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Abstract: Intelligent manufacturing is a challenging and compelling topic in Industry 4.0. Many
computer vision (CV)-based applications have attracted widespread interest from researchers and
industries around the world. However, it is difficult to integrate visual recognition algorithms
with industrial control systems. The low-level devices are controlled by traditional programmable
logic controllers (PLCs) that cannot realize data communication due to different industrial control
protocols. In this article, we develop a multi-crane visual sorting system with cloud PLCs in a 5G
environment, in which deep convolutional neural network (CNN)-based character recognition and
dynamic scheduling are designed for materials in intelligent manufacturing. First, an YOLOv5-based
algorithm is applied to locate the position of objects on the conveyor belt. Then, we propose a Chinese
character recognition network (CCRNet) to significantly recognize each object from the original
image. The position, type, and timestamp of each object are sent to cloud PLCs that are virtualized in
the cloud to replace the function of traditional PLCs in the terminal. After that, we propose a dynamic
scheduling method to sort the materials in minimum time. Finally, we establish a real experimental
platform of a multi-crane visual sorting system to verify the performance of the proposed methods.

Keywords: intelligent manufacturing; computer vision; cloud programmable logic controller; deep
convolutional neural network; character recognition; dynamic scheduling

1. Introduction

Intelligent manufacturing methods [1–3] have presently attracted increasing attention
from both academic and industry domains, in which many state-of-the-art technologies
improve dramatic industrial revolution, including the Internet of Things [4], artificial
intelligence (AI) [5], computer vision (CV) [6], and other technologies. The visual sorting
system [7,8] has an enormous application range with the development of CV and industrial
cameras, especially, multi-crane visual sorting systems in iron mining, steel metallurgy,
coal mining, and other fields. There are three critical modules that we focus on in multi-
crane visual sorting systems, which are the location module, the recognition module, and
the control module. The location module aims to locate the position and get the world
coordinates of the materials. The recognition module recognizes the type of material on the
conveyor belt. The control module combines cloud PLC to sort and put the materials in
the specified position within the acceptable time. Many visual sorting technologies were
researched in the industry.
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The first task for the visual recognition module is to detect the materials that are
captured by the camera. In CV, many deep CNN-based algorithms were widely used
in object detection [9]. There are two main categories, including one-stage detection
frameworks [10,11] that is a single CNN network to directly predict class probabilities and
bounding box offsets from original images and two-stage detection frameworks [12,13]
that first generate object proposals from original images and then extract features of them
to predict object label and bounding box offsets for proposal refinement. Recently, these
algorithms are also used in the visual sorting system. Shen et al. [14] applied YOLOv4
which was one algorithm of one-stage detection frameworks to locate and place the garbage
in the correct recyclable trash. Song et al. [15] proposed a single-stage grasp detection
framework based on region proposal network architecture in the robotic grasp system, the
complexity of which was lower than two-stage architecture. Wang et al. [7] used Faster
R-CNN to automatically detect and classify the wheel hubs, and then send them to the
production lines for high efficiency. However, deep learning-based methods are utilized
in robotic grasp systems or wheel hubs detection but are not suitable for the multi-crane
sorting system. Compared with two-stage algorithms, one-stage performs better in model
complexity and computing resources. Considering the requirement of high accuracy and
timeliness, a fast detection algorithm based-YOLOv5 [16] is applied in a a multi-crane
visual sorting system for further enhancement. We get pixel coordinates from the detection
algorithm. The control module needs to know the world coordinates of materials for the
sorting task. Then, the camera calibration method [17] is used to transform the materials
from the pixel coordinate system to the world coordinate system.

After detecting materials, the classes are necessary to be recognized preparing for
sorting different materials, such as different levels of product quality. Due to the limited
experiments, we use Chinese character objects instead of industrial materials. In CV, several
techniques for recognizing characters have been reported in many fields [18,19]. Albahli
et al. [20] presented an effective and efficient hand-written digit recognition system that
designed a customized faster regional convolutional neural network to localize and classify
the digits into 10 classes. Cao et al. [21] designed a zero-shot handwritten Chinese character
recognition framework based on CNN with a hierarchical decomposition embedding
method to achieve competitive performance. Xie et al. [22] presented a vehicle license plate
recognition system, in which a novel combined feature extraction model was designed for
license plate detection, and a backpropagation neural network was used to recognize the
characters of plates. Caldeira et al. [23] proposed an optical character recognition system
to recognize characters printed on steel coils in the industry, in which the alignment and
segmentation methods were used for filtering non-character components, and a CNN-
based classification network was used for recognizing the characters. Gang et al. [24]
applied EfficientNet based on CNN to recognize characters of components mounted on the
printed circuit board for decreasing defect detection. Most of methods are used to recognize
English letters and digits in many areas. However, it is more difficult to recognize Chinese
characters due to their complex and diverse features. The ResNet-based network [25]
performs significantly in many applications and has extensive research in computer vision.
In this article, we plan to explore a ResNet-based network to recognize Chinese characters
for high recognition accuracy. The position, types, and timestamp of Chinese chesses will be
transmitted to cloud PLC that controls local PLC to conduct the multi-crane for completing
material sorting.

The control module plays a significant role in the industry, which aims to use PLCs [26]
that sense the inputs, execute the program, and write the outputs. Traditional PLCs are
connected to the equipment in the terminal, which cannot realize the decoupling of a
traditional PLC and equipment. In addition, the data cannot be interconnected between
different equipment due to different industrial control protocols. Many approaches were
developed to break the traditional pyramid structure of the industrial internet. Park
et al. (Ref. [27]) presented the architecture of a PLC programming environment that
employed a virtual plant model consisting of virtual devices to support the specification of
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discrete event models. A hardware-in-the-loop simulation approach was proposed in the
production system, which was directly used for the real plant with minor adaptations [28].
Goldschmidt et al. [29] introduced cloud-based software PLCs to improve the performance
of scalability and multi-tenancy, in which the equipment was controlled by the soft PLCs
in the cloud that dynamically scaled and assigned workloads. Kalle et al. [30] showed
a novel virtual-PLC approach to avoid significant perturbation of the remote attack in
industrial control systems. Zhu et al. [31] presented a cloud PLC platform in human–
machine interaction for real-time remote monitoring. However, the mentioned PLCs cannot
be flexibly deployed in the cloud-terminal-edge. Many emerging technologies cannot be
integrated into the industrial structure, such as artificial intelligence, big data, and 5G. In
order to meet the requirement of flexibility and scalability in intelligent manufacturing,
it is necessary to explore an integrated method to break the data island and improve the
coordination between devices. The function of PLCs can be virtualized in the cloud, which
not only decreases the cost of PLCs but also makes full use of computing resources to
realize data intercommunication.

Motived by the above methods, we developed a novel deep CNN-based multi-crane
visual sorting system in intelligent manufacturing, which enables the accurate sorting of
materials in real time. The system uses cloud PLC to control the collaborative work of a
multi-crane in a 5G network for high reliability and low latency. The main contributions
can be summarized as follows:

1. We design a novel multi-crane visual sorting system that applies deep CNN algorithm
for the material location and recognition, and propose a dynamic scheduling method
of materials with cloud PLC in 5G network;

2. We apply the YOLOv5 algorithm to locate the position of materials in the industry and
use a camera calibration method to realize coordinate conversion. Additionally, we
explore a Chinese character recognition network (CCRNet) to significantly recognize
the class of each object from the original image;

3. We propose a dynamic scheduling method of materials, in which the multi-crane is
controlled by local PLCs that receive the commands from cloud PLC and sorts the
chesses in specified position with minimum time;

4. We establish an experimental platform of the multi-crane visual sorting system using
cloud PLC in a 5G network for centralized control and low-latency. Furthermore, we
collect the dataset and train the deep CNN-based model. The whole performance of
the multi-crane visual sorting system is demonstrated by abundant experiments.

We arrange the remainder of this paper as follows. In Section 2, we introduce the
architecture of the multi-crane visual sorting system. Section 3 concretely describes YOLOv5
algorithm for object location, CCRNet for Chinese character recognition, and a novel
dynamic scheduling method for the controlling process of the materials. Section 4 shows
the established experimental platform and the results. Section 5 obtains the conclusion and
future work of this article.

2. Materials and System

The architecture of the multi-crane visual sorting system with cloud PLC in 5G network
is shown in Figure 1, which consists of three layers, including the device layer, the transport
layer, and the computing layer. The data of all devices are transmitted by a 5G network, and
the commands from the cloud PLC also are sent to control the devices by the 5G network.

There are three types of devices in the device layer, including a multi-crane, a conveyor
belt, and the cameras. The movement of the multi-crane and the conveyor belt are controlled
by local PLCs that receive the commands from the cloud PLC. In order to locate and
recognize the materials on the conveyor belt in real-time, the images or the video are
transmitted by a 5G network to the cloud, in which an AI server is deployed that integrates
deep learning methods to process data.
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Figure 1. The architecture of multi-crane visual sorting system.

In the transport layer, a 5G system consists of an access network, a bearer network,
and a core network. We deploy two 5G base stations as the access network. The bearer
network is as a bridge to transmit the signal between the access network and the core
network. In order to meet the requirement of high reliability and low latency about reliable
low latency communication (URLLC) [32] as one typical application of 5G, some function
of the core network sink to the edge. We can deploy cloud PLC in the edge or in the cloud.

In the computing layer, we design the cloud PLC to coordinatively control remote
devices and cooperate with the high-performance server to support many applications that
need a large amount of computing, like CV applications and precise location.

For the multi-crane visual sorting system, the first step is to locate the position and
obtain the world coordinates of the materials. Second, the class of all materials are recog-
nized from the original image. The process results are transmitted to the cloud PLC by
the 5G network. Third, the cloud PLC sends commands to the local PLC that controls the
multi-crane according to the dynamic scheduling method. In this article, we focus on three
critical technologies that are the location module, the recognition module, and the control
module, the details of which are introduced as follows.

3. Methodology
3.1. The Introduction of CNN

CNN has obtained achievements in many applications, such as person re-identification,
action recognition, object detection, and image segmentation. CNN is one of the most
important neural networks in deep learning, which performs dramatically in feature repre-
sentation [33]. It is always the backbone of deep CNN. An example of CNN structure is
presented in Figure 2, which consists of convolution layers, pooling layers, and fully con-
nection layers. In convolution layers, small convolutional kernels are utilized to convolve
the original image and intermediate feature maps to learn edge features, color features,
texture features, and other features. These kernels are updated adaptively for many epochs
training by back propagation. The pooling layers still use a small kernel following convolu-
tion layers to reduce the dimension of feature maps, which also decreases the computing,
avoiding overfitting. There are two common types: max pooling and average pooling.
After convolution and pooling layers, the feature maps are flattened to one-dimensional
vectors through the global average pooling with (1, 1) kernel. In full connection layers, all
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neurons in the adjacent two layers are connected using an activation function like Relu. In
the output layer, cross-entropy or softmax functions are always used to predict the class of
object. Deep CNN is composed of many convolution layers, pooling layers, or many blocks
of the variants.

Figure 2. Example of CNN structure.

3.2. The Detection Module of Materials

In the multi-crane visual sorting system, we apply the YOLOv5 algorithm to locate
the materials on the conveyor belt, the architecture of which is shown in Figure 3, which
consists of backbone, neck, and prediction. The backbone aims to learn significant features
of the original images. In the neck, a path aggregation network is applied to generate
feature pyramids and achieve more useful features from the low and high layers. The
prediction module outputs the coordinates, classification, and confidence score of the
predicted bounding box, which are (x1, y1, x2, y2, C, P). (x1, y1) denotes the lower-left
corner coordinates and (x2, y2) represents the upper-right coordinates of the bounding
box. C is the classification of the bounding box. P is the confidence score that reflects how
accurate the bounding box is predicted. These five vectors can be utilized to calculate
the loss to optimize the network. The total loss of YOLOv5 contains regression loss,
classification loss, and confidence loss.

Figure 3. The YOLOv5-based detection network of Chinese chesses.

Regression Loss. We use the diagonal coordinates (x1, y1, x2, y2) of the predicted
and truth values for the bounding box regression. The generalized intersection over union
(GIoU) method is used as the regression loss to let the predicted coordinate close to the
truth coordinate. Compared with IoU, GIOU can solve the problem that the loss value is 0
when the predicted bounding box and the truth bounding box do not overlap. The diagram
of IoU and GIoU are shown in Figure 4, in which A is the predicted bounding box and B
is the truth bounding box. We first calculate IoU, that is the ratio of intersection area and
union area between A and B. Then, we find the smallest box C that includes A and B. The
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difference between area C and the union area is obtained. GIoU is the ratio of the difference
and area C. The regression loss is given by:

Lreg = 1− GIoU = 1 +
AC − AU

AC − IoU (1)

where AC is the area of C that is the smallest box that includes A and B. AU is the area of
the union between the truth box A and the prediction box B.

Figure 4. Diagrams of IoU and GIoU.

Classification Loss. Binary Cross-Entropy with Logits Loss is used to recognize and
optimize the classification of the materials. The classification loss is summarized as:

Lcls =
1
N

N

∑
i=1

[
Ĉiln(sigmoid(Ci

)
) +

(
1− Ĉi

)
ln(1− sigmoid(Ci))] (2)

where N is the value of the min-batch, Ci is the predicted class, and Ĉi is the truth class.
sigmoid is the sigmoid function that is [0, 1].

Confidence Loss. Binary Cross-Entropy with Logits Loss is used to optimize the
confidence of the bounding box. The confidence loss is summarized as:

Lcon =
1
N

N

∑
i=1

[
P̂iln(sigmoid(Pi

)
) +

(
1− P̂i

)
ln(1− sigmoid(Pi))] (3)

where N is the value of the min-batch, Pi is the prediction of the confidence, and P̂i is the
truth of the confidence. The value of P̂i is [0,1].

The total loss of YOLOv5 is:

Ltotal = λ1Lreg + λ2Lcls + λ3Lcon (4)

where λ1, λ2, and λ3 are weights of the three losses.
We only obtain the pixel coordinates of objects that cannot be used by cloud PLC.

Camera calibration [17] is used to describe the collection between the pixel coordinate
system and the world coordinate. We define the pixel coordinate system (u, v) and the
world coordinate system (Xw, Yw, Zw). Pw presents a real P point. The relation between the
pixel coordinate system and the world coordinate system can be obtained as:

Zc

u
v
1

 =

m11 m12
m21 m22
m31 m32

m13 m14
m23 m24
m33 m34




Xw
Yw
Zw
1

 = MPw (5)
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where Zc is the scale factor. M is the projection matrix of the camera.
For performance evaluation, we use precision, recall, and mean Average Precision

(mAP) as the standard methods for performance [34]. After the location module, the world
coordinates of the materials are achieved, which are transmitted to cloud PLC.

3.3. The Recognition Module of Chinese Characters

For the sorting task, we need to recognize the class of each object. In the experiments,
we use Chinese characters instead of the real materials in the industry due to the limited
condition. A CCRNet is designed to recognize the characters, as shown in Figure 5. It uses
ResNet [25] as the backbone network and compares them in the experiments. The backbone
is used to extract the features-of-interest region. After backbone, we use the fully connected
layer to output the class of Chinese character. For example, the input is the image of a
Chinese character and the output is the class of “Jing”. We collect the dataset to train and
test these models.

Figure 5. ResNet-based Chinese character recognition network.

The structure of ResNet18, ResNet34, and ResNet50 is introduced in Table 1. All
of them mainly consist of Conv1, Conv2_x, Conv3_x, Conv4_x, Conv5_x, and the fully
connected layer. The difference is the number of convolutional layers that are described in
Table 1. In this article, the number of the output is 18 classes. We compare the performance
of these models about Chinese character recognition in the experiments.

Table 1. The structure of ResNet18, ResNet34, and ResNet50 [25].

Layer Name ResNet18 ResNet34 ResNet50

Conv1 (7, 7), 64, stride 2

Conv2_x

(3, 3), max pooling, stride 2{
(3, 3), 64
(3, 3), 64

}
× 2

{
(3, 3), 64
(3, 3), 64

}
× 3


(1, 1), 64
(3, 3), 64
(1, 1), 256

× 3

Conv3_x
{
(3, 3), 128
(3, 3), 128

}
× 2

{
(3, 3), 128
(3, 3), 128

}
× 4


(1, 1), 128
(3, 3), 128
(1, 1), 512

× 4

Conv4_x
{
(3, 3), 256
(3, 3), 256

}
× 2

{
(3, 3), 256
(3, 3), 256

}
× 6


(1, 1), 256
(3, 3), 256
(1, 1), 1024

× 6

Conv5_x
{
(3, 3), 512
(3, 3), 512

}
× 2

{
(3, 3), 512
(3, 3), 512

}
× 3


(1, 1), 512
(3, 3), 512
(1, 1), 2048

× 3

Average pooling

Fully connected layer
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We use softmax cross-entropy loss [35] to optimize CCRNet. The loss function is
summarized as:

Lscls = −
1
N

N

∑
i=1
−log(

eZi

∑C
j=1 eZj

) (6)

where N is the batch size, and Zi is the prediction output of the CCRNet.

3.4. The Control Module Using Dynamic Scheduling Method

The information of all materials in the visual field is transmitted to the cloud PLC.
In the initial state, all cranes are waiting for demands. We design a dynamic scheduling
method on cloud PLC to control cranes in minimum time. We make a multi-crane list
Cra = [i, (xi, yi, zi)], i ∈ [0, 1, 2 . . . , K]. i is the ith crane, and (xi, yi, zi) is the initial position of
the ith crane. We define a multi-object list Obj =

[
j,
(

xj, yj, zj, x′j, y′j, z′j
)]

, j ∈ [0, 1, 2 . . . , J].

j is the jth object.
(

xj, yj, zj
)

is the position captured of the jth object by location module.
(x′j, y′j, z′j) is the target position of the jth object to be transported. The scheduling strategy is
described as Algorithm 1:

Algorithm 1. Scheduling strategy.

input: All cranes Cra = [i, (xi, yi, zi)], i ∈ [0, 1 . . . , K]. All materials Obj=
[

j,
(

xj, yj, zj, x′j, y′j, z′j
)]

, j ∈ [0, 1, 2 . . . , J].
output: The relation between the crane and the object for sorting
Initialize multi-crane state
for each crane i ∈ Cra do
Record the initial time ti0 and the initial position xi0 of each crane

for each object j ∈ Object do
Calculate the arrival time of the ith crane ti1 = ti0 + tx1, tx1 is the running time from the initial position to the object position on the
x-axis. Record the crane position xi1 at ti1.
Calculate the completion time of shipment ti2 = ti1 + tx2, tx2 is the time of shipment. Record the crane position xi2 at ti2.
Calculate the time of delivery to the target place ti3 = ti2 + tx3, tx3 is the running time from the object position to the target position.
Record the crane position xi3 at ti3.
Calculate

(
ty1, tz1, ty3, tz3

)
. The process is the same with x-axis.

Calculate the whole time of the ith crane that transports the jth object:
Tj = max

(
tx1, ty1, tz1

)
+ tx2 + max

(
tx3, ty3, tz3

)
Until all materials are calculated. We get a list T=

[
T0, T1, . . . , TJ

]
.

Sequence the element in T from small to large. We can get the object’s ID that the ith crane needs to transport.
Until all cranes are assigned with materials to be transported.

4. Results
4.1. The Experimental Results of Detection Module Based on YOLOv5

We designed a comparative experiment involving YOLOv5 and deployed them on
PyTorch using NVIDIA 3090 graphics processing units (GPUs). To improve the robustness
of the system, we used data augmentation methods on the original images, including
scaling, color space adjustments, and mosaic augmentation. We set the number of epochs
for 100 and the batch size to 8. Adam optimizer [36] was utilized for learning the dramatic
representations. The initial learning rate was 0.001. We collected 790 images that consisted
of chesses and cubes. In more detail, 568 images was selected as the training set, 79 images
belong to the testing set, and the other 142 images belong to the validating set.

After training and testing, we obtain the precision, recall rate, and mAP on the training
set, testing set, and validating set, which are presented based on the YOLOv5 algorithm
in Table 2. We achieve the precision, recall rate, and mAP over 99% on the training set.
Moreover, the mAP of YOLOv5 on the testing set is up to 98.85%. The precision of the
validating set is also up to 96.55%. This further proves the significant performance of
YOLOv5 in the multi-crane visual sorting system. From the overall performance, we choose
YOLOv5 as the location algorithm and used the process results of YOLOv5 to continue the
camera calibration and material sorting experiments.
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Table 2. The results of YOLOv5 for object detection on the training set, testing set, and validating set.

Model Dataset Number Precision Recall Rate mAP

YOLOv5
Training set 568 99.60% 99.46% 99.44%
Testing set 79 98.49% 98.81% 98.85%

Validating set 142 96.55% 95.40% 97.80%

4.2. The Results of CCRNet on Chinese Characters

We collected the dataset for Chinese character recognition. There were 5333 images of
18 classes, in which there were 14 Chinese characters and 4 English letters. 4799 images
were selected as the set, and 534 images belonged to the testing set. We added ResNet18,
ResNet34, and ResNet50 as the backbone of CCRNet. Epoch was set to 100 and the
batch size was 16. Adam optimizer was also used to optimize the network and the initial
learning rate was 0.0001. The loss of ResNet-based models is presented in Figure 6a on the
training set. We can see that the convergence rate of ResNet18 was faster than ResNet34
and ResNet50. The performance of ResNet50 was better than ResNet34. Meanwhile, the
accuracy of ResNet-based models is presented in Figure 6b on the training set. With the
increasing of epoch, the accuracy of these three models is becoming better. After 60 epochs,
the trend is becoming more and more flat. These three models performed significantly well
in character recognition.

Figure 6. The loss and accuracy comparison of character recognition on ResNet-based models.
(a) The loss comparison. (b) The accuracy comparison.

As seen in Table 3, we trained the CCRNet model based on ResNet18, ResNet34,
and ResNet50 for the testing set. The accuracy was over 99%. On the training set, the
accuracy of CCRNet_ResNet18 exceeded 0.01% and 0.08% over CCRNet_ResNet34 and
CCRNet_ResNet50. On the testing set, the accuracy of CCRNet_ResNet34 exceeded 0.18%
over CCRNet_ResNet18 and CCRNet_ResNet50. The average accuracy of three models
was over 99.2%, which demonstrates that ResNet-based models performed significantly
well on Chinese character recognition.
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Table 3. The accuracy of ResNet for character recognition on the training set and testing set.

Model Dataset Number Accuracy

CCRNet_ResNet18
Training set 4799 99.50%
Testing set 534 99.25%

CCRNet_ResNet34
Training set 4799 99.49%
Testing set 534 99.43%

CCRNet_ResNet50
Training set 4799 99.42%
Testing set 534 99.25%

In addition, we compared the accuracy of Chinese characters and English letters, and
the results can be seen in Table 4. We can see that the accuracy of English letters is 100%
and better than Chinese characters. CCRNet_ResNet34 achieves 99.25% of accuracy and is
0.26% higher than CCRNet_ResNet18 and CCRNet_ResNet50.

Table 4. The accuracy of CCRNet on Chinese characters and English letters.

Model Chinese Character Accuracy English Letter Accuracy

CCRNet_ResNet18 98.99% 100%
CCRNet_ResNet34 99.25% 100%
CCRNet_ResNet50 98.99% 100%

In Figure 7, the accuracy distribution of each character on CCRNet_ResNet18, CCR-
Net_ResNet34, and CCRNet_ResNet50 is presented, in which the value on the diagonal
represents the number of each character. We can find that four characters are recognized to
the error class on CCRNet_ResNet18 and CCRNet_ResNet50. Only three characters are
recognized to the error class on ResNet34. Considering the performance and complexity,
we used CCRNet_ResNet18 as the final backbone of CCRNet.

The detection and recognition of Chinese characters is shown in Figure 8, in which all
objects are precisely detected, and the confidence score is close to 1. In each image, there
are different shapes of objects with different classes. All characters are fully recognized and
located. From the experimental results, we demonstrated the significance of YOLOv5 and
CCRNet on character detection and recognition.

Figure 7. Cont.
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Figure 7. The accuracy distribution of each character recognition on ResNet model. (a) CCRNet-
ResNet18. (b) CCRNet-ResNet34. (c) CCRNet-ResNet50.

Figure 8. The illustration of Chinese character recognition network.

4.3. The Performance of the Visual Sorting System Using Dynamic Scheduling Method

After visual recognition and camera calibration, we obtained the world coordinates,
class and timestamp of the materials that are sent to the cloud PLC. We designed a novel
dynamic scheduling method in the cloud PLC server that controled two cranes for the
sorting task. Two L-PLCs in the terminal picked the materials and put them in the designed
place according to commands from the cloud PLCs in 5G environment.

According to the scheduling strategy, the consuming time of the crane is presented in
Table 5, which includes the running time of the crane from the initial position to the object
position, the time of shipment, and the running time of the crane from the object position
to the target position. For example, we predict the time for four objects with the crane,
like [(1, 2.972 s), (2, 3.282 s), (3, 3.301 s), (4, 3.616 s)]. According to scheduling method, the
cloud PLC conducts the crane to sort the first object with minimum time. For the first test,
the predicted minimum time is 2.972 s and the real time was 2.759 s. The time difference
is 0.216 s between them. For the third test, the time difference was 0.09 s between the
prediction and real time. The average time of five times was 0.164 s, which demonstrates
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the performance of the scheduling method and meets the requirement of the sorting task in
real-time.

Table 5. The consuming time of the crane for the sorting task with scheduling strategy.

Time Prediction Time (s) Real Time (s) |∆t|
1 [(1, 2.972), (2, 3.282), (3, 3.301), (4, 3.616)] 2.756 0.216
2 [(1, 2.804), (2, 3.179), (3, 3.237), (4, 3.648)] 3.016 0.212
3 [(1, 3.146), (2, 3.160), (3, 3.179), (4, 3.398)] 3.056 0.090
4 [(1, 2.958), (2, 3.037), (3, 3.055), (4, 3.370)] 3.064 0.106
5 [(1, 2.838), (2, 3.179), (3, 3.237), (4, 3.648)] 3.036 0.198

The experimental results of the multi-crane visual sorting system are shown in Figure 9.
The objects on the conveyor belt are correctly sorted into the designated place in real-time.
The proposed method can be applied to many applications in the industry, including
separation of different materials and material grading. In the future, we will design a
dynamic placement method in a cloud PLC, which can place the objects in the specified
position according to certain rules.

Figure 9. The experimental diagram of the crane visual sorting system.

5. Conclusions and Future Work

The intelligent visual sorting system plays important role in intelligent manufacturing,
in which artificial intelligence and computer vision technologies improve the intelligent
and unmanned development of the industry. We establish a deep CNN-based multi-crane
visual sorting system with cloud PLCs in a 5G environment. A YOLOv5-based algorithm
and a Chinese character recognition network were developed to significantly locate and
recognize materials from the original image. mAP of YOLOv5 on validating set is up to
98.85%, and the confidence score is close to 1, which significantly shows the performance
of the location module. The accuracy of Chinese character recognition is also up to 99.43%
on testing set, which fully met the requirement of different material sorting in the industry.
Moreover, cloud PLCs are investigated to be flexibly deployed in the terminal and in the
cloud, which allows low-level devices to cooperate with each other. Therefore, the control
scheduling method is designed in cloud PLCs that cooperates with AI algorithms to control
the multi-crane in minimum time. The average time of sorting is about 3 s, which contains
the whole process of the crane from starting to sorting completion. The real experimental
platform of the multi-crane visual sorting system verifies the performance of the proposed
methods.

Although the experimental results perform dramatically, there is much room to im-
prove the multi-crane sorting system. In the industry, there are massive data streams that
are transmitted by a 5G network. We will design 5G and TSN bridge as a transmission layer
to highly guarantee deterministic communication. In addition, we will integrate cloud
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PLCs and an AI platform on the same server in the cloud for stable performance. We will
develop some scheduling method to control the low-level devices for low energy and high
efficiency. Furthermore, we will continue to improve the accuracy of AI algorithms that
can be used in real industrial applications.

Author Contributions: Conceptualization, M.F., J.W., Z.M. and W.L.; methodology, M.F., Q.W., J.W.
and L.S.; software, M.F. and Q.W.; validation, M.F., W.G. and C.Z.; formal analysis, M.F. and D.W.;
investigation, M.F.; resources, Z.M.; data curation, C.Z. and Q.L.; writing—original draft preparation,
M.F.; writing—review and editing, J.W., Q.W. and D.W.; visualization, M.F.; supervision, J.W.; project
administration, J.W.; funding acquisition, J.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by National Key Research and Development Program under Grant
2020YFB1708800, Guangdong Key Research and Development Program under Grant 2020B0101130007,
Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for
the Central Universities) FRF-IDRY-21-005, Fundamental Research Funds for Central Universities
under Grant FRF-MP-20-37, GuangDong Basic and Applied Basic Research Foundation under Grant
2021A1515110577, and China Postdoctoral Science Foundation under Grant 2021M700385. Central
Guidance on Local Science and Technology Development Fund of ShanXi Province under Grant
YDZJSX2022B019.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhong, R.Y.; Xu, X.; Klotz, E.; Stephen, T.N. Intelligent manufacturing in the context of industry 4.0: A review. Engineering 2017, 3,

616–630. [CrossRef]
2. Wang, J.; Xu, C.; Zhang, J.; Zhong, R. Big data analytics for intelligent manufacturing systems: A review. J. Manuf. Syst. 2022, 62,

738–752. [CrossRef]
3. Nain, G.; Pattanaik, K.K.; Sharma, G.K. Towards edge computing in intelligent manufacturing: Past, present and future. J. Manuf.

Syst. 2022, 62, 588–611. [CrossRef]
4. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Vincen, P.H. 6G Internet of Things: A

comprehensive survey. IEEE Internet Things J. 2022, 9, 359–383. [CrossRef]
5. Zhang, C.; Lu, Y. Study on artificial intelligence: The state of the art and future prospects. J. Ind. Inf. Integr. 2021, 23, 100224.

[CrossRef]
6. Guo, M.H.; Xu, T.X.; Liu, J.J.; Liu, Z.N.; Jiang, P.T.; Mu, T.J.; Zhang, S.H.; Martin, R.R.; Cheng, M.M.; Hu, S.M. Attention

mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 1–38. [CrossRef]
7. Wang, Y.; Hong, K.; Zou, J.; Peng, T.; Yang, H.Y. A CNN-based visual sorting system with cloud-edge computing for flexible

manufacturing systems. IEEE Trans. Ind. Inform. 2019, 16, 4726–4735. [CrossRef]
8. Han, S.; Liu, X.; Han, X.; Wang, G.; Wu, S.B. Visual sorting of express parcels based on multi-task deep learning. Sensors 2020, 20,

6785. [CrossRef] [PubMed]
9. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.W.; Pietikäinen, M. Deep learning for generic object detection: A survey.

Int. J. Comput. Vis. 2020, 128, 261–318. [CrossRef]
10. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, R. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
11. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.
12. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings

of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; p. 28.
13. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,

Venice, Italy, 22–29 October 2017; pp. 2961–2969.
14. Shen, X.; Wu, Y.; Chen, S.; Luo, X. An intelligent garbage sorting system based on edge computing and visual understanding of

social internet of vehicles. Mob. Inf. Syst. 2021, 2021, 5231092. [CrossRef]
15. Song, Y.; Gao, L.; Li, X.; Shen, W. A novel robotic grasp detection method based on region proposal networks. Robot. Comput.

-Integr. Manuf. 2020, 65, 101963. [CrossRef]

http://doi.org/10.1016/J.ENG.2017.05.015
http://doi.org/10.1016/j.jmsy.2021.03.005
http://doi.org/10.1016/j.jmsy.2022.01.010
http://doi.org/10.1109/JIOT.2021.3103320
http://doi.org/10.1016/j.jii.2021.100224
http://doi.org/10.1007/s41095-022-0271-y
http://doi.org/10.1109/TII.2019.2947539
http://doi.org/10.3390/s20236785
http://www.ncbi.nlm.nih.gov/pubmed/33261063
http://doi.org/10.1007/s11263-019-01247-4
http://doi.org/10.1155/2021/5231092
http://doi.org/10.1016/j.rcim.2020.101963


Appl. Sci. 2023, 13, 1066 14 of 14

16. Jocher, G.; Nishimura, K.; Mineeva, T. yolov5. Code Repository. 2020. Available online: https://github.com/ultralytics/yolov5
(accessed on 30 December 2022).

17. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]
18. Baldominos, A.; Saez, Y.; Isasi, P. A survey of handwritten character recognition with mnist and emnist. Appl. Sci. 2019, 9, 3169.

[CrossRef]
19. Melnyk, P.; You, Z.; Li, K. A high-performance CNN method for offline handwritten Chinese character recognition and

visualization. Soft Comput. 2020, 24, 7977–7987. [CrossRef]
20. Albahli, S.; Nawaz, M.; Javed, A.; Irtaza, A. An improved faster-RCNN model for handwritten character recognition. Arab. J. Sci.

Eng. 2021, 46, 8509–8523. [CrossRef]
21. Cao, Z.; Lu, J.; Cui, S.; Zhang, C. Zero-shot handwritten chinese character recognition with hierarchical decomposition embedding.

Pattern Recognit. 2020, 107, 107488. [CrossRef]
22. Xie, F.; Zhang, M.; Zhao, J.; Yang, J.; Liu, Y.; Yuan, X. A robust license plate detection and character recognition algorithm based

on a combined feature extraction model and BPNN. J. Adv. Transp. 2018, 2018, 6737314. [CrossRef]
23. Caldeira, T.; Ciarelli, P.M.; Neto, G.A. Industrial optical character recognition system in printing quality control of hot-rolled coils

identification. J. Control. Autom. Electr. Syst. 2020, 31, 108–118. [CrossRef]
24. Gang, S.; Fabrice, N.; Chung, D.; Lee, J. Character Recognition of Components Mounted on Printed Circuit Board Using Deep

Learning. Sensors 2021, 21, 2921. [CrossRef] [PubMed]
25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
26. Biallas, S.; Brauer, J.; Kowalewski, S. Arcade.PLC: A verification platform for programmable logic controllers. In Proceedings of

the 2012 27th IEEE/ACM International Conference on Automated Software Engineering, Essen, Germany, 3–7 September 2012;
pp. 338–341.

27. Park, S.C.; Park, C.M.; Wang, G.N. A PLC programming environment based on a virtual plant. Int. J. Adv. Manuf. Technol. 2008,
39, 1262–1270. [CrossRef]

28. Park, S.C.; Chang, M. Hardware-in-the-loop simulation for a production system. Int. J. Prod. Res. 2012, 50, 2321–2330. [CrossRef]
29. Goldschmidt, T.; Murugaiah, M.K.; Sonntag, C.; Schlich, B.; Biallas, S.; Weber, P. Cloud-based control: A multi-tenant, horizontally

scalable soft-PLC. In Proceedings of the IEEE 2015 8th International Conference on Cloud Computing, New York City, NY, USA,
27 June–2 July 2015; pp. 909–916.

30. Kalle, S.; Ameen, N.; Yoo, H.; Ahmed, I. CLIK on PLCs! Attacking control logic with decompilation and virtual PLC. In
Proceedings of the Binary Analysis Research Workshop, Network and Distributed System Security Symposium, San Diego, CA,
USA, 24–27 February 2019.

31. Zhu, Z.Y.; Liu, R.Y. Design of speed reducer testbed based on cloud platform. In Proceedings of the IEEE 2021 5th Advanced
Information Technology, Electronic and Automation Control Conference, Chongqing, China, 12–14 March 2021; pp. 53–57.

32. Ren, H.; Wang, K.; Pan, C. Intelligent reflecting surface-aided URLLC in a factory automation scenario. IEEE Trans. Commun.
2021, 70, 707–723. [CrossRef]

33. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE
Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [CrossRef] [PubMed]

34. Henderson, P.; Ferrari, V. End-to-end training of object class detectors for mean average precision. In Proceedings of the Asian
Conference on Computer Vision, Cham, Switzerland; 2016; pp. 198–213.

35. Kim, Y.; Lee, Y.; Jeon, M. Imbalanced image classification with complement cross entropy. Pattern Recognit. Lett. 2021, 151, 33–40.
[CrossRef]

36. Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the IEEE/ACM 2018 26th International
Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/ultralytics/yolov5
http://doi.org/10.1109/34.888718
http://doi.org/10.3390/app9153169
http://doi.org/10.1007/s00500-019-04083-3
http://doi.org/10.1007/s13369-021-05471-4
http://doi.org/10.1016/j.patcog.2020.107488
http://doi.org/10.1155/2018/6737314
http://doi.org/10.1007/s40313-019-00551-1
http://doi.org/10.3390/s21092921
http://www.ncbi.nlm.nih.gov/pubmed/33919360
http://doi.org/10.1007/s00170-007-1306-3
http://doi.org/10.1080/00207543.2011.575097
http://doi.org/10.1109/TCOMM.2021.3125057
http://doi.org/10.1109/TNNLS.2021.3084827
http://www.ncbi.nlm.nih.gov/pubmed/34111009
http://doi.org/10.1016/j.patrec.2021.07.017

	Introduction 
	Materials and System 
	Methodology 
	The Introduction of CNN 
	The Detection Module of Materials 
	The Recognition Module of Chinese Characters 
	The Control Module Using Dynamic Scheduling Method 

	Results 
	The Experimental Results of Detection Module Based on YOLOv5 
	The Results of CCRNet on Chinese Characters 
	The Performance of the Visual Sorting System Using Dynamic Scheduling Method 

	Conclusions and Future Work 
	References

