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Abstract: Building extraction (BE) and change detection (CD) from remote sensing (RS) imagery are
significant yet highly challenging tasks with substantial application potential in urban management.
Learning representative multi-scale features from RS images is a crucial step toward practical BE and
CD solutions, as in other DL-based applications. To better exploit the available labeled training data
for representation learning, we propose a multi-task learning (MTL) network for simultaneous BE and
CD, comprising the state-of-the-art (SOTA) powerful Swin transformer as a shared backbone network
and multiple heads for predicting building labels and changes. Using the popular CD dataset the
Wuhan University building change detection dataset (WHU-CD), we benchmarked detailed designs
of the MTL network, including backbone and pre-training choices. With a selected optimal setting, the
intersection over union (IoU) score was improved from 70 to 81 for the WHU-CD. The experimental
results of different settings demonstrated the effectiveness of the proposed MTL method. In particular,
we achieved top scores in BE and CD from optical images in the 2021 Gaofen Challenge. Our method
also shows transferable performance on an unseen CD dataset, indicating high label efficiency.

Keywords: change detection; building extraction; multi-task learning; convolutional siamese network;
swin transformer; remote sensing

1. Introduction

Building extraction (BE) and change detection (CD) are important yet very challenging
topics in the field of earth observation. As a geospatial dense prediction task, BE is crucial
for mapping, monitoring, urban management, and 3-D reconstruction [1]. Owing to the
complex background and mixed pixel problems in the remote sensing (RS) imagery, BE
suffers from inaccurate classification and ambiguous boundary problems. Hence, it remains
difficult to satisfy practical requirements [2]. Compared to BE, building CD is an even
more challenging task, as it is focused on the accurate change information prediction of
buildings between images acquired at distinct intervals, rather than simply predicting
buildings in one image [3]. Building CD tasks are important for applications such as urban
area development and disaster management [4].

Owing to the popularity of deep learning (DL) and the advantage of its end-to-end
characteristics, DL has been widely applied in computer vision [5,6], among which feature-
learning-based semantic segmentation methods for both BE and CD tasks have been widely
studied. Building feature representation and pixel classification are procedures commonly
required for both BE and CD tasks. Improving feature representation and fusion ability is
usually required to improve model performance [7–9].

For BE tasks, early convolutional neural network (CNNs)-based models, such as
the fully convolutional network (FCN) [10], ResNets [11] and UNet [12], can provide

Appl. Sci. 2023, 13, 1037. https://doi.org/10.3390/app13021037 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13021037
https://doi.org/10.3390/app13021037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1535-6950
https://orcid.org/0000-0002-3332-9668
https://orcid.org/0000-0003-0848-8453
https://doi.org/10.3390/app13021037
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13021037?type=check_update&version=1


Appl. Sci. 2023, 13, 1037 2 of 15

promising results with extracted rich semantic features. Incorporating more powerful back-
bones [13–15], sophisticated processing strategies [16,17], or semi-supervised learning [18]
has improved the model performance on the BE task. However, in the method based on
CNNs, the down-sampling operation will lose spatial details of the high-resolution images,
resulting in blurry edges of the extracted buildings. Some methods attempt to add edge
information in building extraction [19,20], which can boost the ability of a model to perceive
edges. In addition, ref. [21] designs a boundary refinement network from coarse to fine,
gradually improved the construction of building edges, and suppressed the irrelevant noise
of underlying features under the guidance of high-level semantics.

Similar to the BE task that takes one image as input and outputs a mask layer, the
building CD task is also typically regarded as a pixel-level prediction problem. The involved
classification and detection sub-tasks of a CD problem are generally dispensed together,
as DL allows for the end-to-end CD and avoids the negative accumulation of errors from
multiple-step-based approaches such as post-classification CD. Summarily, the building
CD task can be performed by fusing multiple RS images to output building changes. There
are roughly three types of strategies: late, early, and hybrid fusion, depending on how
the paired images are dealt with [3]. Early fusion [22] approaches concatenate multi-
temporal images as one input into a network (single-feature structure), whereas late fusion
approaches [23,24] separately learn mono-temporal features and later combine them as an
input to the CD network (dual-feature structure) [4]. Hybrid fusion is a combination of early
and late fusions, which concatenations are carried out for both the input multi-temporal
images and the learned respective features.

The early CNNs employed for CD tasks were fully convolutional Siamese networks
and the following variants [25]. This type of architecture features two encoding branches
for feature extraction from paired input images, and one decoding branch to detect changes
from feature differences. A weight-shared encoder makes it easier to detect changes.
Additionally, ref. [26] introduces a global co-attention mechanism and designs an attention-
guided Siamese network that is based on pyramid features and focuses on the correlation
among input feature pairs. Ref. [27] combines the Siamese network and UNet network, and
proposes a large-scale SCD (semantic change detection) network comprising two encoders
and two decoders with shared model parameters. Similarly, ref. [28] utilizes a UNet-
based Siamese network to learn representations from bi-temporal inputs via the encoder
separately, and performed a difference connection to improve the generated difference
maps. Furthermore, ref. [29] proposes a multi-task constrained deep Siamese convolutional
network containing three sub-networks: a CD network and two dense label prediction
networks, which improved the CD accuracy. In addition, generative adversarial networks
(GANs) [30,31] and recurrent neural networks (RNNs) [23,24] have been studied for CD
tasks. For example, ref. [24] proposes a general and new deep Siamese convolutional
multi-layer RNN for CD from multi-temporal, very high-resolution (VHR) imagery via
integrating the merits of CNN and RNN.

The impact of learning strategies on network performance have been demonstrated
for many kinds of vision tasks and various types of learning strategies, such as the attention
mechanism, multi-scale feature fusion, and transfer learning, have been proposed [32].
Based on one of the most common strategies, the attention mechanism [33,34], intro-
duces two kinds of general attention mechanisms in the position and channel dimensions
and designs a local-global pyramid network. Notably, ref. [35] proposes a novel self-
attention mechanism for spatial-temporal relationship modeling, and [36] proposes a
super-resolution-based CD network with stacked attention modules. In addition, ref. [37]
proposes a multi-scale supervised fusion network (MSF-NET) based on attention mech-
anism. In addition, transfer learning employs knowledge from other data sources by
fine-tuning the pre-training models from related tasks to address the problem of limited
annotations. For instance, ref. [38] proposes a transfer-learning-based CD method using
recurrent FCNs with multi-scale 3D filters. Additionally, ref. [39] proposes a CNN-based
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CD method with a novel loss function to obtain transferable model performance among
various datasets.

Compared with the above classical change detection of dual-temporal remote sensing
data, ref. [40] proposes single-temporal supervised learning (STAR) for CD by utilizing land
cover and land use changes in unpaired images as a kind of supervisory information. Re-
cently, ref. [41] proposes a graph-based segmentation for multivariate time series algorithm
(MTS-GS) to analyze the change in a multivariate time series by considering all variables as
an entirety, rather than treating multivariate time series as univariate time series one by
one like classical change detection methods. Ref. [42] is another interesting work of CD
construction, which proposes a feature decomposition–optimization–recombination net-
work based on the decoupling idea in semantic segmentation. In addition, the problem of
edge refinement in building change detection is also a hot research direction in recent years.
Ref. [43] proposes an end-to-end building change detection framework that integrates
discriminative information and edge structure prior information into a DL framework to
improve building change detection results, especially to generate better edge detection
results. It is also worth noting that while BE and CD have gained considerable devel-
opment in the past few decades, the updating of building databases has not been fully
studied. In order to automatically update the building footprints with minimal manual
labeling of the current building ground truths, ref. [44] proposes a saliency guided edge
preservation network to maintain accurate building boundaries, which is used to update
the existing building database to generate the latest building footprint, which is crucial for
the vector-ization of building contours.

Although several change detectors have been proposed, the methods suffer from
problems such as insufficient training data, which leads to model overfitting and severely
limits the application of trained models. A potential solution to this problem is multi-
task learning (MTL), as it can introduce more related supervising signals during network
training. While BE and CD are two highly correlated topics in the RS field, most previous
studies have treated them separately. On the contrary, we hope to solve these two tasks
simultaneously through an MTL framework, the potential of which was demonstrated
in [45]. In the MTL setting, each task influences the other, and we assume that the BE task
positively promotes the building CD task.

In this study, we propose an MTL framework to simultaneously extract buildings
and detect building changes from dual-time remote sensing images by taking advantage
of advanced networks, including the Swin transformer [13] and Segformer [46]. The
contributions of this study are as follows:

• We propose an MTL framework based on an advanced transformer-based backbone
and lightweight BE and CD heads.

• We provide benchmark results to validate design details, including backbone choice
and pre-training strategies of our proposed solutions using open datasets.

• We achieved a score of 81.8214 in the “BE and CD in optical images” subject of the
2021 Gaofen challenge, which is a few tenths of points behind the first place.

The reminder of this manuscript goes as follows. Section 2 presents the model choice,
employed Swin-L (the large version of Swin) backbone, and BE and CD network heads.
Section 3 describes the utilized datasets and experimental setup for testing the model
performance in detail. Section 4 first tests the BE and CD accuracies of different models for
single-task learning to select an optimized MTL setup and then displays and compares the
BE and CD results from MTL based on the selected setups, and also shows the CD results
from the challenge. Section 5 discusses and analyzes the benefits of MTL and its possible
reasons, the validity of the pre-training weights, and the generalization of the proposed
MTL approach. In the end, Section 6 provides summaries and conclusions of the study.
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2. Materials and Methods

A MTL architecture, with a shared parsing network and different outputs for each
task, was proposed; the modules of a Swin transformer [13] and lightweight heads were
combined as illustrated in Figure 1. As the Swin transformer is the backbone to learn
multi-scale features from the inputs. The following are the three branches of different tasks.
For tasks based on pixel semantic information, multi-level feature maps were fused to
better predict the semantic labels for every pixel. An all-multilayer perceptron (MLP) head
is used to predict building labels from each of the bi-temporal inputs, and a lightweight
convolution-based head is used for CD.

Figure 1. Overview of the proposed multi-task learnin (MTL) network with a shared backbone for
multi-scale feature learning, two heads for building extraction, and one head for change detection.

The feature extraction part of our proposed MTL model is a Siamese network built
on two backbones with shared weights. The backbone architecture can be selected arbi-
trarily, for example, ResNets. The backbone processes two input patches separately and
outputs learned features in a high-dimensional feature space. The shared weights can help
enhance the feature similarity between unchanged areas and reduce the feature similarity
in changed areas. Subsequently, these embedded features from the backbone were used for
the respective BE and CD tasks via different heads. The heads correspond to the decoder
part in a common semantic segmentation network, the choices of which include UNet-like,
FCN-like, and more advanced attention-based approaches.

When adding different losses of different tasks for optimization, weights are usually
required, and manually tuning these weights as hyper-parameters is tedious. To balance the
BE and CD tasks, we learned the weights of different tasks when combining the respective
losses. We implemented the weighting of tasks on the basis of homoscedastic uncertainty,
which was first introduced by [47]. The multi-task loss function used in our work can be
expressed as:

Lmt = ∑
τ

(
1
σ2

τ
Lτ(Wτ) + log στ) (1)

where τ ∈ {BE_before, BE_after, CD} are the three respective tasks; Lτ(Wτ) is the binary
cross-entropy loss for each task; Wτ is the trainable parameter corresponding to each task;
and στ is a weighting parameter that affects the contribution of the individual task. The
regularization term log στ avoids trivial solutions for extremely small weighting parameters.
We trained the weighting terms along with the network parameters as s := log σ2 for
numerical stability during the optimization. Where the network parameters is Wτ ,the
weighting terms is s.

2.1. Backbones for Representation Learning

We employed a large version of Swin (vision transformer by shifted windows, Swin-L)
as our feature extractor; this approach has the advantage of multi-scale feature modeling
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flexibility from the hierarchical structure and long-range dependency encoding from the
prevalent transformer architecture. As listed in Table 1, the Swin-L backbone primarily
comprises four modules: a first patch partition to reduce the input patch, a linear embed-
ding to increase the number of feature channels, several Swin transformer blocks, and
patch merging in a subsequent order. The details of Swin-L can be found in [13,15]. We
used features from all four stages at different scales to address large building variations.

Table 1. The main operations of the utilized large version of Swin (Swin-L) structure as the backbone.

Layer Type Input Size Output Size (Equivalent Size)

Patch partition 512× 512× 3 128× 128× 3

Linear embedding 16, 384× 192 (128× 128× 192)

stage 1 Swin transformer block ×2 16, 384× 192 16, 384× 192 (128× 128× 192)

stage 2
Patch merging 4096× 384

Swin transformer block ×2 4096× 384 4096× 384 (64× 64× 384)

stage 3
Patch merging 4096× 384 1024× 768

Swin transformer block ×18 1024× 768 1024× 768 (32× 32× 768)

stage 4
Patch merging 1024× 768 256× 1536

Swin transformer block ×2 256× 1536 256× 1536 (16× 16× 1536)

2.2. Network Heads for Building Extraction and Change Detection

BE head. The adapted all-MLP head is illustrated in Figure 2 and consists of three
linear layers and one upsampling layer. This head takes the multi-scale representations
learned by the backbone, that is, the Swin transformer, as inputs and outputs a segmen-
tation mask that has the same size with the input patch. Specifically, the first of the MLP
combines multi-level features from the backbone into features of the same size by resize
and concatenation operations. These combined features are subsequently fused by a second
layer before the third predicts the buildings and a final upsampling operation is performed
to recover the resolution. The output of each branch is used for calculating the binary
cross-entropy loss together with the input ground truth of building labels.

CD head. The employed CD head consists of four combinations of Convolution-
BatchNorm-ReLU, progressively decreasing the feature channels, a final convolution layer
to predict the changing mask, and a final upsampling layer to recover the resolution. The
input to the CD head is a concatenation of the two output features from the multi-temporal
inputs respectively, and the output is a one-channel mask layer indicating the changed
pixels. The prediction output is used for calculating the binary cross-entropy loss together
with the input ground truth during training. For inference, a sigmoid activation operation
is applied to the prediction output, and the final pixel-level change map is obtained given a
threshold. In our study, the threshold is set to 0.5.

Figure 2. Architecture of the lightweight change detectio (CD) head.
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3. Experimental Setup
3.1. Datasets

The Wuhan University building (WHU) CD dataset (WHU-CD) [48] is a commonly
used public available dataset. The dataset includes 12796 independent buildings extracted
from aerial images. The image size is 32,507 × 15,354 and the pixel spacing is 0.2 m. It
covers 20.5 km² of the Christchurch area in New Zealand, in 2012 and 2016. The WHU-CD
is used to benchmark different BE and CD network choices and experimental setups. The
entire image is first cropped into 512× 512 patches, and the whole dataset is then randomly
split into three parts with a ratio of 7:1:2 for training, validation, and testing, respectively.

The BE and CD dataset in the Gaofen Challenge (Gaofen-BECD) included the Gaofen-2
and Jilin-1 multi-temporal satellite imagery, and the pixel spacing is smaller than 1 m. All
4000 images with a size of 512 × 512 formed 2000 paired bi-temporal images. All images
provided were used as the training set. To create a validation set, approximately 10% of
the training set was randomly selected and processed by random 0–10 degrees rotation,
random flip, and random 0.9–1.1 scaled resize. Our training set contains 2000 paired images,
and the validation set contained 200 generated paired images.

3.2. Implementation Details

We initialized Swin Backbones with the pre-trained model parameters from the
ImageNet-1K dataset [13], and implement all models through the PyTorch framework
on a GPU A100 developed by NVIDIA of the United States with 40 GB of memory. The
ImageNet -1K dataset was founded by Feifei Li, a professor at Stanford University in
the United States. During the training, we applied some often used data augmentation
skills, including random rotation, random flip, and random mirror. We used the AdamW
optimizer to train all networks in both the single task and multi-task settings. We set the
initial learning rate to 0.001 and the learning rate scheduler uses the step learning strategy.
The momentum is set to 0.9, the weight decay to 0.00001 and the batch size to 16.

For the CD task, we first initialize and froze the backbones with pre-trained weights
on the BE task and only train the CD head for 5 epochs, after which all parameters are
updated for 95 epochs.

3.3. Baseline Methods and Metrics

The following four state-of-the-art (SOTA) and mainstream BE and CD networks were
compared with the proposed approach.

• UNet for BE. A standard ResNeXt101-based UNet, which is a typical network for
semantic segmentation tasks, is used as a BE baseline method [12].

• Foreground-Aware Relation Network (FarSeg) for BE. The encoder of FarSeg con-
sists of a ResNet-based backbone to produce pyramidal feature maps with a strategy
similar to that of the feature pyramid network (FPN) and a foreground-scene relation
module to improve the embedings with associating geospatial scene-relevant context.
The decoder recovers the spatial size of the relation-enhanced multi-scale feature maps.
The foreground-scene relation sub-network refines each level of the pyramidal feature
maps using a relation map, a similarity matrix calculated with the scene embedding
and the foreground representation. The geospatial scene embedding, a 1-D feature
vector, was produced by an additional branch in the backbone via global context
aggregation, and the foreground represents the multi-scale features.

• Siam-UNet and Siam-UNet++ for CD. Siamese-UNet is mainly composed by two
main parts: the siamese network for feature extraction from multi-temporal inputs
and the decoder for analyzing embedding differences [25]. In the feature extraction
step, images of two different periods are processed by the two branches within the
siamese network with shared weights. Siam-UNet ++ uses UNet++ as the backbone
network, with the advantages of capturing fine-grained details by exploiting multiple
nested and dense skip connections to obtain multi-scale features and reduce the
pseudo-changes induced by scale variances [22].
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• ChangeStar for single task CD and MTL of BE&CD. ChangeStar [40] consists of a
dense prediction model for feature extraction and a ChangeMixin module to detect
object change. The ChangeMixin module consists of a temporal swap module (TSM)
and a shallow FCN involving combinations of Convolution-BatchNorm-ReLU. The
TSM module takes bi-temporal feature maps from the backbone (FarSeg) as input,
which are then concatenated in the channel axis in two different temporal orders; the
two respective outputs from TSM are subsequently used as inputs to two FCNs with
shared weights. Notably, the ChangeStar can be constructed for simultaneous BE
and CD if a regression module is introduced for BE probability estimation using the
extracted semantic features. Here, we use the FarSeg as the semantic segmentation
model, which helps achieve the best CD result in [40].

All of these baselines employ a ResNeXt101-based backbone for a fair comparison.
For the same reason, all models in this study ends with a upsampling layer with a ratio of
four to recover the resolution of the prediction.

To be consistent with previous studies, we assess different approaches via four metrics:
IoU, precision, recall, and F1-score, with respect to the building and the changed category.
We do not use mean IoU for model evaluation as the number of different classes is very
unbalanced, and usually the building and the changed pixels are of interest.

The challenge uses a pixel-level evaluation metric, the F1 score, which is widely used
and calculated using the following equation:

F1 =
2× P× R

P + R
.

P (precision) and R (recall) are calculated using the following two equations:

P =
TP

TP + FP
,

R =
TP

TP + FN
,

in which TP are true positives, FP are false positives, FN are false negatives. Assuming
that F1_be f ore and F1_a f ter represent the scores of the BE results of the paired images, and
F1_change represents the CD results, the final score for the Gaofen Challenge is calculated
by Score = 0.2× (F1_be f ore + F1_a f ter) + 0.6× F1_change.

4. Experimental Results

The quantitative and qualitative BE and CD results are presented and compared in
this section. To determine the optimal settings for the MTL, we first carried out a series of
ablation studies for each task in the single-task setting. Based on the results, we performed
MTL experiments to improve the model performance and validate our MTL method.

4.1. Ablation Studies for Optimal Multi-Task Learning Setups

WHU-CD is used to benchmark both the BE and CD tasks using the SOTA methods.

4.1.1. Building Extraction via Single Task Learning

Table 2 lists the BE results of the SOTA methods, where our adapted Swin-based
approach provides the best performance for all four metrics, followed by FarSeg and UNet,
with quite high accuracy.
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Table 2. Building extraction (BE) results of three different networks. The bold values represent the
best results.

Network IoU Precision Recall F1

UNet 89.89 96.42 93.00 94.68
FarSeg 90.52 97.02 93.12 95.03
Ours 91.65 97.19 94.15 95.65

4.1.2. Change Detection via Single Task Learning

Table 3 lists the CD results from the six SOTA methods with four different network
architectures and two backbone pre-training choices. It can be observed that our adapted
Swin-based model outperforms Siam-UNet, Siam-UNet++, and ChangeStar. Additionally,
the pre-training backbones on the WHU-CD are much better than those on ImageNet.

4.2. Quantitative Assessment of Multi-Task Learning

Table 4 lists the MTL results for ChangeStar and the proposed methods. The CD head
was kept constant when testing the ChangeStar-based approach. The backbones for both
approaches were first pre-trained on the BE task using the WHU-CD, as the comparisons
in Section 4.1.2 have shown the advantages of the dataset.

Our proposed MTL idea can significantly improve CD performance, with IoU improv-
ing from 72.44 to 81.86 and from 70.46 to 78.33 for our model and ChangeStar, respectively.

Table 3. CD results of different models using pre-training choices. The bold values represent the best
two results.

Model Pretrain IoU Precision Recall F1

Siam-UNet ImageNet 59.77 78.80 71.23 74.82
Siam-UNet++ ImageNet 62.07 71.67 82.25 76.59

ChangeStar ImageNet 62.20 73.59 80.08 76.70
Ours ImageNet 64.15 84.89 72.10 78.16

ChangeStar WHU-CD 70.46 78.84 86.88 82.67
Ours WHU-CD 72.44 86.74 81.47 84.02

Table 4. Comparative MTL results from ChangeStar and ours.

Model IoU Precision Recall F1

ChangeStar
BE 90.00 97.14 92.44 94.73
CD 78.33 89.03 86.70 87.85

Ours
BE 91.38 97.21 93.85 95.50
CD 81.86 91.27 88.81 90.02

4.3. Qualitative Assessment

Figures 3 and 4 present some examples of the CD results from single-task learning and
MTL, corresponding to Tables 3 and 4, respectively. These figures can be used to compare
the false negatives and false positives of the different approaches.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3. Comparative CD results of different models and pre-training choices on the Wuhan
University building CD dataset (WHU-CD) testing set. (a) t1 image patch. (b) t2 image patch.
(c) ground truth (GT) patch. (d) Results of Siamese-UNet pre-trained on the ImageNet dataset.
(e) Results of Siamese-UNet++ pre-trained on the ImageNet dataset. (f) Results of FarSeg pre-trained
on the ImageNet dataset. (g) Ours pre-trained on the ImageNet dataset. (h) Results of FarSeg pre-
trained on the WHU-CD dataset. (i) Ours pre-trained on the WHU-CD dataset. Red indicates false
positives, and green indicates false negatives.

(a) (b) (c) (d) (e) (f) (g)

Figure 4. Comparative BE and CD results of two models on the WHU-CD testing set. (a) t1 image
patch. (b) t2 image patch. (c) CD GT patch. (d) CD results of ChangeStar. (e) Our CD results. (f) Our
BE results from t1 Image. (g) Our BE results from t2 Image. Red indicates false positives, and green
indicates false negatives.



Appl. Sci. 2023, 13, 1037 10 of 15

4.4. Experimental Results: Fourth Place in the 2021 Gaofen Challenge

For this challenge, we exploited strategies, including test time augmentation and
model ensembling, to further boost the model performance for the proposed MTL idea.
Additionally, we applied a simple and effective post-processing strategy to optimize the
predicted results. A threshold was selected to filter out buildings or small changes in size.
We experimentally adjusted the minimal polygon size to 15 pixels, which is suitable for
both BE and CD tasks.

Figure 5 presents a comparison between our approach and ChangeStar on the Chal-
lenge dataset. In this case, both approaches can provide satisfactory results because the
available samples are quite similar with a compact data distribution. However, our ap-
proach outperformed ChangeStar in achieving higher scores on the test samples when
submitted to the website.

(a)

(b)

(c)

(d)

(e)

Figure 5. Comparative CD results of two models on the validation set of the BE and CD dataset in the
Gaofen Challen (Gaofen-BECD). (a) t1 Image. (b) t2 Image. (c) CD GT. (d) CD results of ChangeStar.
(e) Our CD results. Red indicates false positives, and green indicates false negatives.

5. Discussion

In this section, we analyze why MTL can help improve model performance and the
effect of different backbones and pre-training choices. We also tested the possibility of
transferring the trained model to an unseen area. Finally, we provide comments on related
topics based on our observations from this study.

5.1. Benefits of Multi-Task Learning

By comparing the CD results in Table 4 with those in Table 3, it becomes clear that
MTL can improve the CD results, with a significant increase in all four metrics, for both
ChangeStar and our Swin-based networks. This demonstrates the benefits of the MTL
for the CD task. One possible reason is that more semantic supervision signals were
introduced in the MTL process, even though the available samples were the same. Increased
supervision leads to higher model capacity. Additionally, the CD task in our study is an
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actual building CD task, which means that the changes can only occur in building areas.
Specifically, there is only one image containing buildings in the changing area. This
knowledge and rich category information within the learned features are wasted when BE
and CD tasks are treated separately.

We can also see that the MTL idea is so helpful that the ChangeStar-based MTL CD
results (78.33 IoU) are much better than those of single task learning by Swin-L (72.44 IoU).
This indicates that the advantage of a complex model architecture is less important, e.g.,
than domain knowledge, when it comes to a specific RS application and a fixed dataset.

In addition, MTL can result in a slight performance decrease for the BE task, as is
shown by the comparative results listed in Tables 2 and 4, which is probably because the
model focuses less on the easy BE task while optimizing BE and CD tasks together. This
problem can be avoided by adding additional training or fine-tuning strategies.

5.2. Effectiveness of Pre-Trained Weights for CD

From Table 3 we find that the pre-training backbones are important. In addition, using
the BE task and RS dataset is more helpful than using a classification task on the ImageNet
dataset. As most model parameters are from the backbone, pre-training stabilizes the MTL
process. This initialization makes a significant difference for both ResNet-based ChangStar
and the adopted transformer-based Swin-L. It should be noted that Swin-L is initialized
using pre-trained model parameters on the ImageNet dataset before training in this study,
owing to training difficulty.

5.3. Transfer Performance to a Unseen CD Dataset

To further evaluate our approach in the domain shift scenario, we applied the trained
models to an unseen CD dataset, LEVIR-CD [35]. LEVIR-CD is a commonly used CD
benchmark dataset comprising 637 paired VHR Google Earth image patches. The patch
size is 1024× 1024 pixels, and the ground spacing distance is 0.5 m. Due to the construction
growth, there are obvious land-cover changes in the bi-temporal imagery. Figure 6 shows
a comparison of our approach’s transfer performance to the strong baseline ChangeStar
trained from the Challenge dataset, and Table 5 presents a quantitative comparison in such
a setting, both of which demonstrate the outperformance of our proposed method.

5.4. Comments and Further Improvements

In the previous literature using WHU-CD for algorithm evaluation, different splits
and data pre-processing steps, for example, different patch sizes and cropping methods,
are used [49–52]. Thus, it is difficult to fairly compare the different approaches in related
studies. In Section 4.1, we compare our approach to some typical models to demonstrate
their performance in a single-task learning setup, after which we show the benefits of MTL
to further improve the CD accuracies in Section 4.2.

We observed that satellite images from Challenge were not orthophotos, and high
buildings were downwards to the side, as shown in Figure 5. This observed phenomenon
also happens in other BE and CD datasets, leading to some label noises, which makes it
difficult to acquire sharp boundaries for building roofs or footprints. This phenomenon
makes the BE and CD approaches infeasible for some subsequent specific applications such
as stereo matching and 3D reconstruction of buildings.

One limitation of our proposed MTL idea is that it requires BE labels in addition
to CD labels, as both the BE and CD branches are optimized in a supervised manner,
where annotations are needed during the training process. In reality, CD datasets do
not necessarily have BE labels. Therefore, further improvements are also needed for the
proposed method. In the future, we can either simulate pseudo CD labels using simulated
paired BE samples, as carried out in [40], or resort to self-supervised learning techniques
such as those proposed in [53,54] for representation learning to decrease the amount of
required labels.
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Table 5. Comparative CD results on the LEVIR dataset using models trained on the Challenge dataset.
The bold values represent the better results.

Model IoU Precision Recall F1

ChangeStar 56.16 69.11 74.98 71.92
Ours 58.65 63.49 88.50 73.94

(a)

(b)

(c)

(d)

(e)

Figure 6. Comparative CD results on the LEVIR dataset of two models trained with the Challenge
dataset. (a) t1 Image. (b) t2 Image. (c) CD GT. (d) CD results of ChangeStar. (e) Our CD results. Red
indicates false positives, and green indicates false negatives.

6. Conclusions and Outlook

Extracting buildings and detecting their changes using VHR RS images are crucial tasks
that have attracted increasing attention. The powerful SOTA DL models have achieved
promising results for these challenging tasks. However, most studies treat these two tasks
separately with different focuses and dedicated datasets, which leads to the redundant
research effort and annotation burden. In contrast, we proposed an MTL approach for
BE and CD from RS images. Specifically, we integrated a SOTA Swin transformer and
light heads into the MTL network to use the available training samples for representative
feature learning. In addition, we adaptively learned the task weights to balance different
losses and obtain efficient and effective optimization. Extensive experimental results
demonstrate the superior performance of our proposed solution than the SOTA BE and
CD models using different public datasets. Moreover, we achieved fourth place in the
2021 Gaofen Challenge. We also demonstrated our approach’s potential in test settings
with a domain shift. Moreover, our approach can be easily adapted to a wide variety of
application scenarios, such as urban monitoring from time series and general CD tasks
from RS images. More related RS applications will be explored in the future to validate the
proposed MTL idea.
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SOTA state-of-the-art
BE building extraction
CD change detection
RS remote sensing
MTL multi-task learning
WHU-CD the Wuhan University building (WHU) change detection dataset
DL deep learning
CNN the convolutional neural network
FCN the fully convolutional network
SCD semantic change detection
RNN the recurrent neural network
GAN the generative adversarial network
VHR very high-resolution
MLP multilayer perceptron
Swin_L the large version of Swin
GT ground truth
TSM temporal swap module
FarSeg Foreground-Aware Relation Network
FPN feature pyramid network
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