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Abstract: The objective of this article is to generate and validate a workflow that allows us to print
physical twins (models) from digital twins obtained from unique buildings of our architectural
heritage. These physical twins will guarantee the preservation and diffusion of the cultural asset,
and will promote new pedagogical ways to spread the heritage. In addition, these physical cufflinks
are an interesting tool to guarantee universal accessibility through low-cost and rapid distribution
typological models. We can overcome physical barriers and reach many more users, regardless of
their economic, physical, or location conditions. To obtain this workflow, digital twins of architectural
elements of high cultural value obtained by photogrammetry or terrestrial laser scanner will be used.
The digital twin will be optimized through different platforms, and an optimized exchange file will be
generated for its dissemination and printing. A digital platform will be proposed that guarantees the
free distribution of these digital twins to any user. Finally, the physical twins will be obtained. For the
development of this work, we have chosen to use 3D resin printers with SLA technology (selective
laser exposure to light by laser) due to their performance and high quality in the models obtained.

Keywords: physical twins; 3D print; digital heritage; digital survey; 3D data base; photogrammetry;
VAT polymerization; SLA

1. Introduction

This research develops a methodology to facilitate the dissemination, conservation,
and universal accessibility of our architectural heritage through physical prototyping from
digital twins.

In this research, we have two clearly differentiated stages: the first, which we could
define as “from the physical to the virtual”, that is, the capture or digitization of reality
through new technologies, and the second stage: from the digital to the physical, that is,
the physical prototyping from the data obtained or, in other words, the printing using 3D
technologies of the captured data (see Figure 1).

• This article establishes the following three objectives: Assess and standardize a work-
flow that allows us to arrive from a high-resolution «digital twin» (output formats: obj,
3ds, stl, etc.) obtained through photogrammetry [1,2] or TLS [3] to a physical model
printed using current technologies [4,5].

• Obtain replicable models of our heritage that serve to bring our monuments closer to
the greatest possible number of people through “maker” technologies.

• Promote the “capture” of these “digital models/digital twins” and their free distribu-
tion as good practices to guarantee the conservation and dissemination of heritage.

• Try to promote a philosophy of free distribution that brings our heritage closer to as
many people as possible through these physical prototypes and their exchange files.
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Figure 1. Labor process: “from the physical to the digital and anchor from the digital to the physi-
cal”: (a) Capture of the physical monument using new technology (b) Elaboration to generate digital 
gemelli of our heritage (c) Obtain physical gemelli from new technology. 

As a three-dimensional working model to test this methodology, we used the digital 
twin made for the «restoration project for the wall of Cáceres Phase II. Almohad towers 
of the southwestern wall in Cáceres». This project has been carried out by the architects 
Isabel Bestué Cardiel (team director), Carmen Cañones Gallardo, Rosario Carmona Cam-
pos, Pablo Alejandro Cruz Franco, Adela Rueda Márquez de la Plata, and Javier Chavez 
Quesada. (See Figure 2). 

This restoration project, of which the authors of this document have been a part, has 
been developed on the Almohad walls of the world heritage city of Cáceres [6,7]. The 
work area is divided into two sections. The first section, known as the Adarve del Padre 
Rosalío section, is made up of a section of wall parallel to the Adarve del Padre Rosalío 
street, an albarrana tower, and a defensive cube. This section has a floor area of 170.79 m2. 

The second section of the wall has an intrasdos with an extension of 16.62 linear me-
tres. The section is on urban land and public space, and has a total floor area of 155 m2. 
Through the extrados of this section, a double section of wall can be identified, interrupted 
by a flanking tower to the southeast. Beneath this stretch of wall, a possible antemural 
rises from Calle Cornudilla. At the corner of Calle Adarve del Padre Rosalío there is an 
albarrano wall and an octagonal albarrana tower. 

The capture of this digital twin, as we have said, has been carried out using photo-
grammetry. Work has been carried out by combining point clouds obtained by SfM (with 
images acquired from UAV, Unnamed Aerial Vehicle) [8,9]. To verify the reliability of the 
model, the models have been contrasted with the point clouds obtained by means of a 
digital instrument, a Terrestrial Laser Scanner, TLS [1,10–12], and the result is a three-
dimensional model. This is a high quality canvas model [6] of the city, and we can affirm 
that it has been obtained through a low-cost and precise “intelligent work” flow, having 
been developed essentially through photogrammetry and verifying the reliability of the 
model through TLS. All of this digital twin has been processed in cabinet work [13]. 

Figure 1. Labor process: “from the physical to the digital and anchor from the digital to the physical”:
(a) Capture of the physical monument using new technology (b) Elaboration to generate digital
gemelli of our heritage (c) Obtain physical gemelli from new technology.

As a three-dimensional working model to test this methodology, we used the digital
twin made for the «restoration project for the wall of Cáceres Phase II. Almohad towers of
the southwestern wall in Cáceres». This project has been carried out by the architects Isabel
Bestué Cardiel (team director), Carmen Cañones Gallardo, Rosario Carmona Campos, Pablo
Alejandro Cruz Franco, Adela Rueda Márquez de la Plata, and Javier Chavez Quesada.
(See Figure 2).

This restoration project, of which the authors of this document have been a part, has
been developed on the Almohad walls of the world heritage city of Cáceres [6,7]. The work
area is divided into two sections. The first section, known as the Adarve del Padre Rosalío
section, is made up of a section of wall parallel to the Adarve del Padre Rosalío street, an
albarrana tower, and a defensive cube. This section has a floor area of 170.79 m2.

The second section of the wall has an intrasdos with an extension of 16.62 linear metres.
The section is on urban land and public space, and has a total floor area of 155 m2. Through
the extrados of this section, a double section of wall can be identified, interrupted by a
flanking tower to the southeast. Beneath this stretch of wall, a possible antemural rises from
Calle Cornudilla. At the corner of Calle Adarve del Padre Rosalío there is an albarrano
wall and an octagonal albarrana tower.

The capture of this digital twin, as we have said, has been carried out using photogram-
metry. Work has been carried out by combining point clouds obtained by SfM (with images
acquired from UAV, Unnamed Aerial Vehicle) [8,9]. To verify the reliability of the model,
the models have been contrasted with the point clouds obtained by means of a digital
instrument, a Terrestrial Laser Scanner, TLS [1,10–12], and the result is a three-dimensional
model. This is a high quality canvas model [6] of the city, and we can affirm that it has been
obtained through a low-cost and precise “intelligent work” flow, having been developed
essentially through photogrammetry and verifying the reliability of the model through TLS.
All of this digital twin has been processed in cabinet work [13].

When we work with three-dimensional models made up of point clouds and
triangulated models, a key point is to validate the geometric quality of our models.
As we have said, the model obtained through SfM guarantees a very complete model,
thanks to its ability to reach almost all points, especially if we compare it with a model
obtained through TLS. On the other hand, this model may contain geometric inaccuracies
that must be verified, so the model obtained through TLS helps us to verify the quality
of the model through SfM. On the one hand, this model obtained through TLS is less
complete due to the physical limitation of access to roofs, which causes phantom zones,
but, on the other hand, it is a much more reliable model in terms of precision, since we
know the millimeter precision and it helps us to control and validate the results. Ground
photogrammetry was more accurate, but has the same limitation as three-dimensional
models obtained by TLS. Aerial photogrammetry is less accurate, but reduces the number
of ghost zones to almost 0.



Appl. Sci. 2023, 13, 1057 3 of 22Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 23 
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the canvas. In the foreground tower of the Aver, (c) cube of the Aver. Trasdós of the canvas, (d) 
aerial view of the Ochavada tower, (e) plan of the study area. Right canvas, colored in red, cube and 
Ochavada tower. Left canvas, colored in orange, cube and tower of the Aver. 
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Figure 2. (a) Aerial view of the Aver tower, (b) view of the fortified complex from the intrados of the
canvas. In the foreground tower of the Aver, (c) cube of the Aver. Trasdós of the canvas, (d) aerial
view of the Ochavada tower, (e) plan of the study area. Right canvas, colored in red, cube and
Ochavada tower. Left canvas, colored in orange, cube and tower of the Aver.

In the geometric validation procedure, we obtain two point clouds. To scale and
orient them, we used the RECAP platform to facilitate and guarantee the transition to BIM
(Building Information Modeling), in our case, on the REVIT platform, since both belonged
to the Autodesk set of tools, where interoperability was guaranteed.

The point cloud obtained using Agisoft Metashape is in a *.psx format. The *.psx
format is not compatible with RECAP, so we need a previous step in which we modify the
format of our file to a format suitable for RECAP. In the case of the cloud obtained through
TLS, there is no problem since we use the cyclone software to process the data obtained
through the BLK360 laser, which allows us to export and resample our point clouds in
formats compatible with RECAP.

In this way, the cloud of points was obtained in Metashape. To do this, we exported
from .psx to .laz. The .laz format, as we have said, is compatible with the RECAP program
and allows us to load that cloud, process it, classify the points, etc. Once these accessions
have been made, the next step is to link the cloud in REVIT.
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The next step will be carried out within the REVIT platform. With the point cloud in
RECAP format, we will proceed to link it in REVIT. We will call this cloud of points 1 A.
We can have as many as we want, for example, 1 A, 1 B, 1 C, etc. Using homologous points,
we will proceed to position these clouds in the model space, making them overlap.

According to what was seen in the article “Protocol Development for Point Clouds,
Triangulated Meshes and Parametric Model Acquisition and Integration in an HBIM
Workflow for Change Control and Management in a UNESCO’s World Heritage Site” [1],
we will proceed to make a chromatic differentiation of each of the point clouds to easily
visualize geometric differences.

We will proceed to an analysis through sections, elevations, and plans at different
levels. This analysis is carried out quickly in REVIT, allowing us to measure and obtain fast
and reliable data about the quality of our models, being able to discard entire models or
parts of them if necessary. With this system, the level of precision is analyzed correctly.

2. Related Works
2.1. Obtaining the Digital Twin

Obtaining these digital twins is a recurring theme in the scientific literature that
deals with the digital survey of heritage. It is important to highlight the DADA Lab of
the University of Pavia, directed by Professor Sandro Parrinello, and the LS3D Lab of the
University of Florence, directed by Professor Stefano Bertocci, due to their importance,
and for being pioneers in this area. Both laboratories are an international benchmark in
the field of architectural survey, documentation, and protection of heritage [2,14–21].

To obtain the digital twin [13,22,23] a system is necessary that allows us to carry out
different flight missions at different times in order to capture the entire study area [8].
This system has to be versatile, not affect assets, and be low cost. It is cabinet work; this
work represents a great advance and innovation in itself, respecting the current state of
cultural heritage.

After the study is carried out, it has been decided to use a work methodology, con-
sisting of the creation of a more exhaustive “own” polygonal mesh that allows us to
georeference the study area with greater accuracy, facilitating the realization of different
flight missions at different times; this work represents a great advance and innovation in
itself while respecting the current state of cultural heritage (see Figure 3).

To generate the polygonal mesh, it is necessary to insert some nails (metal spikes)
into the pavement that allow us to place the exact targets/targets; once they are located
at the points of interest, we proceed to georeferencing with respect to the city simulating
topographical nails.

Once we have a flight program and defined the structure of the missions and their
objectives, the data will be collected using UAV [8,20,24–26].

For an exact geometric definition, a TLS (Terrestrial Laser Scanning) will be used [27]
that will allow us to accurately measure the monument and check the accuracy of the shots
made with UAV [2] (see Figure 4).

Thanks to TLS technology we quickly and accurately obtain a three-dimensional
model with possible phantom zones, such as the roofs of a building, but by combining
these with the models generated from UAV technology, we can obtain complete models
of great precision that will allow us to later process the models to generate the physical
prototypes [7,27].

This network is susceptible to expansion over time, making it possible to have a
series of points that can be used to establish a new network as a result of deterioration,
loss, movement of its original position due to inclement weather, vandalism, works,
and incidents on the pavement, to link future work models or to carry out different
survey campaigns.

In order to interconnect future three-dimensional models or the different flight mis-
sions with the use of three nails (points), it is already possible to reference the model, but to
work more safely and accurately in this work, more points have been used, thus facilitating
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complementary work. Once the three-dimensional model has been obtained, it can be
expanded by linking the targets of the previous work with new ones closer to the area on
which it is intended to work, and so on, until the entire scope of the project is covered,
that is, an extensive project is sectioned into smaller areas for more detailed and precise
work. The different models can be linked, obtaining the necessary information by using
complementary techniques after the creation of the mesh, such as UAV (Unnamed aerial
vehicle) photogrammetry, SLR (Single lens reflex) or the TLS (Terrestrial Laser Scanning)
model [28].
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Figure 4. In the image: (Left): the author flying the drone. (Right): the author positioning the
laser scanner.

2.2. Obtaining the Physical Prototype

Today, the way of understanding reality in our society is constantly evolving given
the ease of access to the digital tools that we currently have. In addition, the use of
new technologies has been increased, given the situation that COVID-19 has generated,
producing a great change when it comes to relating to each other [29–32] and with
the heritage that surrounds us [33–36]. The need arises to bring heritage closer to any
part of the world in the simplest way possible; therefore, the need for digital twins
has become relevant and, going a little further, combining digital twins with the most
avant-garde technologies related to 3D printing, we can obtain physical prototypes that
allow us to discover the cultural and architectural heritage in a different and cheaper
way [11,25,37,38].

We can say that there are three large families of 3D printing technologies. In the first
place, we would say that we have the family of addition (additive manufacturing), that
is, the one that encompasses all the technologies that replicate reality by adding material,
where nothing existed. Based on layers, we can generate our physical twin; in a certain
way, we could compare it to the Greek technique of casting with lost wax [26,39]. Secondly,
we have subtraction technologies (subtractive manufacturing); these technologies, from
blocks of raw material, by means of milling cutters or other elements, remove layers of
material and give rise to our physical twin as if it were a classic stone sculpture (normally
we will talk about CNC machines here). Lastly, we would talk about cutting technologies
(manufacturing by cutting): these technologies, based on sheets of material and cutting
templates (DWG, DXF, etc.), will generate pieces that we will assemble; normally, these are
laser cutting machines, although we could generate similar parts with CNC printers. In
Figure 5, we can see different examples developed by the research team in collaboration
with the University of the Americas of Puebla, México.
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Figure 5. Different examples of physical models of architecture obtained using different 3D printing
and cutting systems. TAD3 Lab. Works in collaboration between the University of the Americas of
Puebla and the University of Extremadura. In the figure, we can see models made of wood on both
sides that have been executed with a laser printer and CNC cutting machine, and, in the center of
the table, we can see white filament models that have been manufactured with a filament extrusion
printing printer.

In the case of this research, it has been decided to use an addition technology, more
specifically, VAT polymerization, specifically laser SLA (selective exposure to light by
laser). A brief summary of the different additive manufacturing technologies has been
prepared below:

First of all, if we see Figure 6a, we have the material extrusion technology FDM (fused
deposition modelling). This technology stands out for its optimal surface finishes, a wide
range of colors and materials, and a low cost. On the contrary, we have low resolution and,
in many cases, fragility of the pieces. Secondly, in Figure 6b, we have outlined the operation
of the technology known as material jetting (MJ). This procedure allows the creation of
objects by combining different materials and colors. It is based on photopolymeric liquid
resin that is heated to 30–60 ◦C, thus obtaining the right viscosity for printing. The print
head, which is very similar to that of an inkjet printer, distributes the photopolymer resin
on the platform. The curing of this resin is performed with UV light. The projector of this
UV light is integrated into the print head and will form different superimposed layers.
Like the SLA process that we will see later, this technology is based on the principle of
photopolymerization. Among its characteristics is an optimal surface finish, a full range
of colors, and a multitude of materials with different physical and mechanical properties,
but it has a high cost. Thirdly, in Figure 6c, within the additive printing technologies,
we highlight the selective laser sintering (SLS) technology, which is a rapid prototyping
technique in which a layer of powder is deposited (a few tenths millimeter) in a vat that
has been heated to a temperature slightly below the melting point of the powder.

Next, a high-power laser causes the deposited particles to fuse and solidify. This
process is called sintering. With SLS technology, we obtain functional parts with good
mechanical properties, and we can make complex geometries. Among its negative charac-
teristics would be that it has long delivery times and a higher cost than FDM technology.
In Figure 6d, we see a scheme of the sand or metallic powder printing system, known as
3D binder jetting. This technique consists of the deposition of an adhesive binding agent
on thin layers of powder material. Powder materials are metal (e.g., stainless steel) or
ceramic (e.g., glass or plaster) based. This technology is low cost, and we can generate
functional metal parts. Lastly, in Figure 6e, we have the latest addition printing technology
studied: VAT polymerization. This family brings together the technologies that achieve
3D printing through the polymerization of a vat (VAT) filled with photosensitive resin.



Appl. Sci. 2023, 13, 1057 8 of 22

Depending on the light source used, we will have different classes: laser SLA (selective
exposure to light by laser), DLP-SLA (selective exposure to light by projector), and MSLA
(selective exposure to light masked by LCD). All of them will obtain a final item obtained
by accumulating layers.
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rial; (b) photopolymer resin (c) powder bed fusion technology; (d) 3D binder jetting or sand or metallic
powder technology; (e) polymerization of a tray technology (VAT) filled with photosensitive resin.
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2.3. Choice of Printing Technology

As we have indicated, the project is developed in the City of Cáceres, a World Heritage
Site, and its physical development will be developed within the FAD LAB: SOL (Smart
Open Lab), located in the Polytechnic School of Cáceres at the University of Extremadura.

SOL is an open production space that has supported this project with tools, machines,
and knowledge of the community that composes it. SOL’s main philosophy is to share
knowledge globally and, thus, contribute to development and research.

The printing possibilities within SOL are multiple. Once the resolution of the obtained
models and the machines at our disposal were analyzed, it was decided to use the equip-
ment: Form 2. This equipment allows us to obtain physical models using photopolymer
resin and SLA laser technology (selective exposure to light by laser). Specifically, the form
2 printer allows us to obtain exceptional resolution and precision in details, specifically
between 50 microns and 100 microns.

3. Results: A Standardized Protocol in Five Steps

After carrying out the process, we have managed to generate a standardized protocol
with five general steps as detailed in Figure 7.
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3.1. Generation of Digital Twins

As we have indicated, the development of this digital twin has been carried out by
combining point clouds obtained by SfM (with images acquired from UAV) and clouds
obtained by TLS digital instruments; the result is a 3D digital model [40,41]. It is a high-
quality model of the city canvas, and we can say that it has been obtained through a
low-cost and precise “smart work” flow [13]. The steps to obtain this physical model are
summarized in Figure 8 [1,7,25,42–44]:
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• Orientation of photographs: this orientation allows the scattered point cloud to
be obtained.

• Generation of dense point cloud and depth maps.
• Dense point cloud optimization by point filtering.
• Generation of the triangulated mesh.
• Generation of the texture from the images taken by the drone.
• This processing gives rise to digital twins made up of huge meshes, which need

to be reviewed and refined to obtain three-dimensional models that can be used in
metaverses [13,45–48].
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In the case of the model obtained with TLS, we obtain a second virtual twin, which
will be built from the documentation using TLS. This is cabinet work (see Figure 9).
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After the study is carried out, it has been decided to use the software of the laser
scanner Cyclone 360 register, which is software for photogrammetric processing of digital
images and generation of 3D spatial data. Its main functions include: automatic alignment
of scans, manual alignment of the scans according to the point clouds, allowing the link
with other point clouds through the use of targets, and texturing options through the
images generated in the scans (see Figure 10):

• Step 1: Importing Scans
• Step 2: Aligning Scans
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• Step 3: Model optimization
• Step 4: Detect targets or common and fixed points
• Step 5: 2D planimetry from the point cloud
• Step 6: Export the point cloud for further processing.
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3.2. Optimization and Debugging of the 3D Models Obtained to Obtain Exportable Digital Twins

As we have indicated in the previous section, the three-dimensional model obtained
through photogrammetry and TLS [49,50] is a complex and heavy model that requires a
lot of computational load [13]. It becomes a priority to optimize it to obtain exportable
files in different exchange formats. To debug the model, we use Rhinoceros and Blender
interchangeably. With these programs we can repair and reduce the mesh [51].

The first step is to repair the mesh, as it is imperfect, and it is necessary to close holes
derived from bad data collection in areas where the point cloud is not dense enough to
form a closed mesh from it. The next thing is to reduce the mesh, that is, reduce the number
of triangles, until arriving at a simplified mesh that considerably reduces the size of the
source file. Then we smooth the mesh. Mesh smoothing consists of approximating straight
edges to radii with a given curvature while maintaining mesh density.

At this point, we have mainly used three types of software that have allowed us to
study the different models and compare them to search for errors and to suppress ghost
zones. Mainly the Rhino software, Blender and the instant meshes application have been
used. We have made a retopology of the models and closed holes, as we have commented.
We have gone from a triangular mesh to a quadrangular mesh, and we have repositioned
the high quality textures in the corrected model using Blender; they are not necessary
for the model printed in TLS, but for digital twins uploaded to repositories for AR and
VR if necessary.

3.3. Processing of the Digital Twins: Generation of Cuts

This third processing step of this «digital twin» has been carried out again using the
Rhinoceros 3D software. We have focused on the environment of the wall, and we have
modeled the semi-detached houses in a simplified way. Once this first phase of modeling
has been completed, it has been divided into fragments according to the physical limit
imposed by the printer model that we have used (form 2), which is 145 × 145 × 175 mm.
In total, 24 cuts have been planned, indicated in Figure 11.

In the scheme, we also see a blue area that represents the environment a little further
away from buildings. This environment was made using the laser cutter. It was simplified
from the parcel of the Historic District.

Below we leave, the Table 1 summarizes the different pieces generated, related to
the printing time and the material necessary for its execution. In total, 24 cuts have been
planned, indicated in the scheme that we see below. These 24 cuts require 1907.83 mL of
white resin (not counting the printing tests), and two resin tank units have also been used.
A total of 203 h have been invested in printing alone. These data do not take into account
the cleaning and curing time (carried out with the formwash and formcure machines, also
from 3dlab, as we will see later) or the time spent on polishing, sanding, etc. (carried out in
a traditional carpentry workshop).
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Table 1. Summary table of physical prototype.

Pieces Swap File (STL) Preform Resin (mL) Duration (h)

A1 A1_STL A1_FORM 114.95 mL 10 h
A1 A1_STL A1_FORM 96.63 mL 10 h 15 min
A2 A2_STL A2_FORM 77.96 mL 7 h 45 min
A3 A3_STL A3_FORM 62.31 mL 7 h 15 min
A4 A4_STL A4_FORM 74.02 mL 8 h 15 min
A5 A5_STL A5_FORM 68.26 mL 7 h
A6 A6_STL A6_FORM 92.40 mL 9 h 15 min
A7 A7_STL A7_FORM 78.64 mL 9 h 45 min
A8 A8_STL A8_FORM 76.91 mL 7 h 45 min
A9 A9_STL A9_FORM 70.23 mL 6 h 45 min
B1 B1_STL B1_FORM 72.46 mL 7 h 30 min
B2 B2_STL B2_FORM 49.63 mL 6 h 45 min
B3 B3_STL B3_FORM 50.63 mL 7 h 15 min
B4 B4_STL B4_FORM 79.17 mL 9 h 30 min
B5 B5_STL B5_FORM 87.84 mL 10 h 15 min
B6 B6_STL B6_FORM 280.31 mL 16 h 30 min
B7 B7_STL B7_FORM 76.31 mL 9 h 30 min
B8 B8_STL B8_FORM 76.56 mL 9 h 15 min
B9 B9_STL B9_FORM 79.89 mL 9 h 30 min
C1 C1_STL C1_FORM 84.07 mL 8 h 45 min
C2 C2_STL C2_FORM 49.13 mL 6 h 30 min
C3 C3_STL C3_FORM 51.25 mL 7 h 15 min
D1 D1_STL D1_FORM 90.15 mL 9 h
D2 D2_STL D2_FORM 55.26 mL 7 h
D3 D3_STL D3_FORM 27.81 mL 4 h 30 min

3.4. 3D Print

As we have indicated, this work is carried out within the FAD Lab SOL (Smart Open
Lab) and a FORM 2 unit has been selected to make the impressions. A versatile workflow is
generated that allows the transfer of the information obtained, thanks to photogrammetry
(digital twins) to twins [4] high resolution physics (see Figure 12).
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3.4.1. Phase 1. Export of the Photogrammetric Model

Nowadays, there are many ways of exchanging digital files for the different software
that we use. In our case, we exported the model with the OBJ extension, since it allows us
to keep the textures of our digital twin.

3.4.2. Phase 2. Processed in 3D Builder

To process the digital model, we used the 3D Builder software, free software from the
Microsoft Corporation company, that allows users to create, model, and print models in a
generalized and free way, being a great help to facilitate the transmission of knowledge in
any part (see Figure 13).
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3.4.3. Phase 3. Preform Processing

Once the digital twin has been processed, it is necessary to continue processing it, this
time with Preform, the free software of the Form 2 printer, from the company Form Labs,
which uses advanced parameters to generate the supports and optimize the printing of
each piece, resulting in a digital model ready for printing (see Figure 14a).
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3.4.4. Phase 4. Printing

To do this, the following equipment has been used within the Smart Open Lab: 3D
printer, specifically, the Form 2 model (a stereolithography (SLA) 3D printer), Form Wash,
and Cure Form.

FormLabs, Form 2: It works with a resin printer due to the high quality it offers
(50–100 microns) (see Figure 14b,c).

Washing in Form Wash: Once the pieces are obtained, it is necessary to wash them
to remove the excess resin without the surface curing. This the machine uses isopropyl
alcohol, and the sink time will depend on the type of resin that is being used.

Cured in Cure Form: Once the parts have been washed, the supports that have been
generated prior to printing are removed. Once the pieces are without supports, they are
cured; for this, it is necessary to use the Cure Form. The curing time and temperature will
depend on the type of resin that is being used for the prototypes.

3.4.5. Phase 5. Assembly

Once the different pieces of the model have been obtained, both in resin (obtained
with the Form 2 printer) and in DM board (obtained with the laser cutter), in specific
cases there may be joints that we have had to review. These joints can be treated as wood
to improve the assembly, always keeping in mind that these areas are together; they
are not the faces of the model obtained by TLS [52] or photogrammetry, in which we
have that aforementioned precision of microns and that could not be touched by these
methods. In these specific cases, it should be noted that the behavior of the resin used has
been very similar to that of wood, in that it can be sanded, cut, drilled, etc., expanding
the possibilities of interaction with this material and the possibilities of executing objects.
See Figure 15.

3.4.6. Phase 6. Diffusion

This point becomes a labor capital section. We have taken the following path: from the
physical to the digital and from the digital to the physical. That is to say, that first moment,
in which the material object that is the element of architectural heritage, at the moment in
which we have identified that it is a work of art and decided to digitize it for posterity; and
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that second moment, in which the digitized work becomes universal, and we fight to reach
all corners of the world in that search for universal accessibility.
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In this way, we are going to have two diffusion lines. First of all, the model itself,
obtained by our research group using SLA laser technology (selective exposure to light
by laser). In Figure 16, we can see the final results and the work shots. Secondly, as we
have said, the work would be philosophically serious; the vocation of this work is the free
distribution of this knowledge in order to generate an international knowledge matrix. For
this, the use of different platforms has been proposed [13].
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As we have said within the working group, different platforms have been studied that
are used to house digital twins. We highlight the result of the article presented in the journal
Applied Sciences with the name: Protocols for the Graphic and Constructive Diffusion
of Digital Twins of the Architectural Heritage That Guarantee Universal Accessibility
through AR and VR [13,53]. Among the results obtained, we highlight the following
two platforms: Thingiverse (www.thingiverse.com, accessed on 2 December 2022) and
Sketchfab (www.sketchfab.com, accessed on 15 December 2022). The first, thingiverse, is a
free online website dedicated to the creation and publication of digital STL files, designed
and published by the users that make up the community. When a community member
decides to upload a file, they will be able to choose the type of license they want to add to
it. Second, the Sketchfab Platform is an outstanding platform, due to the great variety of
content that it incorporates, as well as its 3D model viewer. Sketchfab allows downloading
of files from the web if the users (owners of the models) allow it. We want to highlight the
VR functionalities provided by this second platform.

4. Discussion

We are at a time of change, in which the tools that are made available to the architect to
protect heritage are immeasurable. These tools allow us to generate extensive 3D databases
that allow heritage protection from knowledge.

In this communication, we present a workflow for the generation of three-dimensional
models and their dissemination. These workflows generate new possibilities that extend
the concept of universal accessibility. We want to highlight the following possibilities:

First of all, in this expanded concept of universal accessibility, the situation arises in
which anyone, regardless of their economic situation or where they live, can enjoy these
cultural elements.

In second place, in a teaching level, it is a step forward in the tools that we provide
to teachers. All these resources are already interactive, as we have said, and AR, VR [13],
or physical are revolutions in the classroom, which that allow a teacher from anywhere in
the world to print a wall like the one at hand for their students, so that they can study and
document it.

In our experience as professors at a university of technical education (architecture),
the student’s training in construction subjects improves when they have construction
details in their hands. Incorporating printing technologies as activities in teaching have
very profitable results by incorporating transversal skills into teaching that substantially
improve the abilities of students (See Figure 17).

www.thingiverse.com
www.sketchfab.com
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Thirdly, considering open digital repositories such as Sketchfab or Thingverse is a
very interesting altruistic proposal for universities around the world. Indeed, 3D printing
cannot replace reality, but it is an aid for the teacher that, as we have been saying, breaks
the barriers of space and money. It is a way of offering new interactive resources to our
teachers and students.

Fourthly, all of these 3D model databases can also be expanded in that aforementioned
universal accessibility to blind people, guaranteeing an open repository at a global level [54].

Three-dimensional printing technology is already an undeniable reality in our so-
ciety. This “advanced science” has made its way over the last few years and, little by
little, the “maker” culture has transformed into a fresh and energetic movement that is
revolutionizing many areas of our lives through its ideas. This culture is changing the way
we understand teaching, architecture, or engineering through new proposals for dealing
with design, new methods of understanding prototyping, and new ways of motivating
new generations [55].

These original proposals to motivate current students are a challenge in teaching
because they propose alternatives to traditional teaching, specifically, in this case, teaching
under construction. These alternatives are neither better nor worse; they are always
complementary to the traditional ones, but absolutely necessary as transversal training for
future technicians.

The incorporation of these activities into teaching is very beneficial, as it incorporates
cross-cutting skills into teaching that substantially improve students’ abilities: these new
abilities will help our technicians in future academic and vital projects.

To each time its art, and to each art its freedom
(«Der Zeit ihre Kunst, der Kunst ihre Freiheit»)

(Gustav Klint, friso de entrada al edificio de la Secesión vienesa, 1897–1898)

5. Conclusions

The proposed methodology is divided into two phases. The first phase is data collec-
tion and the generation of a physical twin. Note that this first phase has been extensively
developed in other bibliographies that are cited during the text, and in other publications
of the research group to which we refer. Regarding the first phase, we state that:

• First of all, as a society, we have the obligation to digitize the world in which we live in
order to preserve it as a digital twin for future generations: a database of the present.

• Secondly, we have the opportunity to recreate from these digital twins lost architectural
environments and future digital environments: foundations of the past and the future.

• There are many digitization methods, each with its advantages and disadvan-
tages [4,17,26,56–58]. In the present study, a low-cost methodology based on the
use of UAVs has been chosen [8,59], which has been outlined and incorporated into the
workflow. This scheme is supported by other works and the professional experience
of the authors [1,25].

• For some time now, new representation technologies have allowed us to create re-
sources and content that reflect how our heritage is and could be. These digital twins,
both the digital copies of the present and the digital proposals of the past and future,
give rise to enormous databases that have traditionally been used for the develop-
ment of restoration projects, such as the one studied at the Hermitage of Vaquero,
but once the work was completed, it was complex and difficult to implement as a
knowledge tool.

• The proposed methodology allows us to increase our capacity to divulge, protect, and
conserve our heritage. Digital borders are crossed, and we obtain prototypes that can
be distributed in open source to promote knowledge regardless of place, physical, or
economic conditions.

• On the other hand, these proposals represent a revolution at the educational level; our
students can have in their hands replicas of the monuments with millimetric quality.
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At present, education is in a permanent change. It is necessary to incorporate all these
novelties to improve the skills of our teachers and our students [60].

• On the other hand, these physical prototypes are a tool that opens the doors to that
aforementioned universal accessibility through typological models of our heritage.

• As has been seen in the discussion of results, this way of working can be extrapolated in
different subjects, such as teaching, construction, architecture, pathologies, history, etc.

In short, all of this article illustrates a new system for the generation of physical
prototypes that will allow us to conserve art in new ways, and allow us to improve our
teaching and outreach tools.

“Beauty perishes in life but is immortal in art”—
Leonardo Da Vinci.

Author Contributions: The editorial responsibility of the paragraphs is recognized to: P.A.C.F.,
A.R.M.d.l.P. and M.P.S.; Conceptualization, P.A.C.F. and A.R.M.d.l.P.; methodology, P.A.C.F. and
M.P.S.; validation P.A.C.F. and M.P.S.; formal analysis A.R.M.d.l.P. and P.A.C.F.; investigation P.A.C.F.,
A.R.M.d.l.P. and M.P.S.; resources, P.A.C.F. and A.R.M.d.l.P.; writing—original draft preparation,
P.A.C.F. and M.P.S.; writing—review and editing, P.A.C.F., A.R.M.d.l.P. and M.P.S.; visualization,
P.A.C.F., A.R.M.d.l.P. and M.P.S.; supervision, P.A.C.F. and M.P.S.; project administration, P.A.C.F. and
A.R.M.d.l.P. All authors have read and agreed to the published version of the manuscript.

Funding: This publication has been made possible thanks to funding granted by the Consejería de
Economía, Ciencia y Agenda Digital de la Junta de Extremadura and by the European Regional
Development Fund of the European Union through the reference grant GR21159 (COMPHAS re-
searcher group). In addition, thanks to funding granted by Consejería de Economía, Ciencia y
Agenda Digital de la Junta de Extremadura and by the European Regional Development Fund of the
European Union through the Researcher project “Aplicación de tecnologías VR y levantamientos 6D
para la implementación de una accesibilidad universal en el patrimonio arqueológico de edificación
pública romana” through the reference grant IB20096. For the development of this research, we
have had the support of the Comphas research group of the University of Extremadura, which has
provided us with the material means and tools, we have been able to put into practice the proposed
working method.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This publication has been developed within the TAD3 Investigation group of
the University of Extremadura, which is currently developing virtual tours of the heritage of the
region of Extremadura, we have managed to disseminate this heritage asset. Furthermore, it would
not have been possible without the support of the FabLab SOL (Smart Open Lab) based at the
Polytechnic School of Cáceres or its members. A very special thanks to Antonio Gordillo Guerrero
and Mario Figueira Torres for the training they have given us in the use of the machinery and for
having provided all the necessary machinery for the development of the prototypes. Either for
the development of this research, we have had the support of the Comphas research group of the
University of Extremadura, which has provided us with the material means and tools, we have been
able to put into practice the proposed working. This publication has been partially developed thanks
to the SEXPE Innovation and Talent Program 2021 of the Junta of Extremadura: Protocolos para
la implementación de modelos de información en ciudades patrimonio de la humanidad para la
búsqueda de una accesibilidad universal And finally, very special thanks to Paula Pérez Sendín for
her help and unconditional collaboration in this work.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2023, 13, 1057 20 of 22

References
1. Rueda Marquez de la Plata, A.; Cruz Franco, P.A.; Cruz Franco, J.; Gibello Bravo, V. Protocol Development for Point Clouds, Trian-

gulated Meshes and Parametric Model Acquisition and Integration in an HBIM Workflow for Change Control and Management
in a UNESCO’s World Heritage Site. Sensors 2021, 21, 1083. [CrossRef] [PubMed]

2. Parrinello, S.; Picchio, F. Integration and Comparison of Close-Range Sfm Methodologies for the Analysis and the Development of
the Historical City Center of Bethlehem. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 589–595. [CrossRef]

3. Tan, J.; Leng, J.; Zeng, X.; Feng, D.; Yu, P. Digital Twin for Xiegong’s Architectural Archaeological Research: A Case Study of
Xuanluo Hall, Sichuan, China. Buildings 2022, 12, 1053. [CrossRef]

4. Pérez Sendín, M. Prototipado Físico a Partir de Gemelos Digitales Aplicado a la Torre de Bujaco; Universidad de Extremadura: Cáceres,
Spain, 2022.

5. Niccolucci, F.; Felicetti, A.; Hermon, S. Populating the Data Space for Cultural Heritage with Heritage Digital Twins. Data 2022, 7,
105. [CrossRef]

6. Cruz Franco, J.; Cruz Franco, P.A.; Rueda Márquez de la Plata, A.; Ramos Rubio, J.A.; Rueda Muñoz de San Pedro, J.M. Evolución
histórica de la muralla de Cáceres y nuevos descubrimientos. El postigo de San Miguel, un lienzo perdido de la cerca almohade.
Rev. De Estud. Extrem. 2016, Tomo LXXII, Número III, 1869–1910.

7. Cruz Franco, P.A.; Rueda Márquez de la Plata, A.; Cruz Franco, J.; Ramos Rubio, J.A. A lost Fragment and Gate of the Almohad
Wall of the World Heritage City of Cáceres, Spain. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 052051. [CrossRef]

8. Gómez Bernal, E.; Cruz Franco, P.A.; Rueda Márquez de la Plata, A. Drones in architecture research: Methodological application
of the use of drones for the accessible intervention in a roman house in the Alcazaba of Mérida (Spain). In Proceedings of the
D-SITE Drines-Systems of Information on culTural hEritage, Pavia, Italy, 24–26 June 2020.

9. Templin, T.; Popielarczyk, D. The Use of Low-Cost Unmanned Aerial Vehicles in the Process of Building Models for Cultural
Tourism, 3D Web and Augmented/Mixed Reality Applications. Sensors 2020, 20, 5457. [CrossRef]

10. Kushwaha, S.K.P.; Dayal, K.R.; Sachchidanand; Raghavendra, S.; Pande, H.; Tiwari, P.S.; Agrawal, S.; Srivastava, S.K. 3D Digital
Documentation of a Cultural Heritage Site Using Terrestrial Laser Scanner—A Case Study. In Applications of Geomatics in Civil
Engineering; Springer: Singapore, 2020; pp. 49–58.

11. Cruz Franco, P.A.; Rueda Márquez de la Plata, A.; Cruz Franco, J. From the Point Cloud to BIM Methodology for the Ideal
Reconstruction of a Lost Bastion of the Cáceres Wall. Appl. Sci. 2020, 10, 6609. [CrossRef]
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