramatically, and the maxima of these distributions are set at 66◦, 45◦, 60◦, 99◦,
and 60◦, respectively. Only in the case of the subsystem of cerium ions, the θ spectrum is
represented by well-resolved peaks, which may indicate the presence of a certain regularity
in the mutual arrangement of Ce ions.

A detailed study of the structure of molten salt and the temperature changes in its
kinetic properties are important in the study of a dynamic system, such as MSR. In this
system, phase transitions may not occur instantly, but within a few minutes. Moreover, in
the presence of temperature jumps of about 100 K, precipitation and nonequilibrium phases
appear. A decrease in the temperature of the salt melt is associated with such phenomena
as the formation of complex ions and a change in the coordination of ions [36].

5. Conclusions

In the present work, the diffusion and detailed structure of a molten FLiNaK+CeF3 salt
mixture are investigated at temperatures determined by the MSR operating temperature
range. The calculation of the kinetic characteristics showed that, in the temperature range
acceptable for MSR operation, the self-diffusion coefficients of the ions forming FLiNaK
have a linearly increasing temperature dependence. However, the magnitude of these
coefficients is not inversely proportional to the atomic weights of the ions and is largely
determined by the quantitative composition of the salt melt. The representation of the
system in the form of separate ionic subsystems made it possible to determine the partial
coordination numbers and their change during the formation of this salt melt from a pure
FLiNaK melt. It was found that non-crystallographic symmetry, i.e., fifth-order rotational
symmetry predominates in the light ion subsystems, which are also the most numerous.
In subsystems with heavier and less represented ions, rotational symmetry of the third or
fourth order comes to the fore. Heavy inclusions in the form of Ce3+ ions in a well-mixed
molten salt predominantly form a tetrahedral sparse network, in which each such ion is
geometrically surrounded by four similar ions.

Thus, using molecular dynamics simulation, the temperature dependences of impor-
tant physicochemical properties of the FLiNaK+CeF3 salt melt, which in experimental
studies can replace the FLiNaK+PuF3 melt with similar properties, are determined.
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